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for I J ~  = 1 and fixed initial request rate I’ for all processors. The 
factor f and the bandwidth can be calculated from (14) and (16). 

For fixed priority, (14) becomes 

BIV = f , r  (17) 
r = l  

i.e., the bandwidth is given by the summation of the contribution 
made by each processor Dependencies are separated by the use of 
the factor f. The bandwidth is also given by 

B\V = 1 - n f , ( l  - fir) (18) 
,= 1 

by reduction of the final bandwidth equation in [4] with t i 1  = 1. 
Hence, f can be calculated by iteration. We have 

B\!-z = 1 - n f , ( l  - f,r). (19) 
, = I  

From (19), we obtain 

i.e., an expression for B\V, in terms of BIV,-I. We also have 

B\V, - BIV,-L =z f 3 r  (21) 

i.e., the contribution of the ith processor on the bandwidth, from (17). 
Equations (20) and (21) can be used iteratively to obtain BIV and 
f .  By using (l), (6), and (15), we obtain the access time in terms 
of f l  as 

We have computed the access time for the lowest priority processor 
using the performance degradation factor model and find the model 
gives values close to the other models described in Section IV for low 
numbers of processors or low request rate. We include the method 
here because it is a method previously proposed for fixed priority 
taking into account dependencies, yet it only gives satisfactory results 
for low numbers of processors or low request rate when applied to 
access time. 

VI. CONCLUSIONS 
In this correspondence, we have presented new simulation results 

for the access time of a shared memory multiprocessor system. We 
have shown that the access time reduces with reduced requests in 
all cases including equal priority, in contrast to previously published 
work and that there are no significant differences between random, 
equal, and rotating priority protocols when requests are generated in 
a random order. Previously published theoretical equations for the 
access time have been corrected and modified to become closer to 
simulation results. We have also highlighted that great care should 
be exercised in deriving probabilistic equations to ensure that joint 
probabilities are from independent events. This is especially important 
when the priority protocol is not the random or an equivalent protocol. 
Differences between theoretical and simulation results, where they 
exist, can be attributed to the dependences in probabilities in the 
theoretical equations. 
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Data Flow Representation of Iterative 
Algorithms for Systolic Arrays 

Chein-Wei Jen and Ding-Ming Kwai 

Abstract-An algebraic representation is proposed for regular iterative 
algorithms that can be described as bundles of data flows with different 
wavefronts. Modeling data flows with a generating function of power 
series, this form corresponds to the geometric representation such as 
a dependence graph. The main attributes of systolic algorithms and 
arrays are revealed by a unique data flow representation. This provides 
the ability to pipeline two or more systolic arrays solving different 
subproblems without intermediate buffering. We use an example to show 
the case with which our technique can be used. 

Index Terms-Algebraic representation, chaining systolic arrays, data 
flow, dependence graph, flow velocity, generating function, pipelining. 

I. INTRODUCTION 

Regular iterative algorithms are often shown by a geometric 
representation, called a dependence graph, that corresponds vertices 
to variables and edges to dependence between variables [4]. The 
dependence graph constructed in an n-dimensional integer Euclidean 
space basically is a locally recursive and single assignment form of 
the iterative algorithm. It consists of a finite set of variables that each 
variable takes on a certain value at each point in the index space and 
assumes a unique value supplied by the variables at the neighboring 
points. Using dependence graphs has the advantage that they are 
easy to understand and convenient to display. The transformation 
of iterative algorithms into systolic arrays is also well defined via 
dependence graphs [3], [7]-[ll], [14]. 

The systolic array structure that includes PE’s locations and com- 
munication links between PE’s can be obtained simply by projecting 
the dependence graph onto a lower dimensional processor space. 
We denote the processor space as S .  The projection direction is 
represented by an integer 11-vector Pd, and is defined as the iteration 
vector by [3]. Choosing more than one projection directions (under 
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some conditions [7]),  multiple projection is made. Thus, a systolic 
algorithm can be mapped into an array structure of desired dimension. 
It is obvious that S is orthogonal to Pd. 

S . P d  = 0. (1) 

Once the processor space is determined, a schedule is required 
for the computations. A correct scheduling assures that a right data 
reaches its destination at the right time step. The schedule space 
II is a linear transformation that maps vertices of the dependence 
graph to scalar time steps. The linear scheduling is equivalent to draw 
parallel isotemporal hyperplanes through the dependence graph; the 
progression ticks away the time along the direction normal to these 
hyperplanes. 

According to the linear properties and causality constraints on the 
dependence graphs, the following inequalities should be satisfied. 

I I .d> 1 

where dependence vector d is a direct dependence among variables 
with respect to the index points or an index displacement vector in 
the index space, and 

I I . P d # O .  

The derivations of processor space S and schedule space n could be 
found in [3], [7], [ l l ] ,  and [14]. 

However, we can regard the iterative algorithms as moving data 
items rhythmically and extend this concept to systolic arrays. The 
entities that we consider then consist of bundles of data streams 
having individual velocities, sources, and ends. The data items 
interact as they meet and generate intermediate results. Describing 
this process in an algebraic notation, the pipelinability and parallelism 
that an iterative algorithm possesses can be shown clearly [12], [13]. 

We would like to explore the relationship between the geometric 
representation and the kind of algebraic representation in this short 
paper. In Section 11, the algebraic notation of data flow and wavefront 
are defined by generating functions of power series, moreover, the 
parameters of characterization are derived. In Section 111, the system 
chaining two or more systolic arrays is considered and the condition 
for such coalescence is examined. Section IV gives a conclusion. 

11. DATA FLOWS AND WAVEFRONTS 

A. Representation of Data Flows 

quence of events. The function 
Let ( p , .  p ,  . . . . . pt.  . . . ) be the symbolic representation of a se- 

F ( T )  = P o l ' o ( T )  + P 1 / ' 1 ( T )  +.. .+ P , / ' t ( T )  +... 
is called the generating function of the sequence ( p , .  p l .  . . . . p ,  . . . . )  
where \ / [ I ,  / / I . .  . . . pt. . . . is a sequence of function of T used as 
indication. Clearly the generating function of a sequence is just an 
alternative representation of the sequence ( p ,  . p , .  . . . . p f . .  . .) [6]. In 
our case, the form of p t ( ~ )  is chosen as T I ,  then for the sequence 
we have 

F ( T )  = p ,  + P I T  + . . .  + P f T t  + 
or 

F ( T )  = &,T'. 

t=o 

variable be located at position X ' ( ' ) Y 1 ( ' ) Z h ( ' ) .  The data stream is 
described as a generating function of power series as 

Since systolic algorithms preserve uniformity and regularity, we have 
r ( t )  = i ( s )  + f l / ,  j ( t )  = j ( . s )  + t l j ,  k ( t )  = k ( s )  + t l k  where 
0 5 f 5 e' = P - s. Then 

F ( ~ )  = ~ x ~ ( * ) + , . " Y J ( ' ) + ' . J z ~ ( ~ ) + ' S "  .(t+.) 
t=, 

t=o 

(3) 

n ,  j, and 7 are unit-step moving operators in X ,  Y ,  and Z directions, 
respectively. The term nA' jA1-AA T stands for the distance that 
a data item moves in index space per time step and is exactly 
the meaning of velocity. Obviously a data stream consists of its 
flow velocity jA1-,AL T, source position p ,  and end position 
p ,  . For uniform recurrence equations [4], a special class of iterative 
algorithms that appear in a form as a mathematical expression, the 
ends can be ignored in the representation. We can let r' approximate 
infinity, the data stream in (3) becomes 

Wavefronts of a bundle of data streams moving in a uniform 
manner (with the same flow velocity) can be represented in an 
ensemble by 

I t -  = F (  T). 

Different wavefronts (with different flow velocities) will interact and 
values they carry may change. This occurs only when the associated 
space positions and times are equal. A systolic algorithm is described 
as a collection of wavefronts of data streams in the data flow 
representation. Each data stream is characterized algebraically by 
three parameters: the flow velocity, the location of source, and the 
location of end. 

B. Derivation of Flow Velocity 
For a given iterative algorithm, the source and end of every data 

stream can be obtained directly from the description of the locally 
recursive and single assignment form. The key point to have a 
complete data flow representation is to derive the flow velocity. In 
the following theorem, some restrictions are g e e n .  

Theorem I: Given the dependence vector d of a variable and a 
timing schedule II of index space, the flow velocity of the data stream 
with this variable must satisfy the following equations: 

Without loss of generality, a 3-D coordinate is used. A data stream 
F (  T )  represents a data item moving in a specific path. Assume that 
at time t = s ,  the data stream originates from the source and at time 
t = e, the data stream ends to the outside world. At time t ,  let the 

It states that in (4) the flow velocity is a multiple of the dependence 
vector of the data stream, and this multiple is not larger than one, 
and in (5) the flow velocity is a reciprocal of the schedule. 

Proof: (In the Appendix.) 
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We use the matrix multiplication as an example. Multiplying an 
by ATJ S, by -YA matrix -4 and an -1-k by 

product matrix C is mathematically as  follows 
matrix B to get an 

A =[I 

where i .  j are integers between 0 and S, - 1. -VJ - 1 inclusive, 
respectively. Rewrite this expression to be in a locally recursive and 
single assignment form as follows [5] :  

c ( i .  j .  k + I )  = c ( i .  j. k )  + c i ( i .  j .  k ) .  b ( i .  j . k )  

r i ( i .  j + 1.1.) = t i ( i .  j .  k )  

b(i + 1. j .  k )  = n( i .  j .  k )  

with inputs initially 

r r ( i .  0. k )  =  tit^. 

b(0 .  j .  k )  = h r . ,  

c ( i .  j . 0 )  = 0 

and desired outputs 

c,, = r( i .  j .  -1-k ) . 

The dependence graph is shown in Fig. 1 with = -1; = -1-1, = 3. 
The {ata deperfdence vectors for matrices -4, B ,  and C (denoted as 
(1.4, d ~ ,  and (IC-) can easily be seen as 

Choose schedule space TI = [l 1 11, the available flow velocities for 
data streams of wavefronts -4, B ,  and C are 

P I =  [K]. ?B= [i]. and Pr= [!I. 
In an algebraic representation, the wavefronts of data streams are 

A = A ( 0 )  j ' ~ '  
r h  / = O  

= ( i z h X ' Y Y " Z h T ' + r  C t j ' T '  

l k  t=o  

and 

Assume that these three bundles of data streams meet at time f ,  the 
space position they meet are derived by equating the locations of data 
items in A, B,  and C .  We have the space-time correlation 

k 

a 
, 21 

a 
a0 

A 

Fig. 1. The dependence graph of the matrix multiplication (.Yt = S, = 
-\-I, = 3)  denoting three bundles of data streams. 

111. COALESCENT SYSTOLIC ARRAY SYSTEMS 

There are generally two ways of data input to a systolic array, either 
supplied by a host computer such as those in attached subsystems, or 
directly by other subsystems. In the latter, the form is like a chained 
pipeline used in vector computers. Chaining is a link process that 
occurs when results obtained from one pipeline unit are directly fed 
into the operand registers of another unit. In other words, intermediate 
results do not have to be retrieved in the host memory unit as 
buffering. However, the interface between the units is an issue [l]. 
Using the language of data flow representation, the supplied bundle 
of data streams must match exactly in space and time the demanded 
bundle of data streams. The relationship between the two bundles of 
data streams can be describing formally by the following equation: 

The S (  derii) - r (  5111)) is the time interval between the end of supplier 
and the source of demander. 

Consider two iterative algorithms. One is for convolution (or equiv- 
alently, the finite impulse response (FIR) filtering) of two sequences 
of d = [ d h ]  and weighting coefficients g = (go . .q~: . . .g \ -~) :  

Y-I 

The other is for the matrix-vector multiplication of matrix A = ( ( / > I ,  ) 
and vector b = [ h ~ ]  or (or equivalently, discrete Fourier trans- 
formation (DFT) [5] ) :  

' h  

C ,  = x t / , A h L .  0 5 i 5 -I-, - 1. (8) 
A = O  

Their dependence graphs are shown in Fig. 2 and Fig. 3. We trans- 
form them, respectively, such that the weighting coefficients of the 
convolution are stored in the PE's, and the resulting vector c = [ c I ]  
of matrix-vector multiplication is stored in the PE's. The algebraic 
representations of the two algorithms will be as follows: (We use the 
apostrophes to denote the data streams of the arrays.) 

\ - 1  

i + j + k = t  for ( 7 )  d' = ~ d & ' Y f l T 2 '  n - ' T f  

which is exactly the schedule of each point in the index space. I, / = O  
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0 
b 

Fig. 2. The dependence graph of the convolution algorithm denoting three 
bundles of data streams. 

I k C A 

C 

The dependence graph of the matrix-vector multiplication Fig. 3. 

\ -1 

g' = CiJ tX- 'YOT'  T I .  

f = O  

\ -1 

b' = / ) ,X- (  \ -l)yoTLf-( ' n f r t ;  
, t=O 

and for (9 )  A' = ~ I , ~ X ' Y ( ~ T ' + ~  f T ' .  

I t = O  

b' = ~ B ~ X " Y " T ~  cn'~'. 
A t=o 

CI = C,X'YOT' T t .  (9) 
i t=0 

All of d', g', b', A', and c' are wavefronts carrying data items of d ,  
g, b, A, and c, respectively. The systolic arrays are shown in Fig. 4 
and Fig. 5. Notice that the projection directions (i.e., the processor 
spaces) we choose for each dependence graph are different. Now 
the output b' of convolution is the input vector of matrix-vectoI 

Fig. 4. The systolic array executing the convolution algorithm. The weight- 
ing coefficients are stored in the PE's. 
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Fig. 5. The systolic array executing the matrix-vector multiplication. 

Fig. 6.  Concatenation of systolic arrays. The output result of convolution is 
directed to the input operand of matrix-vector multiplication. 

as shown in Fig. 6. However, one may see in Fig. 4 and Fig. 5, the 
intervals between the two arrays are different. The supplying end at 
t = S - 1 is ~ ~ X O Y ' T ~ ~ ,  but the demanding source at f = 0 is 
hhXoY"Th. According to (6), T~ is added to adjust the interval of 
data items and T \ -' is added to delay the array :\T - 1 time steps 
until the pipelining operand arrives. Equation (9) becomes 

The interval is expanded, and thus matches the data stream from 
the convolution array (shown in Fig. 7). The coalescent system of 
systolic arrays seems more efficient for computations when chaining. 

IV. CONCLUSION 
The algebraic representation proposed in this short paper describes 

an iterative algorithm as bundles of data streams with different 
velocities. Each data stream consists of the data item, its source, 
and end. The only condition for chaining systolic arrays is to satisfy 
the interfacing of flow velocities of data items along with correct 
positions of demanding sources and supplying ends. By this means, 

multiplication, and the two arrays are to be concatenated in a chain several array subsystems could be easily coalesced. 
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APPENDIX 

pp. 373-382. . 
Proof of Theorem 1: 1) The distance from the position at time 

f to the source is assumed to take q time steps for the data item with 
flow velocity f, that is, 

p t  - p ,  = qc. 

or 

but the position vector p ,  on the dependence graph is a multiple of 
the dependence vector plus the source, then 

Letting c = r / q  gives (4). 

schedule TI, the time needed is q in I), then by the above 
2)  Measuring the time to go through the distance by the timing 

- 
q = TI(rr l )  = r I ( q f )  = q ( r I .  F). 

TIC-’< 2 1. 

and gives (5).  By (4), substitute rfwith cF’ f into (2) ,  it becomes 

- 
Since TI. l 7  = 1. c 5 1. Q.E.D. 
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Some Combinatorial Aspects of Parallel Algorithm 
Design for Matrix Multiplication 

Jong-Chuang Tsay and Sy Yuan 

Abstract-In this paper, some combinatorial characteristics of matrix 
multiplication on regular two-dimensional arrays are studied. From the 
studies, we are able to design many efficient varieties of the cylindrical 
array and the two-layered mesh array for matrix multiplication. To 
design a cylindrical array for matrix multiplication, a systematic design 
procedure is proposed. In this design procedure, Latin square (a special 
type of matrix) plays an important role. To design a two-layered mesh 
array, we find that there is a transformation procedure to transform a 
cylindrical array to a two-layered mesh array. 

Index Terms-Cylindrical array, Latin square, matrix multiplication, 
parallel algorithm design, systolic array, two-layered mesh array. 

I. INTRODUCTION 
Systolic array, as defined by Kung [3], is a synchronous operating 

parallel processing array consisting of simple processing elements 
interconnected in a local and regular manner. Systolic array has 
an unnoticed characteristic-its architecture should be planar, in 
other words, the communication lines among the processing elements 
should not cross over each other. If we relax this restriction, it is 
possible to obtain more efficient designs than systolic designs for a 
certain class of problems. Usually for this class of problems, operators 
used in their algorithm satisfy the associative and commutative 
properties. Typical examples in this class are matrix multiplication 
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