
IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 3, MARCH l Y Y 2 35 1

for I J ~ = 1 and fixed initial request rate I’ for all processors. The
factor f and the bandwidth can be calculated from (14) and (16).

For fixed priority, (14) becomes

BIV = f , r (17)
r = l

i.e., the bandwidth is given by the summation of the contribution
made by each processor Dependencies are separated by the use of
the factor f. The bandwidth is also given by

B\V = 1 - n f , (l - fir) (18)
,= 1

by reduction of the final bandwidth equation in [4] with t i 1 = 1.
Hence, f can be calculated by iteration. We have

B\!-z = 1 - n f , (l - f,r). (19)
, = I

From (19), we obtain

i.e., an expression for B\V, in terms of BIV,-I. We also have

B\V, - BIV,-L =z f 3 r (21)

i.e., the contribution of the ith processor on the bandwidth, from (17).
Equations (20) and (21) can be used iteratively to obtain BIV and
f . By using (l), (6), and (15), we obtain the access time in terms
of f l as

We have computed the access time for the lowest priority processor
using the performance degradation factor model and find the model
gives values close to the other models described in Section IV for low
numbers of processors or low request rate. We include the method
here because it is a method previously proposed for fixed priority
taking into account dependencies, yet it only gives satisfactory results
for low numbers of processors or low request rate when applied to
access time.

VI. CONCLUSIONS
In this correspondence, we have presented new simulation results

for the access time of a shared memory multiprocessor system. We
have shown that the access time reduces with reduced requests in
all cases including equal priority, in contrast to previously published
work and that there are no significant differences between random,
equal, and rotating priority protocols when requests are generated in
a random order. Previously published theoretical equations for the
access time have been corrected and modified to become closer to
simulation results. We have also highlighted that great care should
be exercised in deriving probabilistic equations to ensure that joint
probabilities are from independent events. This is especially important
when the priority protocol is not the random or an equivalent protocol.
Differences between theoretical and simulation results, where they
exist, can be attributed to the dependences in probabilities in the
theoretical equations.

REFERENCES

F. El Guibaly, “Design and analysis of arbitration protocols,” IEEE Trans.
Comput., vol. 38, pp. 161-171, Feb. 1989.
K. Hwang and F. A. Briggs, Computer Architecture and Parallel Process-
mg. New York: McGraw-Hill, 1984.
S. K. Park and K. W. Miller, “Random number generators: Good ones are
hard to find,” Commun. ACM, vol. 31, pp. 1192-1201, Oct. 1988.
D. W. L. Yen, J. H. Patel, and E. S. Davidson, “Memory interference in
synchronous multiprocessor systems,” IEEE T r a m Comput., vol. C-31,
pp. 1116-1121, Nov. 1982.
T.N. Mudge, J.P. Hayes, G.D. Buzzard, and D.C. Winsor, “Analysis
of multiple bus interconnection networks,” Proc. 1984 Int. Conf: Parallel
Processing, IEEE, 1984, pp. 228-232.
Y-C Liu and C-J Jou, “Effective memory bandwidth and processor
blocking probability in multiple-bus systems,” IEEE Trans. Comput.,
vol. C-36, pp. 761-764, June 1987.

Data Flow Representation of Iterative
Algorithms for Systolic Arrays

Chein-Wei Jen and Ding-Ming Kwai

Abstract-An algebraic representation is proposed for regular iterative
algorithms that can be described as bundles of data flows with different
wavefronts. Modeling data flows with a generating function of power
series, this form corresponds to the geometric representation such as
a dependence graph. The main attributes of systolic algorithms and
arrays are revealed by a unique data flow representation. This provides
the ability to pipeline two or more systolic arrays solving different
subproblems without intermediate buffering. We use an example to show
the case with which our technique can be used.

Index Terms-Algebraic representation, chaining systolic arrays, data
flow, dependence graph, flow velocity, generating function, pipelining.

I. INTRODUCTION

Regular iterative algorithms are often shown by a geometric
representation, called a dependence graph, that corresponds vertices
to variables and edges to dependence between variables [4]. The
dependence graph constructed in an n-dimensional integer Euclidean
space basically is a locally recursive and single assignment form of
the iterative algorithm. It consists of a finite set of variables that each
variable takes on a certain value at each point in the index space and
assumes a unique value supplied by the variables at the neighboring
points. Using dependence graphs has the advantage that they are
easy to understand and convenient to display. The transformation
of iterative algorithms into systolic arrays is also well defined via
dependence graphs [3], [7]-[ll], [14].

The systolic array structure that includes PE’s locations and com-
munication links between PE’s can be obtained simply by projecting
the dependence graph onto a lower dimensional processor space.
We denote the processor space as S . The projection direction is
represented by an integer 11-vector Pd, and is defined as the iteration
vector by [3]. Choosing more than one projection directions (under

Manuscript received April 5 , 1989; revised September 25, 1990. This work
was supported in part by the National Science Council, Taiwan, Republic of
China, under Grant NSC78-0404-E009-23.

The authors are with the Institute of Electronics, National Chiao-Tung
University, Hsin-Chu, Taiwan 30039, Republic of China.

IEEE Log Number 9102597.

UO1&9340/92$03.00 0 1992 IEEE

352 IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 3, MARCH 1992

some conditions [7]), multiple projection is made. Thus, a systolic
algorithm can be mapped into an array structure of desired dimension.
It is obvious that S is orthogonal to Pd.

S . P d = 0. (1)

Once the processor space is determined, a schedule is required
for the computations. A correct scheduling assures that a right data
reaches its destination at the right time step. The schedule space
II is a linear transformation that maps vertices of the dependence
graph to scalar time steps. The linear scheduling is equivalent to draw
parallel isotemporal hyperplanes through the dependence graph; the
progression ticks away the time along the direction normal to these
hyperplanes.

According to the linear properties and causality constraints on the
dependence graphs, the following inequalities should be satisfied.

I I .d> 1

where dependence vector d is a direct dependence among variables
with respect to the index points or an index displacement vector in
the index space, and

I I . P d # O .

The derivations of processor space S and schedule space n could be
found in [3], [7], [l l] , and [14].

However, we can regard the iterative algorithms as moving data
items rhythmically and extend this concept to systolic arrays. The
entities that we consider then consist of bundles of data streams
having individual velocities, sources, and ends. The data items
interact as they meet and generate intermediate results. Describing
this process in an algebraic notation, the pipelinability and parallelism
that an iterative algorithm possesses can be shown clearly [12], [13].

We would like to explore the relationship between the geometric
representation and the kind of algebraic representation in this short
paper. In Section 11, the algebraic notation of data flow and wavefront
are defined by generating functions of power series, moreover, the
parameters of characterization are derived. In Section 111, the system
chaining two or more systolic arrays is considered and the condition
for such coalescence is examined. Section IV gives a conclusion.

11. DATA FLOWS AND WAVEFRONTS

A. Representation of Data Flows

quence of events. The function
Let (p , . p , pt. . . .) be the symbolic representation of a se-

F (T) = P o l ' o (T) + P 1 / ' 1 (T) +.. .+ P , / ' t (T) +...
is called the generating function of the sequence (p , . p l p , )
where \ / [I , / / I pt. . . . is a sequence of function of T used as
indication. Clearly the generating function of a sequence is just an
alternative representation of the sequence (p , . p , p f) [6]. In
our case, the form of p t (~) is chosen as T I , then for the sequence
we have

F (T) = p , + P I T + . . . + P f T t +
or

F (T) = &,T'.

t=o

variable be located at position X ' (') Y 1 (') Z h (') . The data stream is
described as a generating function of power series as

Since systolic algorithms preserve uniformity and regularity, we have
r (t) = i (s) + f l / , j (t) = j (. s) + t l j , k (t) = k (s) + t l k where
0 5 f 5 e' = P - s. Then

F (~) = ~ x ~ (*) + , . " Y J (') + ' . J z ~ (~) + ' S " .(t+.)
t=,

t=o

(3)

n , j, and 7 are unit-step moving operators in X , Y , and Z directions,
respectively. The term nA' jA1-AA T stands for the distance that
a data item moves in index space per time step and is exactly
the meaning of velocity. Obviously a data stream consists of its
flow velocity jA1-,AL T, source position p , and end position
p , . For uniform recurrence equations [4], a special class of iterative
algorithms that appear in a form as a mathematical expression, the
ends can be ignored in the representation. We can let r' approximate
infinity, the data stream in (3) becomes

Wavefronts of a bundle of data streams moving in a uniform
manner (with the same flow velocity) can be represented in an
ensemble by

I t - = F (T).

Different wavefronts (with different flow velocities) will interact and
values they carry may change. This occurs only when the associated
space positions and times are equal. A systolic algorithm is described
as a collection of wavefronts of data streams in the data flow
representation. Each data stream is characterized algebraically by
three parameters: the flow velocity, the location of source, and the
location of end.

B. Derivation of Flow Velocity
For a given iterative algorithm, the source and end of every data

stream can be obtained directly from the description of the locally
recursive and single assignment form. The key point to have a
complete data flow representation is to derive the flow velocity. In
the following theorem, some restrictions are g e e n .

Theorem I: Given the dependence vector d of a variable and a
timing schedule II of index space, the flow velocity of the data stream
with this variable must satisfy the following equations:

Without loss of generality, a 3-D coordinate is used. A data stream
F (T) represents a data item moving in a specific path. Assume that
at time t = s , the data stream originates from the source and at time
t = e, the data stream ends to the outside world. At time t , let the

It states that in (4) the flow velocity is a multiple of the dependence
vector of the data stream, and this multiple is not larger than one,
and in (5) the flow velocity is a reciprocal of the schedule.

Proof: (In the Appendix.)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 3, MARCH 1992 353

We use the matrix multiplication as an example. Multiplying an
by ATJ S, by -YA matrix -4 and an -1-k by

product matrix C is mathematically as follows
matrix B to get an

A =[I

where i . j are integers between 0 and S, - 1. -VJ - 1 inclusive,
respectively. Rewrite this expression to be in a locally recursive and
single assignment form as follows [5] :

c (i . j . k + I) = c (i . j. k) + c i (i . j . k) . b (i . j . k)

r i (i . j + 1.1.) = t i (i . j . k)

b(i + 1. j . k) = n(i . j . k)

with inputs initially

r r (i . 0. k) = tit^.

b(0 . j . k) = h r . ,

c (i . j . 0) = 0

and desired outputs

c,, = r(i . j . -1-k) .

The dependence graph is shown in Fig. 1 with = -1; = -1-1, = 3.
The {ata deperfdence vectors for matrices -4, B , and C (denoted as
(1.4, d ~ , and (IC-) can easily be seen as

Choose schedule space TI = [l 1 11, the available flow velocities for
data streams of wavefronts -4, B , and C are

P I = [K]. ?B= [i]. and Pr= [!I.
In an algebraic representation, the wavefronts of data streams are

A = A (0) j ' ~ '
r h / = O

= (i z h X ' Y Y " Z h T ' + r C t j ' T '

l k t=o

and

Assume that these three bundles of data streams meet at time f , the
space position they meet are derived by equating the locations of data
items in A, B, and C . We have the space-time correlation

k

a
, 21

a
a0

A

Fig. 1. The dependence graph of the matrix multiplication (.Yt = S, =
-\-I, = 3) denoting three bundles of data streams.

111. COALESCENT SYSTOLIC ARRAY SYSTEMS

There are generally two ways of data input to a systolic array, either
supplied by a host computer such as those in attached subsystems, or
directly by other subsystems. In the latter, the form is like a chained
pipeline used in vector computers. Chaining is a link process that
occurs when results obtained from one pipeline unit are directly fed
into the operand registers of another unit. In other words, intermediate
results do not have to be retrieved in the host memory unit as
buffering. However, the interface between the units is an issue [l].
Using the language of data flow representation, the supplied bundle
of data streams must match exactly in space and time the demanded
bundle of data streams. The relationship between the two bundles of
data streams can be describing formally by the following equation:

The S (derii) - r (5111)) is the time interval between the end of supplier
and the source of demander.

Consider two iterative algorithms. One is for convolution (or equiv-
alently, the finite impulse response (FIR) filtering) of two sequences
of d = [d h] and weighting coefficients g = (go . .q~: . . .g \ -~) :

Y-I

The other is for the matrix-vector multiplication of matrix A = ((/ > I ,)
and vector b = [h ~] or (or equivalently, discrete Fourier trans-
formation (DFT) [5]) :

' h

C , = x t / , A h L . 0 5 i 5 -I-, - 1. (8)
A = O

Their dependence graphs are shown in Fig. 2 and Fig. 3. We trans-
form them, respectively, such that the weighting coefficients of the
convolution are stored in the PE's, and the resulting vector c = [c I]
of matrix-vector multiplication is stored in the PE's. The algebraic
representations of the two algorithms will be as follows: (We use the
apostrophes to denote the data streams of the arrays.)

\ - 1

i + j + k = t for (7) d' = ~ d & ' Y f l T 2 ' n - ' T f

which is exactly the schedule of each point in the index space. I, / = O

354 IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 3, MARCH 1992

0
b

Fig. 2. The dependence graph of the convolution algorithm denoting three
bundles of data streams.

I k C A

C

The dependence graph of the matrix-vector multiplication Fig. 3.

\ -1

g' = CiJ tX- 'YOT' T I .

f = O

\ -1

b' = /) ,X- (\ -l)yoTLf-(' n f r t ;
, t=O

and for (9) A' = ~ I , ~ X ' Y (~ T ' + ~ f T ' .

I t = O

b' = ~ B ~ X " Y " T ~ cn'~'.
A t=o

CI = C,X'YOT' T t . (9)
i t=0

All of d', g', b', A', and c' are wavefronts carrying data items of d ,
g, b, A, and c, respectively. The systolic arrays are shown in Fig. 4
and Fig. 5. Notice that the projection directions (i.e., the processor
spaces) we choose for each dependence graph are different. Now
the output b' of convolution is the input vector of matrix-vectoI

Fig. 4. The systolic array executing the convolution algorithm. The weight-
ing coefficients are stored in the PE's.

a -
a, -

a 01 a10

- a21

-
a a

a
02 a 11 20

12
a - - rz

Fig. 5. The systolic array executing the matrix-vector multiplication.

Fig. 6. Concatenation of systolic arrays. The output result of convolution is
directed to the input operand of matrix-vector multiplication.

as shown in Fig. 6. However, one may see in Fig. 4 and Fig. 5, the
intervals between the two arrays are different. The supplying end at
t = S - 1 is ~ ~ X O Y ' T ~ ~ , but the demanding source at f = 0 is
hhXoY"Th. According to (6), T~ is added to adjust the interval of
data items and T \ -' is added to delay the array :\T - 1 time steps
until the pipelining operand arrives. Equation (9) becomes

The interval is expanded, and thus matches the data stream from
the convolution array (shown in Fig. 7). The coalescent system of
systolic arrays seems more efficient for computations when chaining.

IV. CONCLUSION
The algebraic representation proposed in this short paper describes

an iterative algorithm as bundles of data streams with different
velocities. Each data stream consists of the data item, its source,
and end. The only condition for chaining systolic arrays is to satisfy
the interfacing of flow velocities of data items along with correct
positions of demanding sources and supplying ends. By this means,

multiplication, and the two arrays are to be concatenated in a chain several array subsystems could be easily coalesced.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 3, MARCH 1992 355

[5] H. T. Kung and C. E. Leiserson, “Algorithms for VLSI processor arrays,”
in Introduction to VLSISystems, C. Mead and L. Conway, Eds. Reading,
MA: Addison-Wesley, 1980.

[6] C. L. Liu, Introduction to Combinatorial Mathematics, New York:
McGraw-Hill, 1968.

(71 C. M. Liu and C. W. Jen, “Design of the algorithm-based fault-tolerant
VLSI array processor,” IEE Proc., vol. 136, pt. E, pp. 539-547, Nov.
1989.

[8] D.I. Moldovan, “On the analysis and synthesis for VLSI algorithms,”
IEEE Trans. Comput., vol. C-31, pp. 1121-1126, Nov. 1982.

[9] -, “On the design of algorithms for VLSI systolic arrays,” Proc. IEEE,
vol. 71, pp. 113-120, Jan. 1983.

IO] P. Quinton, “Synthesizing systolic arrays using DIASTOL,” in Proc. Int.
Workshop Systolic Arrays, Univ. Oxford, July 1986, pp. 4.1-4.12.

11) S. K. Rao and T. Kailath, “Regular iterative algorithms and their imple-
mentation on processor array,” Proc. IEEE, vol. 76, pp. 259-269, Mar.
1988.

Fig. 7. The systolic array executing the matrix-vector multiplication by J.C. TsaY and Y.C. Hou, “On equivalent systolic designs of matrix
multiplication and its algebraic representation,” in Proc. Int. Comput.
Symp., Taiwan, Dec. 1988, pp. 247-252.

[131 -, “Generating function and equivalent transformation for systolic
arrays,” Parallel Comput., vol. 10, pp. 347-356, May 1989.

(141 Y. Yaacoby and P R. Cappello, “Scheduling a system of affine recurrence
equations onto a systolic array,” in Proc. Int. Conf Systolic Arrays, 1988,

expanding the interval of the data items.

APPENDIX

pp. 373-382. .
Proof of Theorem 1: 1) The distance from the position at time

f to the source is assumed to take q time steps for the data item with
flow velocity f, that is,

p t - p , = qc.

or

but the position vector p , on the dependence graph is a multiple of
the dependence vector plus the source, then

Letting c = r / q gives (4).

schedule TI, the time needed is q in I), then by the above
2) Measuring the time to go through the distance by the timing

-
q = TI(rr l) = r I (q f) = q (r I . F).

TIC-’< 2 1.

and gives (5). By (4), substitute rfwith cF’ f into (2) , it becomes

-
Since TI. l 7 = 1. c 5 1. Q.E.D.

ACKNOWLEDGMENT

The authors are grateful to C.-M. Liu for his delightful help and
the anonymous referees for their constructive suggestions.

REFERENCES

[11 S. Horiike, S. Nishida, and T. Sakaguchi, “Systematic design of systolic
arrays using mapping algorithm,” in Proc. IEEE Int. Symp. Circuit Syst.,

[2] H. V. Jagadish and T. Kailath, “A family of new efficient arrays for matrix
multiplication,’’ IEEE Trans. Comput., vol. 38, pp. 149-155, Jan. 1989.

[3] H. V. Jagadish, S. K. Rao, and T. Kailath, “Array architectures for iterative
algorithms,” Proc. IEEE, vol. 75, pp. 1304-1321, Sept. 1987.

[4] R. M. Karp, R. E. Miller, and S. Winograd, “The organization of computers
for uniform recurrence equations,” J . ACM, vol. 14, pp. 563-590, July
1967.

1988, pp. 2505-2508.

Some Combinatorial Aspects of Parallel Algorithm
Design for Matrix Multiplication

Jong-Chuang Tsay and Sy Yuan

Abstract-In this paper, some combinatorial characteristics of matrix
multiplication on regular two-dimensional arrays are studied. From the
studies, we are able to design many efficient varieties of the cylindrical
array and the two-layered mesh array for matrix multiplication. To
design a cylindrical array for matrix multiplication, a systematic design
procedure is proposed. In this design procedure, Latin square (a special
type of matrix) plays an important role. To design a two-layered mesh
array, we find that there is a transformation procedure to transform a
cylindrical array to a two-layered mesh array.

Index Terms-Cylindrical array, Latin square, matrix multiplication,
parallel algorithm design, systolic array, two-layered mesh array.

I. INTRODUCTION
Systolic array, as defined by Kung [3], is a synchronous operating

parallel processing array consisting of simple processing elements
interconnected in a local and regular manner. Systolic array has
an unnoticed characteristic-its architecture should be planar, in
other words, the communication lines among the processing elements
should not cross over each other. If we relax this restriction, it is
possible to obtain more efficient designs than systolic designs for a
certain class of problems. Usually for this class of problems, operators
used in their algorithm satisfy the associative and commutative
properties. Typical examples in this class are matrix multiplication

Manuscript received April 28, 1989; revised November 11, 1990.
J.-C. Tsay is with the Institute of Computer Science and Information En-

gineering, College of Engineering, National Chiao Tung University, Hsinchu,
Taiwan 30049, Republic of China.

S. Yuan is with the Advanced Technology Center of Computer and Com-
munication Research Laboratories, Industrial Technology Research Institute,
Chutung, Hsinchu, Taiwan 31015, Republic of China.

IEEE Log Number 9102596.

001&9340/92$03.00 0 1992 IEEE

