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Abstract 

Chang, R.C. and H.S. Lee, Finding a maximum set of independent chords in a circle, Information Processing Letters 41 
(1992) 99-102. 

In this note we propose an O(nmI algorithm for finding a maximum independent set of m chords which are incident to n 
vertices on a circle. This result can be applied to improving the time complexity of the algorithm for partitioning simple 
polygons into a minimum number of uniformly monotone polygons. 
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1. Introduction 

Let C be a circle which has n vertices and m 
chords connecting these n vertices. Two chords 
are said to be independent if they do not inter- 
sect. The problem considered in this paper is to 
find a maximum set of independent chords 
(MSIC) in C. The problem is equivalent to find- 
ing an independent set with maximum cardinality 
in a circle graph. An independent set of a graph 
is a subset of its vertices where no two vertices 
are joined by an edge. A circle graph correspond- 
ing to the set of chords in a circle can be con- 
structed as follows. If there are chords sharing 
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the same end-point, we can expand the circle 
slightly so that no chords are sharing the same 
end-point. Every vertex in the circle graph corre- 
sponds to a chord in the circle and two vertices 
are connected if their corresponding chords inter- 
sect. There are m vertices in the circle graph 
constructed in this way. 

Gavril 131 first proposed an O(m3) algorithm 
for finding a maximum independent set of a 
circle graph with m vertices. Buckingham [2], 
Read et al. [5] and Supowit [6] independently 
proposed various O(m*> algorithms for this prob- 
lem. Applying these O(m*) algorithms to the case 
where chords are allowed to have common end- 
points would result in a complexity of 0(n4) in 
the worst case. Liu and Ntafos [4] presented a 
dynamic programming approach to solve this 
problem in 0(n3). However, the time complexity 
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of Liu and Ntafos’ algorithm depends only on the 
number of vertices in a circle no matter how 
many chords there are. Later an O(nm> time and 
O(n) space algorithm was given by Asano et al. 
[Il. 

In this paper, we propose another O(nm> algo- 
rithm to find an MSIC in a circle with II vertices 
and m chords. But our algorithm is conceptually 
simpler than that of Asano et al. 

2. The algorithm 

Let E denote the set of chords in C, the set of 
vertices in C be numbered from u1 to u,, clock- 
wise, and e(i, j) denote the chord that connects 
ui and uj. Also define V(i, j) = (uk I i G k <j) and 
E(i, j) = {e(Z, m) I i =G f <m <j and e(l, m) E Ej. 
V(i, j) denotes the set of vertices between ui and 
cj, and E(i, j) denotes the set of chords connect- 
ing only vertices in V(i, j). Hence, E(1, n) = E. 
Let C(i, j) denote an MSIC of E(i, j) and let 
M(i, j> be the cardinality of C(i, j). It follows 
that Ccl, n) is an MSIC of E and C(i, j) = @ 
when j G i. 

Our algorithm is also based on the principle of 
dynamic programming, which is stated in the fol- 
lowing lemma. 

Lemma 2.1. 

C(i, j) = max 
iGk<j-1, 

(C(i, j- l), C(i, k- 1) 

e(k, j)EE 

uC(k + 1, j - 1) u {e(k, j)}), 

where max(.> is a function to take the set with 
maximum cardinality in the argument list. 

Proof. Since C(i, j) is an MSIC between u, and 
uj, it follows that all chords of C(i, j) do not 
intersect. C(i, j) must contain either one or none 
of e(k, j) E E for i G k <j - 1. 

For the first case, assume that C(i, j) contains 
the chord e(k, j). Because the chords in C(i, j) 
do not intersect, the chords in C(i, j) except e(k, 
j) can be classified into two parts: chords of the 
first part connect only vertices in I%, k - 1) and 
chords of the second part connect only vertices in 
V(k + 1, j - 1). Furthermore, these two parts are 
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MSICs of C(i, k - 1) and C(k + 1, j - 1) respec- 
tively. Hence, the MSIC of V(i, j) can be com- 
puted as follows: 

C(i, j) =C(i, k-l) UC(k+l, j-l) 

U{e(k, j)}. 

For the latter case in which C(i, j> contains 
none of e(k, j) E E for i <k <j - 1, chords in 
C(i, j) connect only vertices in V(i, j - 1). Vertex 
L> can be discarded without affecting the MSIC 
of V(i, j). Therefore, 

C(i, j) = C(i, j - 1). 

From above, if C(i, k - 1) U C(k + 1, j - 1) U 
{e(k, j)) is the largest set for all possible k 
between i and j - 1, we can conclude that C(i, j) 
equals C(i, j - 1) or C(i, k - 1) U C(k + 1, j - 1) 
u (e(k, j)} depending on which one is larger. 0 

Ccl, n) an MSIC of E, can be computed 
according to the recurrence relation in Lemma 
2.1 above. Based on Lemma 2.1, Algorithm MSIC 
works in a bottom-up manner. MSICs are con- 
structed incrementally along the circle. Once 
MSICs for smaller intervals have been computed, 
MSICs for larger intervals can be computed ac- 
cording to Lemma 2.1. Intervals to be computed 
are expanded incrementally until the interval 
contains all the vertices on C. Algorithm MSIC is 
stated in the following: 

Algorithm MSIC 

For i = 1 to n Do C(i, i) = @; 
Forl=lton-1Do 

Fork=lton-IDo 
Begin 

j=i+Z; 
C(i, j) = C(i, j - 1); 
For all e(k, j) E E where i < k G j - 1 

Do 
if M(i, k - 1) + M(k + 1, j - 1) + 1 > 

M(i, j) then 
CG, j) = C(i, 
1) u {e(k, dl 

End 
End of MSIC. 

k - 1) U C(k + 1, j - 
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An adjacent matrix A can be used to repre- 
sent E. Let a(i, j) denote an entry of A; a(i, j) is 
equal to 1 if e(i, j) E E and a(i, j> is equal to 0 
otherwise. Since only those e(i, j>‘s that belong to 
e and satisfy that i <j are considered in Algo- 
rithm MSIC, entries above the diagonal of A 
would be sufficient. That is, we can leave the 
entries on and below the diagonal of A unde- 
fined. In order to implement the inmost loop in 
the Algorithm MSIC efficiently, a slight modifica- 
tion to A, however, is needed. Associate each 
entry of A above the diagonal with a pointer. As 
shown in Fig. 1, entries with 1 in a column are 
chained together, and entries with 0 in a column 
point to the first entry with 1 following them in 
the same column. For each entry in A, if there is 
no entry with 1 following it in the same column, 
the pointer of this entry is set to ground, that is, 
the diagonal entry on this column. For example, 
both 42, 6) and 43, 6) point to ~(5, 61 and ~(3, 
5) points to ~(5, 51, the ground. With such modi- 
fication, the inmost loop can be executed effi- 
ciently because only entries with 1 are scanned. 
Note that A can be constructed in O(n*) time. 
The complexity of our algorithm is analyzed in 
the following theorem. 

Theorem 2.2 Algorithm MSIC runs in O(nm) steps, 
wherem=IEl. 

Proof. The complexity of Algorithm MSIC is equal 
to the number of entries with 1 in A scanned by 
Algorithm MSIC, and it is given by the following 
equation. 

n-l n-l i+l-1 

C C C a(k,i+l) 
[cl i=l k=i 

n-l n j-l 

= C C C a(k, j) 
I=1 j=l+l k=j-1 

n j-l j-l 

= C C C a(k, i) 
j=2[=1 k=j-1 

n j-1 

= C C k*a(k,j) 

j=2 k=l 

n j-l 

Qn C C a(k, j) 
j=2 k=l 

=nm. 0 

Consider a restricted case in which V(1, n) can 
be divided into two parts, V(1, k) and V(k + 1, n) 
such that all chords of E connect one vertex in 
V(1, k) and another vertex in V(k + 1, n). In 
other words, E(1, k) = E(k + 1, n) = fl. We call 
this a bipartite case. For the bipartite case, we 
have the following corollary. 

Fig. 1. (a) A circle with six vertices and five chords. (b) The variant adjacent matrix corresponding to the chord set in (a). 

101 



Volume 41, Number 2 INFORMATION PROCESSING LETTERS 14 February 1992 

Corollary 2.3. For the bipartite case stated above, 
Algorithm MSZC can be improved to run in O(n’). 

Proof. Assume that the set of chords E is in a 
bipartite case. Consider the inmost loop of Algo- 
rithm MSIC. Let K = {k I e(k, j) E E and i Q k < 
j - 1). Suppose k,, k, E K and k, <k,. We want 
to show that 

E(i, k, - 1) = E(i, k, - 1) = fl. 

If E(i, k, - 1) # 6, then there exists a chord 
e E E(i, k,). However, there will be no such k’ 
that all chords in Ie(k, j)l k E K) U (e) connect 
one vertex in V(1, k’) and another vertex in 
V(k’ + 1, n). In other words, this is not a bipar- 
tite case. Hence E(i, k, - 1) = (d and E(i, k, - 1) 
= fl similarly. We have C(i, k, - 1) = C(i, k, - 
1) = @. Furthermore, 

M(k, + 1, j- 1) zM(k,+ 1, j- 1). 

It follows that 

max(C(i, k, - 1) U C( k, + 1, j - 1) 

u(e(k,, j)], 

C(i, k,-l)UC(k,+l, j-l) 

u {e(k~ j)} 

= C(i, k, - 1) u C(k, + 1, j - 1) 

U{e(k,, j)}; 

therefore, 

C(i, j)=max(C(i, j-l),C(i, k-l) 

uC(k+ I, j- 1) U {e(k, j)}), 

where k is the smallest integer in K. Since the 
inmost loop requires only one comparison, total 
time requires O(n*) steps. 0 

3. Conclusion 

Finding a maximum set of independent chords 
on a circle is a crucial step in partitioning simple 
polygons into the minimum number of uniformly 
monotone polygons in [4]. In this note, we have 
presented an O(nm) algorithm for this problem, 
which is faster than 0(n3) when m is less than 
O(n*). When applying the MSIC-finding algo- 
rithm to partitioning simple polygons into the 
minimum number of uniformly monotone poly- 
gons, we may find that the vertices on the circle 
are in a bipartite case. Then we can apply Corol- 
lary 2.3 to this bipartite case to obtain an O(n*> 
algorithm. As for the case where the vertices on 
the circle are not in a bipartite case, it remains 
open whether there exists an algorithm which has 
a time complexity better than O(nm) for the 
MSIC problem. 
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