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SUMMARY 
A new method combining the Preissmann four-point scheme and the Holly-Preissmann reach-back scheme 
is introduced to solve the rapidly varied flow problem in an open channel. The Preissmann four-point 
scheme is well known for the computation of one-dimensional unsteady flow. The Holly-Preissmann 
reach-back scheme integrates the Holly-Preissmann two-point scheme with the concept of reach-back 
characteristics, which allows the characteristics to project several time steps beyond the current time level. 
A spontaneous surge formation case is used to demonstrate and evaluate the applicability of the new 
method. It has been found that the results from this method are quite compatible with those of Preissmann 
four-point scheme. In addition, with the appropriate choice of the number of reach-back time steps, this new 
method can always avoid the numerical oscillation which usually exists when one uses the Preissmann 
four-point scheme for the condition of Courant number not close to unity. 

KEY WORDS Rapidly varied flow Open channel Numerical simulation 

INTRODUCTION 

The accurate numerical simulation of a transient flow such as a surge is strongly hampered by the 
difficulties in treatment of the non-linear advection terms in the de St. Venant equations. Many 
numerical methods have been proposed to tackle the advection non-linearity problem. However, 
most schemes still cannot simulate the surge problem without giving numerical oscillation and 
damping. The method of characteristics with a characteristic grid system can generate very 
accurate solutions, but the grid system is awkward. The difficulty arises because the hydrograph 
at a specific point or the water surface profile at a specific time is required. When the method of 
characteristics with a fixed grid system is employed, the commonly used linear interpolation can 
always lead to an inevitable smoothing of the solution. It is known that the shock-fitting method 
used for rapidly varied flow gives less improvement in the solution. The explicit form of the finite 
difference method requires the Courant condition’ for stability. Cooley and Moin’ and Keuning’ 
indicated that the existing finite difference technique was superior to the finite element technique 
in the case of gradually varied flow. For rapidly varied flow, Katapodes4 introduced pseudovis- 
cosity in a Galerkin formulation and succeeded in improving the accuracy of simulation 
drastically. However, as far as the brevity of the algorithm and the computational time are 
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concerned, it is hard to judge whether Katapodes’ proposed method is better than the Preissmann 
four-point scheme or not. 

Cunges has executed detailed numerical experiments for a spontaneous surge case using the 
Preissmann four-point method. A review of previous numerical methods suggests that the 
Preissmann four-point method is considered to be one of the best for simulation of a rapidly 
varied flow such as a surge, but it has the disadvantage of smearing a discontinuous profile. Toda6 
has proposed a hybrid method based on the concepts of the Holly-Preissmann two-point scheme 
(H-P method) and the Preissmann four-point scheme to solve the mass and momentum 
conservation equations for rapidly varied flow. The H-P method is based on the fact that the 
higher-order interpolating polynomials are constructed by the use of the dependent variables and 
their derivatives at two adjacent points on the spatial axis. Application of the H-P method has 
proven it to be a powerful technique which reduces the numerical oscillation and damping to the 
greatest extent in the dispersion equation.’ - 9  However, Toda indicated that the hybrid method 
gives insignificant improvement for the computation of rapidly varied flow and places very rigid 
restrictions on the control parameters such as spatial and temporal weighting factors for the 
solution stability. In this paper a method is developed on the basis of Toda’s idea, but allowing 
the characteristics to project several time steps beyond the current time level to fall on the spatial 
axis, and in which the characteristic foot is solved by the H-P method. This method is denoted 
hereafter as the hybrid Holly-Preissman reach-back method (hybrid HPRB method). In fact, the 
Holly-Preissmann two-point scheme with the reach-back characteristics technique (i.e. HPRB 
method) has also been successfully applied to solve the 1D and 2D dispersion equations.”.” 
This newly introduced hybrid HPRB method is examined through its application to a simple 
rapidly varied flow case for which an analytical solution exists. The computed results are also 
compared with those obtained from the use of the Preissmann four-point scheme. 

GOVERNING EQUATIONS 

The channel is assumed to have a uniform rectangular cross-section and to be frictionless and 
horizontal. The de St. Venant equations can then be written as 

ah a4 
at ax -+-=0, 

where q denotes the discharge per unit width, h is the flow depth, t is the time, x is the distance 
along the flow direction and g is the gravitational constant. If one rewrites the two equations in 
conservation form, they become 

ar a -+- Cg(f)I=O, at ax 

in which 

(3) 

This conservation form admits a weak solution to the hydraulic transient or rapidly varied flow 
problem.’ The method introduced herein is that the advection term is evaluated by the 
Holly-Preissmann two-point scheme with the reach-back technique (HPRB), while the other 
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terms are still computed by the Preissmann four-point scheme. It is noted that this hybrid HPRB 
method is identical to Toda’s hybrid method when the reach-back number m= 1. 

To apply the HPRB method to the evaluation of the momentum advection terms of equation 
(2), one rewrites the momentum equation in the total derivative form 

along 

where Dq/Dt denotes the total derivative of q along the trajectory of equation (5). Integration of 
equations (4) and (5) leads to 

qq - qc + ( g h  -$) dt = 0, 

(7) 

where q and E denote the head and foot of the trajectory respectively. The value of qe is to be 
evaluated by the HPRB method, which requires q and qx (i.e. spatial derivative of q )  as dependent 
variables on the computational grid. The grid graph is shown in Figure 1. Since qx is introduced 
in the above formulations, one more equation is required to evaluate it. Toda6 used a simple 
method to determine qx,  which is expressed as 

84 
ax qx=- ,  

n n=O 

n-1 n=l 

n-2 n=2 

n-3 n=3 

i-2 i-1 i + l  

Figure 1. HPRB method grid diagram 
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where qx is independent of q as a dependent variable. Now, instead of solving equations (1) and 
(2), one has to solve equations (1) and (6)-(8) simultaneously. 

SOLUTION ALGORITHM 

With the use of the Preissmann four-point scheme, equations (1) and (8) can be transformed into 
the discrete forms 

h1-hl-l hl-l-hyZ: ql-ql-l 41-l- n-l = 0, +(i-e) qi- l  
2At +' Ax Ax + 

2At (9) 

Equation (6) can be simply approximated as 

4, - 4, = - cer, + (1 - qr,] m ~ t ,  (1 1) 
where m is the reach-back number and r denotes an approximation of (gh - q2/h2) ahlax at either 
the foot E or head q of the trajectory. Point q is just point i at time level n, and re can be 
approximated as the average value at points i - 1 and i at time level n - m. The discretized form of 
equation (1 1) can be expressed as 

Equation (7) is approximated as 

x,-xe = u Ax = 2 [ 4 (i), + (1 - 4) ( f ), ] m At. 

8 and 4 appearing in equations (12) and (13) are weighting factors. qE appearing in the previous 
formulations can be evaluated by using a cubic interpolating polynomial based on the known 
quantities q?:?, qy-", qx1Ip and 4x1-m: 

(14) 

where u =(xi - x,)/Ax and the coefficients Ao-A3, listed in Appendix I, are determined such that 
for u=O, q,=q1-" and qxe=qxl-m, and for u = l ,  qe=qlIr  and qz,=qxfI?. 

However, in order to compute q,,, one has to know the value of a. First of all, one approximates 
q, from equation (12) with a purely explicit form of the source terms, 

q, = A0 + A* u + A 2 2  + A3u3, 

h, can be evaluated by linear interpolation with respect to x as 

h,= a hlI," +(1 -a) hl-". (16) 
Assuming h, = h, and substituting equations (14)-(16) into equation (13), the latter becomes 
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In the vicinity of the surge front, owing to the rapid changes of depth and discharge, the 
approximations of q,, h, and h, by equations (15) and (16) and the assumption h,= h,, which yield 
a direct and simple trajectory evaluation by equation (17), may have some effects on the solution 
stability and accuracy. However, from the later demonstration case one can observe that the 
solution stability and accuracy have been successfully improved with the use of this newly 
developed method by careful selection of the reach-back number. Therefore the error which may 
exist due to the approximations of q,, h, and h, will not be considered to be a major one and the 
approximation relations should be acceptable. 

Solution of equation (17), which is a cubic polynomial in a, yields a value for a as a real root 
between zero and unity. Once a has been determined, qE is obtained from equation (14). Therefore, 
for N computational points, a system of 3 ( N -  1) equations will be constructed on the basis of 
equations (9), (10) and (12) for three unknowns. With the addition of three boundary conditions 
the system of equations can be solved by a Newton-Raphson method. Through linearization, 

hl = hl-  ' + Ahi, qi -4i + 4 i ,  &=qxl - '+Aqi .  (1 8) n -  n - 1  

The increments of the unknowns during a time interval At become the dependent variables. 
Substitution of equations (18) into equations (9), (10) and (12) leads to the linear system 

(19) 

(20) 

(21) 
where the coefficients Ai-G:' are as given in Appendix I. In the system of equations (19)-(21), Aqxi 
appears only in equation (21). The boundary values for Aqxi can be obtained by using the updated 
boundary values of Ahi and Aqi. Therefore it will be convenient to solve for Ahi and Aqi from 
equations (19) and (20), which are not coupled with equation (21). The double-sweep method with 
two boundary conditions results in a solution for Ahi and Aqi (i= 1,2,. . . , N). Then Aqxi can be 
determined explicitly with one boundary condition through equation (21). After Ahi, Aqi and Aqxi 
have been determined in this manner, hl, ql and 4x7 can be obtained from equations (18) and the 
computation proceeds to the next time step. 

AiAhi+ BiAqi=DiAhi- 1 + EiAqi- 1 +Gi ,  

AiAhi+BiAqi=DiAhi- 1 +EiAqi- ,  + Gi, 
By Aqi + C y Aqxi = E;' Aqi- 1 + F;' Aqxi- 1 + G y ,  

DEMONSTRATION AND EVALUATION 

A test case is adopted for the evaluation of the method proposed in the previous section. The test 
case is a spontaneous surge formation. A uniform subcritical flow is assumed to take place in 
a frictionless, horizontal, rectangular prismatic channel. The depth is 2 m and the discharge per 
unit width is 2 mz s-'. Suddenly a sluice gate is closed at the downstream end, resulting in 
spontaneous development of a surge transmitting upstream with constant speed. For this simple 
case the analytical solutions for surge celerity and surge depth exist. 

The surge celerity V, and the rapidly varied depth h can be obtained by simultaneously solving 
the following two equations for mass and momentum conservati~n:~ 
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41 -42 vc=- 
h2-hi’  

Y (23) 41/hz + - ( d / h l +  gh:/2) v,= 
41 -42 

where subscripts 1 and 2 denote the upstream and downstream sides of the surge respectively. 
By substituting the given data for this test case into equations (22) and (23), one obtains 
V,  = 4.21 m s- and h2 = 2.475 m. The travelling distance can be computed by multiplying V,  by 
time. These results are used for comparison with the numerical solutions. The newly proposed 
scheme (i.e. hybrid HPRB method) may require one to assume/calculate the initial conditions 
when one applies the reach-back technique for computing the advection term. In addition, the 
results from the use of the Preissmann four-point scheme, which is one of the best schemes for 
rapidly varied flow computation,’ are also used for the comparison study. 

In fact, it is clear that the newly proposed technique (hybrid HPRB method) is identical to 
Toda’s hybrid method6 when the reach-back number rn = 1. Toda indicated that many difficulties 
exist with the use of the hybrid method for rapidly varied flow computation. The main disadvan- 
tage of Toda’s hybrid method (i.e. hybrid HPRB method with rn = 1) is that it is very sensitive to 
the Courant number. On the basis of Toda’s study, it is known that the solution becomes unstable 
when the Courant number is smaller than 0% In addition, the stability of the simulation from 
Toda’s hybrid method is also very sensitive to the values of the weighting factors 8 and 9. When 
8 < 0.7, the computation becomes unstable even for the condition of Courant number approach- 
ing unity. Increasing 8 can reduce numerical oscillation, but smearing of the wave front occurs. As 
for the +-value, Toda concluded that for all cases + = 0 almost leads to the exact celerity without 
the existence of phase error. 

In this study, in order to show the merits of the newly proposed method which integrates 
Toda’s hybrid scheme with the reach-back characteristics technique (i.e. hybrid HPRB method), 
the analyses are performed through the examination of some key parameters, namely the spatial 
weighting factor +, the temporal weighting factor 8 and the Courant number Cr. 

EXAMINATION OF &EFFECT 

From References 5 and 6 it is known that the best simulation of surge wave propagation using the 
Preissmann four-point scheme or Toda’s hybrid method can be obtained when the Courant 
number approaches unity. The best +-value for the Preissmann four-point scheme is 0.5 and for 
Toda’s hybrid scheme is zero. In order to verify the &effect, the best choice of +-value and 
Courant number Cr is fixed and assigned to the respective method. Therefore it is expected that 
the effect induced by the &value can be clearly verified. Figure 2 shows the simulation results 
obtained by the use of the Preissmann four-point scheme for various values of 8 when Cr=0.985. 
It is evident that 8= 2/3 seems to be the best choice, which was also pointed out by Cunge.’ When 
8=3, the value of the wave front approaches the exact solution, but severe numerical oscillation 
occurs. Increasing the &value can reduce numerical oscillation, but the wave front will be 
smoothed. 

Figure 3 shows the results simulated by Toda’s hybrid scheme (i.e. HPRB method with rn = 1) 
for the same case mentioned above with various values of 8. As pointed out by Toda,6 the 
solution becomes unstable when 8GO.7. In order to have a stable solution, one may need to use 
a larger value of 8; this, however, smears the discontinuous wave front as shown in Figure 3. 

When the hybrid HPRB method with rn> 1 is used, it has been found that the low bound of the 
8-value mentioned previously for Toda’s hybrid method (i.e. hybrid HPRB method with rn = 1) can 
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Figure 2. Comparison of numerical solution from Preissmann four-point scheme and analytical solution for Cr =0.985 

2.6 

367 

0 

2.5 4 
....... 9 =0.75 

WeW 9 -0.90 
- Exact 

2.4 1 - - -  9 ZO.8 

2.3 2.2 1 
2 I 2.1 4 

- SURGE UOTlON .................... ............. 

HPRB mthod(m-1) 

9 -0.0 
ax-0.02 m 
At-O.W4 a 
Cr-0.985 
T-0.2 s 

2.0 

1.6 
0 10 20 30 40 50 M) 70 80 90 1 

Diatance(rn) 
I0 

Figure 3. Comparison of numerical solution from hybrid HPRB method with m = 1 and analytical solution for Cr =0.985 

be further decreased by an increase of the reach-back number m. Figure4 shows the results 
simulated by the hybrid HPRB method with m = 2  for various &values. However, according to 
several test simulations, when the Courant number approaches unity, the use of a larger m-value 
will further smooth the wave front. From a comparison of Figures 3 and 4 it is evident that the 
case with m = 2 gives a smoother wave front than that with m = 1. Therefore no further results with 
larger m-value are shown here. 
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Figure 4. Comparison of numerical solution from hybrid HPRB method with m= 2 and analytical solution for Cr =0.985 

The best results obtained from each method discussed above were picked out and a compari- 
son is shown in Figure 5. Figure 5 consists of the results from the Preissmann four-point scheme 
with O = $ ,  Toda’s hybrid method (i.e. hybrid HPRB method with m= 1) and the hybrid HPRB 
method with m = 2 and 8 =$. It is obvious that all of these results are quite compatible. The result 
from the hybrid HPRB method with m= 1 and 8 = 0 9  is very close to that from the Preissmann 
four-point method. It is very difficult to distinguish their differences, since the former has the wave 
front smoothed and the latter has numerical oscillation occurring at the foot of the wave front. 
Again from Figure 5 it can be observed that the result from the hybrid HPRB method with m = 2 
has the wae front smoothed a little bit more. Thus at this stage, as far as solution accuracy is 
concerned, one may conclude that for the condition of Courant number approaching unity, in 
which the simulation is supposed to have no instability problem, one has no need to increase the 
m-value. However, a larger value of 8 may be needed. From the above discussion one can see that 
for both the Preissmann four-point and hybrid HPRB methods the weighting factor 8 plays quite 
an important role in the solution stability and accuracy. An increase of &value will have 
a positive effect on the stability, but one may have to sacrifice the accuracy of the wave front 
shape. 

EXAMINATION OF 4-EFFECT 

Figure 6 shows the results computed by the use of the hybrid HPRB method with m= 2 for 
various values of 4. For this case the best choice of &value, 8 = 4, which was found previously is 
used. Our findirigs are similar to what Toda concluded, i.e. that 4 = 0 gives the least phase error. 
Therefore one may conclude that an increase of m-value has no effect at all on the choice of 
+-value. 

EXAMINATION OF &EFFECT 

Several cases with various values of Ax and At, listed in Table I, are studied here to investigate the 
effect of the Courant number Cr on the simulation. 
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0 

Figure 7 shows the results computed by the use of the Preissmann four-point scheme with 
8=0.9 and 4 =0.5 for various Courant numbers, Cr=0.8,0.616,0.493 and 0.37. For the case with 
smaller Courant number, numerical oscillaton appears. The results computed using the hybrid 
HPRB method with 8=0.9 and 4 = O  are shown in Figure 8. In Figure 8, for cases with Cr=0.8, 
0.616 and 0.493, the reach-back number m = 2  is used. When the Courant number is further 



370 J.-C. YANG, K.-N. CHEN AND H.-Y. LEE 

Table I 
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Figure 7. Results from Preissmann four-point scheme for various Courant numbers 

reduced to 0.37, the reach-back number m=4 is needed to avoid numerical oscillation. However, 
it is obvious that the wave front has been further diffused owing to the increase of rn-value. 

From Figures 7 and 8 one can tell that the results for C r = 0 8  and 0.616 compuied by the 
hybrid HPRB method are clearly compatible with those by the Preissmann four-point method. It 
is obvious that the simulation results from the Preissmann four-point scheme have the numerical 
oscillation phenomenon at the wave front. The oscillation problem is getting more severe as the 
Courant number becomes smaller. It seems that the hybrid HPRB method with careful selection 
of m-vslue gives less oscillation and has the better wave front shape close to the exact solution. 

When the Courant number is further reduced, it is not unexpected that the result from the 
Preissmann four-point scheme becomes worse. Figures 9 and 10 show the comparison results for 
the cases with Cr = 0-493 and 0.37. One can observe that the results computed by the Preissmann 
four-point scheme are almost unacceptable. On the other hand, the result computed by the hybrid 
HPRB method is still quite close to the exact solution. For Cr =037 it is necessary to use a larger 
value of m in order to get a stable solution. From Figure 10, apparently, the result from the hybrid 
HPRB method is quite convincing for the condition Cr=0.37. Although the wave front has been 
smoothed out a little bit, the solution is still stable and has no numerical oscillation at all. 
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Figure 8. Results from hybrid HPRB method for various Courant numbers 
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Figure 9. Comparison of hybrid HPRB method and Preissmann four-point scheme for Cr =0.493 

CONCLUSIONS 

A new hybrid method combining the Holly-Preissmann two-point scheme, the reach-back 
characteristics technique and the Preissmann four-point scheme has been introduced in this 
paper and denoted the hybrid HPRB method. The newly introduced hybrid HPRB method has 
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Figure 10. Comparison of hybrid HPRB method and Priessmann four-point scheme for Cr=0.37 

been evaluated by comparison with the Preissman four-point scheme and the exact solution 
through a spontaneous surge formation case study. The conclusions can be stated as follows. 

(1) For a Courant number approaching unity, the hybrid HPRB method with reach-back 
number m = 1 can give results quite close to those from the Preissmann four-point scheme. 
When unit Courant number is retained, a larger value of reach-back number may be 
required. 

(2) From the test simulation it can be concluded that $ = O  will be the best choice for the hybrid 
HPRB method. An increase of m-value has no effect at all on the choice of $-value. 

(3) With the use of the Preissmann four-point scheme for the computation of rapidly varied 
flow, the solution stability is severely endangered when the Courant number becomes much 
smaller than unity. The hybrid HPRB method can avoid this instability problem as long as 
the proper reach-back number m can be chosen. 

For practical problems such as surge propagation in a natural irregular channel, it will be very 
difficult if not impossible to keep the Courant number approaching unity along the river for all 
the computational points. Therefore it is certain that the hybrid HPRB method will be more 
suitable for practical applications as far as the solution stability is concerned. 

APPENDIX I 

CoefJicients Ao-A3 
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Coeficients used in equations (19)-(21) 
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APPENDIX 11: NOTATION 

coefficients used in equation (14) 
coefficients used in equations (19)-(21) 
Courant number 
gravitational constant 
flow depth 
spatial derivative of h 
computational point index 
reach-back number 
time level 
flow discharge per unit width 
time 
front propagation velocity 
distance along flow direction 
increment of depth 
increment of discharge 
increment of discharge derivative 
time interval 
distance between two neighbouring computational points 
root of cubic interpolating polynomial 
foot of characteristics 
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head of characteristics 
temporal weighting factor 
spatial weighting factor 
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