
Information Processing Letters 41 (1992) 99-102
North-Holland

14 February 1992

Finding a maximum set of independent
chords in a circle *
R.C. Chang
Institute of Computer and Information Science, National Chiao Tung University, Hsinchy Taiwan 30050, ROC

H.S. Lee
Institute of Computer Science and Information Engineering, National Chiao Tung lJniversi& Hsinchy Taiwan 30050, ROC

Communicated by K. Ikeda
Received 26 October 1990
Revised 24 September 1991

Abstract

Chang, R.C. and H.S. Lee, Finding a maximum set of independent chords in a circle, Information Processing Letters 41
(1992) 99-102.

In this note we propose an O(nmI algorithm for finding a maximum independent set of m chords which are incident to n
vertices on a circle. This result can be applied to improving the time complexity of the algorithm for partitioning simple
polygons into a minimum number of uniformly monotone polygons.

Keywords: Circle graph, combinatorial problems, computational geometry, maximum independent set, polygon decomposi-
tion

1. Introduction

Let C be a circle which has n vertices and m
chords connecting these n vertices. Two chords
are said to be independent if they do not inter-
sect. The problem considered in this paper is to
find a maximum set of independent chords
(MSIC) in C. The problem is equivalent to find-
ing an independent set with maximum cardinality
in a circle graph. An independent set of a graph
is a subset of its vertices where no two vertices
are joined by an edge. A circle graph correspond-
ing to the set of chords in a circle can be con-
structed as follows. If there are chords sharing

* This research work was partially by the National Science
Council of the Republic of China under grant No. NSCBO-
0408-EOO9-03.

the same end-point, we can expand the circle
slightly so that no chords are sharing the same
end-point. Every vertex in the circle graph corre-
sponds to a chord in the circle and two vertices
are connected if their corresponding chords inter-
sect. There are m vertices in the circle graph
constructed in this way.

Gavril 131 first proposed an O(m3) algorithm
for finding a maximum independent set of a
circle graph with m vertices. Buckingham [2],
Read et al. [5] and Supowit [6] independently
proposed various O(m*> algorithms for this prob-
lem. Applying these O(m*) algorithms to the case
where chords are allowed to have common end-
points would result in a complexity of 0(n4) in
the worst case. Liu and Ntafos [4] presented a
dynamic programming approach to solve this
problem in 0(n3). However, the time complexity

0020-0190/92/%05.00 0 1992 - Elsevier Science Publishers B.V. Ah rights reserved 99

Volume 41, Number 2 INFORMATION PROCESSING LETTERS 14 February 1992

of Liu and Ntafos’ algorithm depends only on the
number of vertices in a circle no matter how
many chords there are. Later an O(nm> time and
O(n) space algorithm was given by Asano et al.
[Il.

In this paper, we propose another O(nm> algo-
rithm to find an MSIC in a circle with II vertices
and m chords. But our algorithm is conceptually
simpler than that of Asano et al.

2. The algorithm

Let E denote the set of chords in C, the set of
vertices in C be numbered from u1 to u,, clock-
wise, and e(i, j) denote the chord that connects
ui and uj. Also define V(i, j) = (uk I i G k <j) and
E(i, j) = {e(Z, m) I i =G f <m <j and e(l, m) E Ej.
V(i, j) denotes the set of vertices between ui and
cj, and E(i, j) denotes the set of chords connect-
ing only vertices in V(i, j). Hence, E(1, n) = E.
Let C(i, j) denote an MSIC of E(i, j) and let
M(i, j> be the cardinality of C(i, j). It follows
that Ccl, n) is an MSIC of E and C(i, j) = @
when j G i.

Our algorithm is also based on the principle of
dynamic programming, which is stated in the fol-
lowing lemma.

Lemma 2.1.

C(i, j) = max
iGk<j-1,

(C(i, j- l), C(i, k- 1)

e(k, j)EE

uC(k + 1, j - 1) u {e(k, j)}),

where max(.> is a function to take the set with
maximum cardinality in the argument list.

Proof. Since C(i, j) is an MSIC between u, and
uj, it follows that all chords of C(i, j) do not
intersect. C(i, j) must contain either one or none
of e(k, j) E E for i G k <j - 1.

For the first case, assume that C(i, j) contains
the chord e(k, j). Because the chords in C(i, j)
do not intersect, the chords in C(i, j) except e(k,
j) can be classified into two parts: chords of the
first part connect only vertices in I%, k - 1) and
chords of the second part connect only vertices in
V(k + 1, j - 1). Furthermore, these two parts are

100

MSICs of C(i, k - 1) and C(k + 1, j - 1) respec-
tively. Hence, the MSIC of V(i, j) can be com-
puted as follows:

C(i, j) =C(i, k-l) UC(k+l, j-l)

U{e(k, j)}.

For the latter case in which C(i, j> contains
none of e(k, j) E E for i <k <j - 1, chords in
C(i, j) connect only vertices in V(i, j - 1). Vertex
L> can be discarded without affecting the MSIC
of V(i, j). Therefore,

C(i, j) = C(i, j - 1).

From above, if C(i, k - 1) U C(k + 1, j - 1) U
{e(k, j)) is the largest set for all possible k
between i and j - 1, we can conclude that C(i, j)
equals C(i, j - 1) or C(i, k - 1) U C(k + 1, j - 1)
u (e(k, j)} depending on which one is larger. 0

Ccl, n) an MSIC of E, can be computed
according to the recurrence relation in Lemma
2.1 above. Based on Lemma 2.1, Algorithm MSIC
works in a bottom-up manner. MSICs are con-
structed incrementally along the circle. Once
MSICs for smaller intervals have been computed,
MSICs for larger intervals can be computed ac-
cording to Lemma 2.1. Intervals to be computed
are expanded incrementally until the interval
contains all the vertices on C. Algorithm MSIC is
stated in the following:

Algorithm MSIC

For i = 1 to n Do C(i, i) = @;
Forl=lton-1Do

Fork=lton-IDo
Begin

j=i+Z;
C(i, j) = C(i, j - 1);
For all e(k, j) E E where i < k G j - 1

Do
if M(i, k - 1) + M(k + 1, j - 1) + 1 >

M(i, j) then
CG, j) = C(i,
1) u {e(k, dl

End
End of MSIC.

k - 1) U C(k + 1, j -

Volume 41, Number 2 INFORMATION PROCESSING LETTERS 14 February 1992

An adjacent matrix A can be used to repre-
sent E. Let a(i, j) denote an entry of A; a(i, j) is
equal to 1 if e(i, j) E E and a(i, j> is equal to 0
otherwise. Since only those e(i, j>‘s that belong to
e and satisfy that i <j are considered in Algo-
rithm MSIC, entries above the diagonal of A
would be sufficient. That is, we can leave the
entries on and below the diagonal of A unde-
fined. In order to implement the inmost loop in
the Algorithm MSIC efficiently, a slight modifica-
tion to A, however, is needed. Associate each
entry of A above the diagonal with a pointer. As
shown in Fig. 1, entries with 1 in a column are
chained together, and entries with 0 in a column
point to the first entry with 1 following them in
the same column. For each entry in A, if there is
no entry with 1 following it in the same column,
the pointer of this entry is set to ground, that is,
the diagonal entry on this column. For example,
both 42, 6) and 43, 6) point to ~(5, 61 and ~(3,
5) points to ~(5, 51, the ground. With such modi-
fication, the inmost loop can be executed effi-
ciently because only entries with 1 are scanned.
Note that A can be constructed in O(n*) time.
The complexity of our algorithm is analyzed in
the following theorem.

Theorem 2.2 Algorithm MSIC runs in O(nm) steps,
wherem=IEl.

Proof. The complexity of Algorithm MSIC is equal
to the number of entries with 1 in A scanned by
Algorithm MSIC, and it is given by the following
equation.

n-l n-l i+l-1

C C C a(k,i+l)
[cl i=l k=i

n-l n j-l

= C C C a(k, j)
I=1 j=l+l k=j-1

n j-l j-l

= C C C a(k, i)
j=2[=1 k=j-1

n j-1

= C C k*a(k,j)

j=2 k=l

n j-l

Qn C C a(k, j)
j=2 k=l

=nm. 0

Consider a restricted case in which V(1, n) can
be divided into two parts, V(1, k) and V(k + 1, n)
such that all chords of E connect one vertex in
V(1, k) and another vertex in V(k + 1, n). In
other words, E(1, k) = E(k + 1, n) = fl. We call
this a bipartite case. For the bipartite case, we
have the following corollary.

Fig. 1. (a) A circle with six vertices and five chords. (b) The variant adjacent matrix corresponding to the chord set in (a).

101

Volume 41, Number 2 INFORMATION PROCESSING LETTERS 14 February 1992

Corollary 2.3. For the bipartite case stated above,
Algorithm MSZC can be improved to run in O(n’).

Proof. Assume that the set of chords E is in a
bipartite case. Consider the inmost loop of Algo-
rithm MSIC. Let K = {k I e(k, j) E E and i Q k <
j - 1). Suppose k,, k, E K and k, <k,. We want
to show that

E(i, k, - 1) = E(i, k, - 1) = fl.

If E(i, k, - 1) # 6, then there exists a chord
e E E(i, k,). However, there will be no such k’
that all chords in Ie(k, j)l k E K) U (e) connect
one vertex in V(1, k’) and another vertex in
V(k’ + 1, n). In other words, this is not a bipar-
tite case. Hence E(i, k, - 1) = (d and E(i, k, - 1)
= fl similarly. We have C(i, k, - 1) = C(i, k, -
1) = @. Furthermore,

M(k, + 1, j- 1) zM(k,+ 1, j- 1).

It follows that

max(C(i, k, - 1) U C(k, + 1, j - 1)

u(e(k,, j)],

C(i, k,-l)UC(k,+l, j-l)

u {e(k~ j)}

= C(i, k, - 1) u C(k, + 1, j - 1)

U{e(k,, j)};

therefore,

C(i, j)=max(C(i, j-l),C(i, k-l)

uC(k+ I, j- 1) U {e(k, j)}),

where k is the smallest integer in K. Since the
inmost loop requires only one comparison, total
time requires O(n*) steps. 0

3. Conclusion

Finding a maximum set of independent chords
on a circle is a crucial step in partitioning simple
polygons into the minimum number of uniformly
monotone polygons in [4]. In this note, we have
presented an O(nm) algorithm for this problem,
which is faster than 0(n3) when m is less than
O(n*). When applying the MSIC-finding algo-
rithm to partitioning simple polygons into the
minimum number of uniformly monotone poly-
gons, we may find that the vertices on the circle
are in a bipartite case. Then we can apply Corol-
lary 2.3 to this bipartite case to obtain an O(n*>
algorithm. As for the case where the vertices on
the circle are not in a bipartite case, it remains
open whether there exists an algorithm which has
a time complexity better than O(nm) for the
MSIC problem.

References

[l] T. Asano, H. Imai and A. Mukaiyama, A faster algorithm
for finding a maximum weight independent set of a circle
graph, Inform. Process. Sot. Japan SIGAL Report AL5-18
(1989) 133-138.

[2] M. Buckingham, Circle graphs, Ph.D. Dissertation,
Courant Institute, Rept. NSO #21, October 1980.

[3] F. Gavril, Algorithms for a maximum clique and a maxi-
mum independent set of a circle graph, Networks 3 (1973)
261-273.

[4] R. Liu and S. Ntafos, On decomposing polygons into
uniformly monotone parts, Inform. Process. Lett. 27 (2)
(1988) 85-89.

[S] R.C. Read. D. Rotem and Urrutia. Orientations of circle
graphs, J. Graph Theory 6 (1982) 325-341.

[6] K.J. Supowit, Finding a maximum planar subsets of a set
of nets in a channel, IEEE Trans. Computer-Aided Design
6 (1) (1989) 93-94.

102

