
IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 3, MARCH 1992 355

[5] H. T. Kung and C. E. Leiserson, “Algorithms for VLSI processor arrays,”
in Introduction to VLSISystems, C. Mead and L. Conway, Eds. Reading,
MA: Addison-Wesley, 1980.

[6] C. L. Liu, Introduction to Combinatorial Mathematics, New York:
McGraw-Hill, 1968.

(71 C. M. Liu and C. W. Jen, “Design of the algorithm-based fault-tolerant
VLSI array processor,” IEE Proc., vol. 136, pt. E, pp. 539-547, Nov.
1989.

[8] D.I. Moldovan, “On the analysis and synthesis for VLSI algorithms,”
IEEE Trans. Comput., vol. C-31, pp. 1121-1126, Nov. 1982.

[9] -, “On the design of algorithms for VLSI systolic arrays,” Proc. IEEE,
vol. 71, pp. 113-120, Jan. 1983.

IO] P. Quinton, “Synthesizing systolic arrays using DIASTOL,” in Proc. Int.
Workshop Systolic Arrays, Univ. Oxford, July 1986, pp. 4.1-4.12.

11) S. K. Rao and T. Kailath, “Regular iterative algorithms and their imple-
mentation on processor array,” Proc. IEEE, vol. 76, pp. 259-269, Mar.
1988.

Fig. 7. The systolic array executing the matrix-vector multiplication by J.C. TsaY and Y.C. Hou, “On equivalent systolic designs of matrix
multiplication and its algebraic representation,” in Proc. Int. Comput.
Symp., Taiwan, Dec. 1988, pp. 247-252.

[131 -, “Generating function and equivalent transformation for systolic
arrays,” Parallel Comput., vol. 10, pp. 347-356, May 1989.

(141 Y. Yaacoby and P R. Cappello, “Scheduling a system of affine recurrence
equations onto a systolic array,” in Proc. Int. Conf Systolic Arrays, 1988,

expanding the interval of the data items.

APPENDIX

pp. 373-382. .
Proof of Theorem 1: 1) The distance from the position at time

f to the source is assumed to take q time steps for the data item with
flow velocity f, that is,

p t - p , = qc.

or

but the position vector p , on the dependence graph is a multiple of
the dependence vector plus the source, then

Letting c = r / q gives (4).

schedule TI, the time needed is q in I), then by the above
2) Measuring the time to go through the distance by the timing

-
q = TI(rr l) = r I (q f) = q (r I . F).

TIC-’< 2 1.

and gives (5). By (4), substitute rfwith cF’ f into (2) , it becomes

-
Since TI. l 7 = 1. c 5 1. Q.E.D.

ACKNOWLEDGMENT

The authors are grateful to C.-M. Liu for his delightful help and
the anonymous referees for their constructive suggestions.

REFERENCES

[11 S. Horiike, S. Nishida, and T. Sakaguchi, “Systematic design of systolic
arrays using mapping algorithm,” in Proc. IEEE Int. Symp. Circuit Syst.,

[2] H. V. Jagadish and T. Kailath, “A family of new efficient arrays for matrix
multiplication,’’ IEEE Trans. Comput., vol. 38, pp. 149-155, Jan. 1989.

[3] H. V. Jagadish, S. K. Rao, and T. Kailath, “Array architectures for iterative
algorithms,” Proc. IEEE, vol. 75, pp. 1304-1321, Sept. 1987.

[4] R. M. Karp, R. E. Miller, and S. Winograd, “The organization of computers
for uniform recurrence equations,” J . ACM, vol. 14, pp. 563-590, July
1967.

1988, pp. 2505-2508.

Some Combinatorial Aspects of Parallel Algorithm
Design for Matrix Multiplication

Jong-Chuang Tsay and Sy Yuan

Abstract-In this paper, some combinatorial characteristics of matrix
multiplication on regular two-dimensional arrays are studied. From the
studies, we are able to design many efficient varieties of the cylindrical
array and the two-layered mesh array for matrix multiplication. To
design a cylindrical array for matrix multiplication, a systematic design
procedure is proposed. In this design procedure, Latin square (a special
type of matrix) plays an important role. To design a two-layered mesh
array, we find that there is a transformation procedure to transform a
cylindrical array to a two-layered mesh array.

Index Terms-Cylindrical array, Latin square, matrix multiplication,
parallel algorithm design, systolic array, two-layered mesh array.

I. INTRODUCTION
Systolic array, as defined by Kung [3], is a synchronous operating

parallel processing array consisting of simple processing elements
interconnected in a local and regular manner. Systolic array has
an unnoticed characteristic-its architecture should be planar, in
other words, the communication lines among the processing elements
should not cross over each other. If we relax this restriction, it is
possible to obtain more efficient designs than systolic designs for a
certain class of problems. Usually for this class of problems, operators
used in their algorithm satisfy the associative and commutative
properties. Typical examples in this class are matrix multiplication

Manuscript received April 28, 1989; revised November 11, 1990.
J.-C. Tsay is with the Institute of Computer Science and Information En-

gineering, College of Engineering, National Chiao Tung University, Hsinchu,
Taiwan 30049, Republic of China.

S. Yuan is with the Advanced Technology Center of Computer and Com-
munication Research Laboratories, Industrial Technology Research Institute,
Chutung, Hsinchu, Taiwan 31015, Republic of China.

IEEE Log Number 9102596.

001&9340/92$03.00 0 1992 IEEE

356 IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 3, MARCH 1992

Fig. 1. A cylindrical array.

b31 a13a33 b 3 2 4 3 a 2 3

b21 a12a32b22b23a22

4 1 1 a 3 1 bl 2 4 3 a21

Fig. 2. A two-layered mesh array.

and convolution. For the matrix multiplication, most parallel algo-
rithms are represented by graphs [l], [2] , [4], (51, [7]-[9]. We study
some combinatorial characteristics of the graph and extract their
essential information, then formalize it on two tables-the tzming-
level table and the processor assignment table. Special characteristics
of these tables enable us to design many efficient varieties of matrix
multiplication algorithms which are executable on the cylindrical
array [8] or the two-layered mesh array [l] . Fig. 1 and Fig. 2 are
examples of these arrays, respectively.

11. DESIGN OF CYLINDRICAL ARRAYS FOR MATRIX MULTIPLICATION

The problem of matrix multiplication is to compute the product C
of two matrices, A and B . An equation to compute the product is

C = A i B i +AzBz +...+ A,,B,,

where A, and B , are ith column and ith row of A and B, respectively;
and the product A,B, denotes an “outer product.” Therefore, the
matrix multiplication can be carried out in n recursions (Each executes
an outer product AkBk) [5],

c (k) ,J - - c , J (A - 1) + a , k l) k / f o r r . j . k = 1 . 2 . ’ . . . , I .

This recurrence equation leads to a dependence graph (DG) shown
in Fig. 3, where each index point (or node) (1. j . k) in the index
space { (i , j . k) l l 5 r . j . k 5 t i } of the DG performs the operation

+ ((, I * b k z . Since crtk and h k l are transmittent & k) - - (k - 1)
,~ c ,)

C

c

Fig. 3. Dependence graph of matrix multiplication.

Fig. 4. A systolic algorithm for matrix multiplication.

data [5], their data flow direction can be reversed. Besides, since
the addition operator is associative and commutative, data flow
direction of c,J can be reversed too. Consequently, the product
of r r , l b l z.cr,2b2/.cr, , ,b, , , can be added to ctJ in any order.
Therefore, the recurrence equation can be generalized as

C l / (k) = & - I) ,/ + c r p l , b l , J n ~ h e r e ; . j . k = 1 . 2 :... t f

and (I , . I .?. I , ,) is a permutation of (1.2. ri).

On designing a parallel algorithm, there are two things we must
determine-the timing schedule and the processor assignment of the
algorithm. We determine the timing schedule of the algorithm first,
then determine a processor assignment (or a projection direction)
which is not conflicting with the timing schedule. The timing schedule
and the processor assignment can be represented by a timing-level
table (TLT) [7] and a processor assignment table (PAT), respectively.
For example, the original systolic design, Fig. 4, proposed by Kung
[4] to compute product of two t i x r~ (n = 3) matrices A and B, can
be described by a TLT and a PAT shown in Table I. In this design,
[0 0 11 is the projection direction so that indexes i, j , and k in the
tables corresponding to a row, a column, and a layer, respectively. In
general, we use the indexes r, s, and q to represent a row, a column,
and a layer in the tables, respectively. Assume that the index space is
I = { (i j k) l l 5 i . j . k 5 t i } . Depending on the projection directions,
[0 0 11, [0 1 01, or [l 0 01, (r s q) is set to (i j k) , (i k j) , or (k j i) ,
respectively. The number t rnq on position (r . s. q) of a TLT specifies
that an operation (r t J = r tJ + o t ~ 1 1 k J) is performed at time trSy and
the number pn, j on position (a. J) of a PAT specifies that the above
operation is performed by the processor (n. J), where pa,? = (r . s) .

In other words, all the nodes { (r . S . q) l y = 1 .2 , n } of a DG
are projected onto the same processor (n. J). For example, Table I
specifies that the projection direction is [0 0 11 and the operation
P~~ = c%:% + 0 2 2 b 2 3 is performed at time step t,.,, = t t J A . = t232 = 5
by the processor (n. J) = (2 . 3) .

In the following, we shall describe the problem of how to select
appropriate values of f r s r , and p < , , j so that varieties of parallel

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 3, MARCH 1992 351

TABLE I
DESIGN OF THE PARALLEL ALGORITHM, FIG. 4, CAN BE DESCRIBED BY (a) A

TIMING-LEVEL TABLE AND (b) A PROCESSOR ASSIGNMENT TABLE

J = 1 2 3 J = 1 2 3

, = l 2 mi /=;R\
3 4

k = 1 k = 2

J = 1 2 3

i = l

2

3

O=lWi 2

3

algorithms or arrays for matrix multiplication can be obtained. Before
this, we introduce some basic terminologies.

In the following description, we use the notations L , R, 0, P,
I , D , F, and S to represent various attributes of a matrix or a
sequence. They are abbreviations of left, right, ordered, permutating,
increasing, decreasing, first, and second, respectively. For example,
we use (L O) to represent a matrix whose attributes are left and
ordered.

Definition 1: Let D = {1.2 :.., n } , U = [u g u l (i ~ . . . t ~ , , - ~] E
[U,] be a sequence of integers belonging to D , and 11, #
U , for i # j . A left (right) cyclic shift of a is defined as

shift a right cyclically i t t times can be represented as a-"'u =
u , , - , u ~ - , , ~ + ~ . . . ~ , , - ~ i i ~ 1 1 ~ ... u ~ , - , , ~ - ~ , where 7tt 5 t i .

Definition 2: A sequence a of length 71 is increasing if it can be
expressed by a = a'[12...7t], 1 = 0,1,2 :... or tt - 1. It is a
decreasing sequence if it can be expressed by a = d [7 1 7 1 - 1 . . .1].

Definition 3: An n x n Latin square (or a Latin square of order
n) is an n x n matrix that has the numbers 1,2.3.. . . . t i as entries
such that no number appears more than once in the same row or the
same column [6].

Definitron 4: Given a Latin square L = [l L ,] of order tz, such that
for each y = 1 , 2 ,n - 1, [Z,+1 ,] = oe[Z, ,] VI, where p is either
$1 or -1; we say L is an (L) Latin square (each row is a left rotation
of its preceding row) if p = +1, a (R) Latin square if

Definition 5: A Latin square L = [Z L l] of order t i is an (0) Latin
square if it is an (L) Latin square or a (R) Latin square and [l l ,]

is an increasing or a decreasing sequence. If [1 1 ,] is increasing, L is

uu = U ~ U ~ " ' U , , - ~ U ~ (u-'u = t i , l - l ~ / o t / l . . . 1 / ? , - 2) . Thus,

= -1.

1 2 3 4 n

n

Fig. 5. Pattern of x-square (when n is even).

an (I) Latin square. If [Z1,] is decreasing, L is an (D) Latin square.
For example, an (I . R) Latin square is an (0) Latin square which
is increasing and right. We say L a (P) Latin square if it can be
obtained by interchanging rows or columns of an (0) Latin square.

Definition 6: Two squares (or matrices) of order n , Mi = [ntj:)]

and M2 = [tt'::)] can be superimposed to form a composite
square G = [y,,] = [(tti!:). t t i ! :))] , where y,, is an ordered pair
(t t i j j) . t t t ! ;)) (i.e., y6,(1) = ttt!;), and y , , (2) = , t i ! :)) .

Definition 7: A composite square G, composed from two squares
of order t i , M I = [mi:)] and M2 = [m!:)], is a ;-square if it
satisfies (either (. r . y) = (1 .2) or (,r.y) = (2 .1))

a) [itt:;)] is a permutation of (1 .2 t i 1,
b) for each p = 1 .2 . ' . . . t i - 1. rti;:', ,, = tt1:;: V j , and
c) M , is an (0) Latin square. If (. r . y) = (1 .2) , we say G is an

(S) r-square; otherwise, it is an (F) ;-square. Thus, an (F . R)
;-square is a composite square whose first component is an
ordered Latin square of right rotation type.

Definition 8: A composite square G, composed from two squares
of order i t , M 1 = [tnj:)] and M2 = [ttti:)], is an .r-square if it
satisfies (either (. r .y) = (1 . 2) or (. r . y) = (2 .1))

a) Both of [tn(1:)] and [t t i j?)] are permutations of (1.2.. . . . t t 1,
b) for an even (odd) integer 1 1 , 1 5 1 1 5 t t , all elements of

t t i i : d , f (,,, d l (t t i : $ I , , f (r , d)) , (7 = 0.1 :... t, - 1 are equal,
where if I ' + d 5) I , f(1 1 . d) = 1' + rl; otherwise f(1 1 . r l) =
2tt + 1 - (I ' + 4,

c) for an odd (even) integer 1 7 , 1 5 1 1 5 t i , all elements of
~ t ' ~ ~ ~ / , ~ (~ , , ~) (t t i ! ~ d , ~ (~ , , d)) , ~ l = 0.1 :... i t - 1 areequa1,where
if (1 - rl 2 1, y(1 ' . r l) = t' - d ; otherwise g(1 1 . d) = 1 - (1 1 - c l) .

The above conditions a) and b) are illustrated in Fig. 5, where all
elements of M , (M ,) on each solid-line (dash-line) paths are equal.

Next, we shall describe the design of cylindrical arrays [8] for
matrix multiplication. First, we determine the timing schedule TLT,
then determine a processor assignment PAT which is compatible
(or not conflicting) with the TLT. The following lemma gives the
conditions to be satisfied for a PAT to be compatible. In the following,
we assume, without loss of generality, that t ,-sl 5 t 7 - s 2 5 f,-s:3 for

Lemma I: On designing a cylindrical array, assume that we have
correctly constructed a TLT (T = [t,..,]) of size 71 x 11 x i i . Consider
a PAT (P = [lj,, ,J]) of size t t x t t . If P is compatible with T , then it
should satisfy the condition that if t , . ,9~ = CI then 3111 3 p o , j = (r . .?)

for 1 5 r. s 5 t t .

Proof: For a cylindrical array, since the data are fed into the
array from the first row of the array, computations of the processors
in the first row (i.e., processors on positions (1, j) , j = 1.2.. . . . t 8)

start one step earlier than the processors in the second row. In general,
the processors in the ith row start one step later than the processors

1 5 r. s 5 t i .

358 IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 3, MARCH 1992

in the (t - 1)th row, for I = 2.3.. . . . I ! . Therefore, the processors
on the nth row start computing at time step n. If t , ,I = (I , then the
node (r.51) should be executed at time step n. Hence, the element
(I'. 5) should be placed in the 0 th row of the PAT. In other words,

0
An immediate consequence of this lemma is that t , , I = n if

Based on the lemma, we describe a design procedure for construct-

1) construct a TLT: Elements of the TLT should satisfy the

3J 3) I < , j = (I', a) .

p , , j (l) = I' and p n j (2) = s.

ing a TLT and a PAT for matrix multiplication:

following features:

a) [f z

b) [t ,,,/] = [t3.1 + q - 11 for q = 2 . 3 :... t t .

2) Given a TLT constructed above, construct the corresponding
PAT as follows:

a) Determine y l l of the PAT: Let (2 be a set of all coordinates
(.r. y) which satisfy t , , l = 1 in the TLT, then 1 1 1 1 can be
chosen from any one coordinate of Q.

b) Determine first column of the PAT: When the attribute
of either an (F) or (S) has been selected for the PAT,
using Lemma 1 and [t t y l] , we can determine [p, ,~], n =
2.3.. . . . I > .

c) Determine the PAT: Set the PAT to be either a (R) or
(L) z-square. By using Definition 7, [) I (, j] Vn. can be
determined.

in the TLT is an (0) (ordered) Latin square.

Note that the constructed PAT is a z-square of type (F . R) , (F . L) ,
(S . R) , or (S . L) .

The construction of a TLT is not difficult. But the construction of a
PAT is not easy. It needs to be further described. We use a TLT whose
[f 7 is an (I . R) Latin square as an example. (For other cases, when
[f ? is an (I . L) , (D . R) , or (D . L) ordered Latin square, there are
similar construction procedures).

Determine the value of p 1 1 : we select any coordinate (. r . y)
which satisfies t Z y l = 1 as the value of 111 1 .

Determine first column of the PAT: [t r s l] is (I . R) and tJ , l =
1, so we know [t , . , l] . If (F) is selected for the PAT, then
p , t l (2) = p,z- l , l (2) = ... = 1 1 ~ ~ (2) = p11(2) = y. Using
Lemma 1, it can be deduced that y , I = ((. I ' - i + 1) iiiothi

1 1 . y) for i = 2. 3 / I , where 11 iiiothi / I 11 iiiocl / I if 11 @
{ - / I , 0. It}; otherwise 11 iiiodii 1 1 G 1 1 . If the PAT is selected
to be (S), then 1 1 , ~ ~ (1) = p T l - l , l (l) = . . . = p l I (1) = .r.

Using Lemma 1, we have p,1 = (.r. (y + i - 1) iiiodii t t) .

Determine the PAT:

a) If the PAT is selected to be an (F . R) ;-square, then

p ~ , = ((. ~ , - ; + j) i i i o ~ i i / , . (, y + j - l) i i i ~ ~ l i i t I) (1)

b) If the PAT is selected to be an (F . L) ;-square, then

p z , = ((. r - i - j + 2) iiiodii n . (y - j + 1) iiiodii n) (2)

c) If the PAT is selected to be an (S. R) z-square, then

p,, = ((. I , - j + 1) niodu / I . (y + I - j) iiiodii t i) (3)

d) If the PAT is selected to be an (S. L) ;-square, then

y,, = ((. r + j - l) i i i o d i i t i . (. y + i + J -2) i i iodi i t t) . (4)

Lemma 2: The constructed TLT and PAT implement matrix multi-
plication in a cylindrical array.

Proof If the projection direction is [0 0 11, then matrix A and
matrix 13 are fed into the array, and the value of matrix C is stayed
in the array. If the projection direction is [l 0 01, then matrix A and

matrix C are fed into the array and the value of matrix B is stayed
in the array. If the projection direction is [0 1 01, then matrix B and
matrix C are fed into the array and the value of matrix A is stayed
in the array. Assume that the projection direction is [0 0 11 and the
PAT is an (F . R) --square. Using (l), we see that p11.p12:.. . 1 1 1 , ~

are ((. r . y) . ((. r + 1) iiiotlii / I . (! / + 1) iiioclu t i) ((. r + I I -
1) i i iodi i t i . (y + t t - 1) iiiotlii t t), respectively. Let the input data,
(~(.,+,-II r r l o ~ ~ t , , > J . ~ , (~ + , - I) mc,ciu ,,L be arranged so that it is fed
into the processor PEI, for each j (j = 1.2. / I) at time step t
(t = 1 . 2 :... t,).

Because we assume that the PAT is an (F . R) ;-square, at time
step T = t + 0.0 5 (I 5 11 - 1, (Os data fed into (n + 1)th row
of the array aremius9pt

where U = [.r. (, r + 1) iiiodii / I (.r + I I - I) niodii 111 is a
sequence.

Since b's data move down along a vertical path, hence at time
Step T ,

(h,. ht (y+1 I T l < l d U 7 8 . ' ' . . (y+ , t -1) m o r l u ,,) (6)

arrive ((1 + 1)th row of the array.

of the array are
Furthermore, by (1), we find the data stayed in the (n + 1)th row

, . 1 5 J 5 t I , i.e.,

(f (, -,,) ,l,<,dU ,? y . C (1 + 1 --n) ,,,<,dU 7) (y + 1) mc,du i l . ' . . .
('(,+,,-]-,,,,,,,,I,,,, (y + 7 z - l) , , , < , d u , ,). (7)

It f o ~ ~ o w s fmm (5)-(7), n (, - l - , , + J) m ~ , d u , ~ t . b t (,+ , - l)" ,udt in>

and C (~ - I - , , + ~) r r l o ~ ~ l l (y + , - l) r , , , , ~ ~ u ,L, 1 I J I T I , interact properly
at , at time step T = t + (I . Hence, we conclude that the
parallel array is a cylindrical array for matrix multiplication. For the
other cases, when the constructed PAT is an (F. L) , (S . R) or (S. L)

0
In the above constructions of [t , .cl] and [p o j] , if we allow two

columns (or rows) of [f r 5 1] (the [pn 31. [f , . I] and [f , q r 2] should
be updated accordingly) to be exchanged, then, based on the following
lemmas, other cylindrical arrays can be designed. Now we prove it.

Lemma 3: Assume that P and T are, respectively, a PAT and a TLT
which have been constructed by the design procedure. If T' is a TLT
which is obtained by interchanging rows I I and 1% (1 5 t 1 . r I t l)

of T , then it is possible to find a PAT P' compatible with T' such
that P' is a ;-square.

Proof: Since T' is obtained by interchanging rows (I and t',

we have t,,,l = n and t,,l = U) iff ti,,, = I I ' and t:,l = C I .

Without loss of generality, assume that P is a :-square of (F . R)
type. If we construct P' from P by interchanging all]in j (1) which
have value U with all p n j (l) which have value (1 , then we have
(the interchanging operations do not alter yn,3(2)) yk ,(1) = u if
p < , j (l) = (2 ; p:,j(l) = 1' if y , j (1) = t / ; and p b 3 (2) = y c , j (2) .
Since P is compatible with T , by Lemma 1, we have

type, the proof is similar.

t,,,i = (I if p (, j(1) = t/ aiid 1 1 ~ , ~ 3 (2) = y:

t,,1 = i t ' if p t , h (1) = t i aiid l I , , b (2) = y.

In other words,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 3, MARCH 1992 359

Moreover, all elements of [p:, j] are distinct. Therefore, P‘ is
compatible with T‘. Moreover, since p:, , (2) = p,, j (2) and all the
p:, j(1) on a southeast diagonal path are constant, we conclude that
P‘ is a :-square of (F . R) type.

Lemma 4: Assume that P and T are, respectively, a PAT and a TLT
which have been constructed by the design procedure. If T‘ is a TLT
which is obtained by interchanging columns (I and r (1 5 1 1 . (1 5 1 1)

of T , then it is possible to find a PAT P’ compatible with T‘ such
that P’ is a ;-square.

Proof: Since T’ is obtained by interchanging columns (I and
column I , we have t , = n and f , I = ((1 iff t:), , = (I ’ and
t:, , = r\ . Without loss of generality, assume that P is a :-square of
(F . R) type. If we construct P’ from P by interchanging all p,, j (2)
which have value I I with all p,, j (2) which have value 1 1 , then we
have p:, , (2) = 1 1 if p‘, j (2) = u ; p:, , (2) = (I if p,> j (2) = 1 1 ; and
p:, j (1) = p,, j(1) = 1 1 . Since P is compatible with T , by Lemma 1,
we have

t,,,I = n i f p , , j (l) = . r and p , , j (2) = o :

f , , = 11 if p z , b (l) = .r and]) t < h (2) = 1 1 .

In other words,

Moreover, all elements of b,, 31 are distinct. Therefore, P‘ is
compatible with T’. Moreover, since p:,,,(1) = p,, j (1) and all the
p:, j (2) on a vertical path are constant, we conclude that P’ is a

0
From Lemma 3 and Lemma 4, we have the following theorem.
Theorem: Starting from a Latin square of either (0) or (P) type,

it is possible to construct a TLT T and find a PAT P compatible
with T such that P is a :-square. Thus, by Lemma 2, a cylindrical
array for matrix multiplication corresponding to the P and T can be
constructed.

Now, we give some illustrative examples. In Table 11, [f ? 9 1] is an
ordered Latin square of (I . L) type; [tr ,J - 1) = Itr, I - 21 = [t, “11;
and [p < , I] is an (F . R) ;-square. If projection direction d = [OOl]
is selected (i.e., I’ I) , then it has a corresponding parallel
algorithm run on the cylindrical array of Fig. 1 . In this design c,,
stays in the array. If r i = [0 1 01 is selected, then a cylindrical
array, where stays in the array can be obtained. There are
other compatible ;-squares which can be used for the PAT. Table 111
lists two examples. Table III(a) is an (F . R) t-square with 1 1 1 1 =
(3 . 2) . Table III(b) is an (S .L) ;-square with 1111 = (1 1). Since
three different projection directions can be selected, each z-square
corresponds to three different designs of parallel algorithms.

;-square of (F . R) type.

+

i . s

111. DESIGN OF TWO-LAYERED MESH ARRAYS FOR

MATRIX MULTIPLICATION

Given a z-square S (1 1 x 1 1 matrix), there is a method to transform
the z-square to an .r-square. Before we describe the method, we need
to define an t u -times transpositional network first.

Definition 9: An m-times odd-even transpositional network for n
numbers is an tti-level network having tu x LfJ (m x 4 - 171)
exchangers when U = odd (even). Each exchanger accepts two input
numbers and switches their positions. They are arranged in a brick-
like pattern in the network. If the t i numbers are fed downward,
then the exchangers are placed at the odd locations on the odd rows
and placed at the even locations on the even rows. For example,
Fig. 6(a) shows a 3-times odd-even transpositional network for five
numbers. Similarly, an m-times even-odd transpositional network can
be defined. Fig. 6(b) is an example (t u = 3. n = .j).

TABLE I1
(a) A TIMING-LEVEL TABLE. (b) A PROCESSOR ASSIGNMENT TABLE

. s = 1 2 3 .z = 1 2 3

r = l r=lfq--q
2

3 4 2

(1 = 1 q = 2

.\ =

J’=l

2

3

1 2 3

.j = 1 2 3

2

3 31 22

(b)

TABLE I11
Two Z-SQUARES COMPATIBLE WITH TABLE Il(a) mi mi

22 13 22

(a) (b)

The procedure to transform a t-square S to an .r-square is now
given below (we name leftmost column as the first column):

For ti 2 4, insert the first column of S between the (T I - 2)th
and (t i - 1)th columns, and insert the second column be-
tween the (1 1 - 3)th and (t i - 2)th columns. . . . until the
(Lt1 /2] - 1)th column is inserted between the ([i i / 2 1)th and
the ([t c / 2 1 + 1)th columns. After this step, we obtain a new
square S’. When i t = 3, we let S’ = S .
the itcth row of S’ (where tu = 2 . 3U) is rearranged by
the (i t) - 1)-times transpositional network. Depending on the
value of i i and the type of the ;-square S, either the odd-even
(even-odd) transpositional network should be selected (see
Table IV). After all rows are processed, we obtain an .r-square.

For example, after we apply the transformation procedure, a
;-square of Table I1 will be transformed to an .r-square of Table V.
When we choose the projection direction [0 0 11, it has a correspond-
ing design of two-layered mesh array [2] shown in Fig. 2.

Another example is given in Table VI. Table VI(a) is a 4 x 4 (I. R)
Latin square which can be used for the [f , , I] of a TLT. Table VI(b)
is an (S . L) 2.-square which is a PAT compatible with the TLT.

360

1

4

3

2

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 3, MARCH 1992

2 3 4

1 2 3

4 1 2

3 4 1

~ n numbers \

n = l

m times

11 22 33 44

- n numbers 7

22

12

13

43

(b)

Fig. 6. (a) An til-times odd-even transpositional network on i t numbers
(I J I = 3. J I = 5) . (b) An tu-times even-odd transpositional network on t t

numbers (i t) = 3. 11 = .;).

11 33 44

23 41 34

42 24 31

14 32 21

TABLE IV
SELECTION OF EVEN-ODD OR ODLI-EVEN TRANSPOSITIONAL NETWORK

type of S

right-rotation left-rotation

odd-even even-odd

even even-odd odd-even

TABLE V
A PROCESSOR ASSIGNMENT TABLE FOR THE TWO-LAYERED MESH ARRAY FIG. 2

Table VI(c) is an .c-square derived from the r-square. The x-square
is a feasible PAT for designing a two-layered mesh arrays.

If [f , , I] in the TLT is not an ordered Latin square or cannot be
transformed from an ordered Latin square by interchanging rows or
columns, then we cannot find its corresponding ;-square or .c-square.
Table VI1 is an example of this type.

IV. CONCLUSION
Some combinatorial characteristics of parallel algorithms for ma-

trix multiplication on regular two-dimensional arrays are studied.
Studying its characteristics, we are able to design different parallel
arrays, such as the cylindrical array, or the two-layered mesh array.
Intuitively, we conjecture that the design procedure can be used to
construct all the cylindrical arrays (of the form shown in Fig. 1)
for matrix multiplication. From a given cylindrical array, we have
described a transformation procedure which can be used to transform
the cylindrical array to a two-layered mesh array. Finally, it is worthy
to note that almost all the matrix multiplication algorithms designed
in this paper use nonlinear timing schedules. This indicates that

TABLE VI
(a) A 4 x 4 ORDER (I . A‘) LATIN SQUARE. (b) AN (S. L) =-SQUARE.

(c) AN X-SQUARE

5 = 1 2 3 4

I . =

1

2

3

4

j = 1 2 3 4

0 = 1

2

3

4

A LATIN
TABLE VI1

SQUARE WHICH HAS NO CORRESPONDING :-SQUARE OR

1 3 2 4

2 4 1 3

4 1 3 2

3 2 4 1

TABLE VI1
SQUARE WHICH HAS NO CORRESPONDING :-SQUARE OR

3 2 4 1

r -SQUARE

the design of matrix multiplication algorithms with nonlinear timing
schedule can be formalized.

REFERENCES

[I] S . C. Kak, “Multilayered array computing,” in Proc. 20th Annu. Conj
Inform. Sci. Syst., Princeton, 1986, pp. 436441.

[2] __, “A two-layered mesh array for matrix multiplication,” Parallel
Comput., pp. 383-385, 1986.

[3] H.T. Kung, “Why systolic architectures?,” IEEE Comput. Mag., vol. 15,
pp. 37-46, Jan. 1982.

[4] S. Y. Kung, “On supercomputing with systoliciwavefront array proces-
sors,” Proc. IEEE, vol. 72, pp. 867-884, July 1984.

[5] __, VLSI Array Processor. Englewood Cliffs, NI: Prentice-Hall,
1988, ch. 3.

(61 C. L. Liu, Introduction to Combinatorial Mathematics New York:
McCraw-Hill, 1968, ch. 11.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 3. MARCH 1992 36 1

[7] Y. J. Ma, J. F. Wang, and J. Y. Lee, “Systolic array mapping of sequential
algorithm for VLSI architecture,” in Pruc. Int. Comput. Symp., Tainan,
Taiwan, R.O.C., 1986, pp. 865-874.

[8] W. A. Porter and J. L. Aravena, “Cylindrical arrays for matrix multiplica-
tion,” in Proc. 24th Annu. Allernton Conf: Commun., Contr. and Comput.,
Monticello, 1986, pp. 595402.

[9] W. A. Porter and J . L. Aravena, “Orbital architectures with dynamic re-
configuration,”Proc. IEE, vol. 134, pt. E, no. 6, pp. 281-287, Nov. 1987.

PPMB: A Partial-Multiple-Bus Multiprocessor
Architecture with Improved Cost-Effectiveness

Hong Jiang and Kenneth C. Smith

Abstract-This paper addresses the design and performance analysis
of partial-multiple-bus interconnection networks. They are bus architec-
tures that have evolved from multiple-bus structure by dividing buses
into groups and reducing bus connections. Their effect is to reduce
cost and alleviate arbitration and drive requirements without degrading
performance significantly. One such structure, called processor-oriented
partial-multiple-bus (or PPMB), is proposed. It serves as an alternative
to the conventional structure called memory-oriented partial-multiple-bus
(or MPMB) and is aimed at higher system performance at less or equal
system cost. It has been shown, both analytically and by simulation, that
a substantial increase in system bandwidth (up to 20%) is achieved by
the PPMB structure over the MPMB structure. With very large systems,
the results also imply a significantly improved cost-effectiveness over the
conventional multiple-bus architecture.

Index Terms-Cost-effectiveness, interconnection network, load-balanc-
ing arbitration, multiprocessor architecture, partial multiple-bus struc-
tures, performance evaluation.

I . INTRODUCTION

Due to their reliability and cost-effectiveness, multiple-bus struc-
tures have assumed considerable importance in both research on, and
applications of, interconnection networks in the multiprocessor arena.
As a result, a great deal of work has been done in the performance
analysis of multiple-bus systems. Such analysis shows that among
the three major categories of interconnection networks (i.e., crossbar
networks, multistage networks, and multiple-bus networks), multiple-
bus structures are the most reliable and, under certain circumstances,
the most cost effective [1]-[3], [5], [6], [SI. Nevertheless, multiple-
bus structures might still be too costly for very large systems, due to
the arbitration and drive requirements they entail.

Lang etal . [6] proposed, based on the conventional multiple-
bus structure, a new network structure called a partial multiple-bus.
The motivation for proposing the new structure was to reduce the
cost of the system while trading off an acceptable and tolerable
degree of performance degradation. This structure is derived from a
conventional multiple-bus structure by dividing memory modules and
buses into identical parts (or groups) while maintaining the connection
of each processor to every bus. This partial-multiple-bus structure

Manuscript received May 10, 1989; revised October 23, 1990.
H. Jiang was with the Department of Computer Science, Texas ALM

University, College Station, TX 77843. He is now with the Department of
CSLE, University of Nebraska, Lincoln, NE 68588.

K. C. Smith is with the Department of Electrical Engineering and Computer
Science, University of Toronto, Toronto, Ont., M5S 1A4 Canada.

IEEE Log Number 9102592.

is shown in Fig. 1 . As shown in [6], the performance degradation
of a partial-multiple-bus is not significant. For a two-group partial-
multiple-bus system of size 16 (i.e., AY = .\[= l G , where S is
the number of processors and -11 the number of memory mod-
ules), the decrease in performance (system bandwidth) is below 6%.
For the sake of simplicity and consistency, we shall call this structure
memory-oriented partial-multiple-bus, or MPMB.

A different partial multiple-bus structure is proposed in this paper
a\ an alternative to the one proposed by Lang, and as one which
provides higher system bandwidth and faster arbitration at lower
or equal cost. Derived also from the conventional multiple-bus
structure, this structure, called processor-oriented partial multiple-bus,
or PPMB, divides processors and buses into identical groups while
maintaining the connection of each memory module to every bus.

A notable difference between this structure and the one by Lang
is that in it, a memory module has a maximum of B potential
paths (where B is the number of buses) to processors while, in
Lang’s, a memory module has a maximum of only B/g potential
paths to processors (where 9 is the number of groups of buses).
This structural difference gives rise to a distinguishing feature of
the PPMB structure, namely of having potential for load-balancing
arbitration. Load balancing, aimed at fully exploiting the potential
for higher bandwidth inherent in the structure, is able to provide a
substantial improvement in system performance. As a matter of fact,
analytical and simulation results have both shown a maximum of 20%
increase in system bandwidth of the PPMB over MPMB. Meanwhile,
the cost of a PPMB system has been shown in general to be less than
or equal to that of an MPMB of the same size. Note that while the
partial-multiple-bus structure, proposed by Lang, was motivated to
reduce cost and arbitration time without reducing system bandwidth
significantly, we have shown as well that the PPMB structure can
lead to a substantial improvement in cost-effectiveness when system
size is very large.

In the section that follows, details of the PPMB structure
and its load-balancing feature are discussed on a comprehensive
basis. Section III introduces probabilistic models for evaluating
synchronous-system bandwidth of the structures under study and
comparisons are made between PPMB and MPMB. The numerical
results produced by them all lie within &3‘k of the results of
simulation, implying a high level of confidence in the models. Finally,
some concluding remarks are given in Section IV.

11. PROCESSOR-ORIENTED PARTIAL MULTIPLE-BUS
STRUCTURE (PPMB)

A. The Structure

In PPMB, shown in Fig. 2, S processors are divided into g groups
with each group of (S / g) processors fully connected to a set of
(B / g) buses, whereas all -11 memory modules are connected to
all 13 buses. This is to be contrasted with MPMB in which the
JI memory modules are divided into 9 groups where each group of
(. 21 /g) memory modules is fully connected to a set of (B / g) buses,
and all of the -1- processors are fully connected to all buses. For both
MPMB and PPMB, g is assumed to be a factor of both B and .I1
(or S).

In the rest of this paper on the study, we will refer to an
-1- x 11 x B/g system as a partial multiple-bus system that has
B buses, .\I memory modules, -\- processors, and is divided into

groups. In addition, we will replace the notation M/g, -I-/g, and
B / g with JIG, -\-G, and BG, respectively.

0018-9340/92$03.00 0 1992 IEEE

