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All dimensional parameters in most gravitational models can be promoted to dimensional
field variables which can be embedded in some higher dimensional Kaluza-Klein vielbein. An
elegant method of computing dimensional reduction process via vielbein and differential form is
introduced. We compute the reduced lower dimensional effective scale invariant action after the
dimensional reduction takes place. Some applications to the inflationary universe are also
discussed.

Kaluza-Klein theory T has been an attractive and promising candidate for unifying gravita-
tion and gauge interactions. In this approach, gauge connections are considered as off block-
diagonal components of some higher dimensional spin connections. These gauge fields assume
their low energy effective shapes immediately after the dimensional reduction takes place. The
dimensional reduction process is generally believed to be active beyond the Planck scale under
a (dill) unknown mechanism. It is, however, suspected that the mechanism of the dimensional
reduction might be similar to the mysterious spontaneous symmetry breaking algorithm induced
by the Higgs mechanism. Therefore, it is important to study the Kaluza-Klein theory in greater
details.

Moreover, the scale invariant effective thcory2 has been shown to indicate that the scale
symmetry should be a manifest symmetry in many aspects. It is found that we can embed the
dimension of al the dimensional parameters via the dimension-one scalars fields ¢;in guv such
that the general scalar measure de\/§ is made dimensionless. In that case, dim 8uv = 2. There-
fore, ds® = gw,dx“dxv becomes a dimensionless measure and hence all the dimensional
parameters can be induced dynamically. The scale invariance can thus be introduced in a
natural way (see below).

Our approach also differs from previous works® that imposes conformal frame in order to
reproduce a ¢2R interaction mainly by our motivation and its intrinsic physics that resolves the
dimensional mystery and reproduces the scale invariant action simultaneoudly in a more con-
vincing way. For example, the action S = -f\/§(¢2R +1/2V#¢V/‘¢), with Vy =4d,- Sy, isa
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well-known conformal invariant action. It is also noted that the conventional scalar metric
measure gy,,dx**dx” should be modified? as ds® = ¢%gupdr*dx” in order to preserve loca scdle
invariance. To be more specificaly, we will interprete the conformal metric Gy = ¢2g,w in
this conformal invariant theory as a product of a scalar field ¢ and the conventional Riemannian
metric 8uv-

In what follows,* the lower case latin indices a, b, ¢ from the beginning and , m, n from
the middle of the aphabet will denote flat and curved internal space indices respectively. Also,
the greek indices a, B,y from the beginning and u«,v, 4 from the middle denote flat and curved
space-time indices respectively. We use the coordinate ZM = (x*, y™) with x and y denoting
the space-time and internal space coordinate respectively. Let¥s denote also D and 4 as the
dimension of x-space andy-space respectively. We will write N =D +d for convenience, i.e.
we are considering an N-dimensional Kaluza-Klein theory (with MmN denoting its base manifold)
which undergoes a dimensional reduction process to a D-dimensiona Einstein-Yang-Mills
theory. Also al hatted variables (e.g. ﬁ) denotes N-dimensional variables and un-hatted vari-
ables (e.g. R) denote D-dimensional variables respectively whenever it is necessary.

In this paper, we will show that the proposed N-dimensional vielbein!

Ae®, BA™RS
Eﬁ=( S '") (1)

0, CRT,

can be considered as a consistent ansatz. Here we have assumed E;/(Z) = E)(x) and as-
sumed further that all variables hidden in the vielbein (1) are y-independent. If the interna
y-space general coordinate transformation is to be interpreted as [Ul]" abelian gauge transfor-
mation, one can show that B = C/e with e denoting the coupling constant associated with the
gauge field 4y. Assuming dim Ep = 1, or equivalently dim 4 = dim C = 1 and dim ¢,* =
dim R,,® = dim B = 0, we can derive the reduced action and solve for an inflationary solution.
Therefore, we will consider the N-dimensiona pure gravitational action given below:

G- /dNZ\/5(-R—A) @)

Here A is a dimensionless cosmological constant and G,y denotes the N-dimensional (pseudo-)
Riemannian metric tensor. Note that dim G,y = 2 implies dim S=o0ltis straightforward
to show that an N-dimensional general coordinate transformation Z'™ = ZM + ¢M will induce
the following D-dimensional transformation

A = €0, A )

§B = ¢*0,B (4)
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(5)
6C =€#9,C
e = € Oyep + Iuec’e] (©)
§R% = €*0,R3, @)
m 14 m v AM C m
6AT = €0, AT + 0u” AT + —58“6 . )

Here we have assumed Exf!(Z) = Epf(x) and eM(Z) = (*(x), €™ (x)). Note that if B = Cle,
the transformation (8) can be interpreted as a D-dimensional general coordinate transformation
on avecter field pIusa[Ul]d gauge transformation. Furthermore, (3)-(7) show that A, B, C and
R,,% are to be interpreted as D-dimensional general scalar and eﬂa is to be interpreted as D-
dimensional vielbein.

It is known that Ef? given by (1) signifies the zero mode expansion of action (2). We need
to show, however, that (1) is indeed a consistent ansatz to the field equation. The proof can be
completed by noting that the Euler-Lagrange equaiton for the N-dimensiona theory reads

§(VGE) = VG(RMN _ %GMN(R + A))6Garw =0, ©)

Note also that dGyy = SGyn/dA SA + SGyN/OC SC + 5GMN/C§A#m 5A'um + OGMN/OZmn
Omn + OGMNIOguy Oguv. Here Gy = Ep"'ENd, 8mn= RmRnq and 8uv = e,uaeva with Epf?
given by (1).

It is thus straightforward to show that 8(VgL) = 0, the Euler-Lagrange equation for the
D-dimensional Kaluza-Klein reduced effective theory described by the effective reduced action
S=[VGL(EMN'(A, C, Au™, gu)) = [ VEL(A, C, A,™, gu), is exactly the same as (9) once
we adopt the metric tensor of the form given by (1). Hence we show that the Kaluza-Klein viel-
bein (1) is indeed compatible with the dimensiona reduction process specified by the Kaluza-
Klein vieibein (1). Thus (1) can be considered as a consistent ansatz.

One remarks here that there may exist nontrivial constraint that excludes many unphysical
ansatze by above consistency check. For example, it has been shown in ref. [5] that the the stand-
ard Kaluza-Klein ansatz for massless gauge fields is in genera inappropriate. Exceptions are the
compactifications from an eleven dimensiona manifold MItomxSTind = 11 supergravity.
Although it is possible that the inconsistency may be resolved if we understand the mechanism
of the compactification better, it is, however, important to make sure that our ansatz does survive
the consistency check at this stage. This will enable us to treat the compactified lower dimen-
sional action as effective theory.

In order to perform a consistency check,” we will in genera need the detailed form for
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the Ricci tensor Ryy. This can be easly derived by using differential form formalism. Let us
define the curvature 2-form as CAB 1/2 RABWdZM A dzZVN = deB + wqyc A weg. Here
wAB=wABMdZ is the connection 1-form, and wABM=EANDMEB is the connection for the
corresponding base Riemannian manifold. Note that the Ricci tensor ﬁmsﬁMNpP and the
curvature 2-form Cugy = Epf*ENPC4p are defined differently with different symmetries under
permutation with respect to M and N.

We will writie ¢ = A, ¢ = C and hyy,, = «ng,,,,,. Note that we can set ¢ = 1 for con-
venience and restore the ¢ field afterwards. Note that restoring the ¢ field is rather straightfor-
ward by observing that the compatibility of g, (Dsg,,,,, = 0) implies the compatibility of gw
(= ¢%guv). Note that *REuv) = R(guy) +2(D -1)Dyd*In ¢ + (D -1)(D - 2)duln poyuln ¢.
This will simplify our computations greatly. By setting ¢ = 1, one derives the following expres-
sions for the curvature 2-form é‘mz

1
Caﬁ = Corﬁ'— ZdZ’YA(FapaFoy,\a"}'Fa'yaFﬁ)\a)
l e
—5‘127 (DyFapa + FompAppa — FovsAaba + 2FapAyar) (10)

1
_dZab (ZFa'yaFﬁ‘yb + AacaAﬂcb>

Coa = —%dZﬁ" (Dg Foya— FoppAyas 71 FaypAaas)
+dzPb <iFa7bFﬁ7b — DpAcab + 2AnacActs — 2A0ctAacs ~ AactApac) (11)
-f%dec FopyAgac
1 1 1
Cop = —dZ°F (ZFa'raFMb + AacaAﬁcb> +dz%° <§Avac Fyas = §A7"0F70°> (12)
~dZ AgacAaba-

Here we have defined Aggp =1/2 dghmaRs Ry and Agpaq =1/2 hppnR"0aR, " While
R,™ = ¢ IR,™. Also, we have written dZM A dzN as dZMN for smplicity. Note that al com-
ponents of the curvature tensor !}ABCD can be read off directly from (10)-(12). After some al-
gebra, one derives

G= J VheP =R+ (D = 1)8, Inhd* In ¢ + (D — 1)(D — 2)8, In 6" In
L pm puvn 16 In ho* ! Rmn OF W™ — A@? 49
4¢2F”VF hmn + Zun, Inh+28“ mnOPR™™ —Ag*},
after a long but straightforward calculation. Here h= det 4,,,. Note that we can reproduce
the result in Ref. 1 by setting gmn = Spm, ¢ = 07 and 6 = p7 = VF.
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Note that (13) has many different applications if 4,,, is chosen differently. In what follows,
we will give a few well-known example shortly. Note that the scale symmetry can be introduced
by observing that the scale invariance can be guaranteed if the vielbein EMA is kept fixed while
varying its embedded physical fields ¢,e/4a,«p and R,,® accordingly.

For example, the well-known local scale (Weyl) transformation

¢ = s¢ (14)
e = s lex (15)
will simply imply E"ua = Eﬂa. Here s = s(x) is the local scale parameter. Therefore the in-
variance of the action under (14) and (15) is apparently correct. Note that additional scale
transformations can also be introduced by requiring ¢ and R,,® transform accordingly. Note
also that there is, however, no room for A#’" to transform in this approach. This is expected
and well-known result. We hence generated a whole class of scale invariant theories given by
(13) which are derivable from Kauza-Klein action (2).
For example, if we take h,,, = «pzdm,,, one has

= [VEsP (=R + (D= 1)(D =00, né0" Ing + d(d~ )3, Inp0* Inp

2 (16)
—ﬁ—iFﬁF“”"émn +2d(D —1)9, 1n p0* In ¢ — A2}
If ¢ = u (a constant), 4,™ = 0 and D = 4, we will have
5= [ VRE(-8R +69,00% - A, a7)
Here & = u®fd%. We can further write § = Vi2E¢ and A = A/16§ such that
§= / V(5B R+ 10,80%3 - :S\-q?*) (18)

Here ¢ =1/6. Note that the action (18) is, however, not stable due to the negative kinetic energy
term for ¢. This is a general feature for the action (16) that all dimensiona one fields ¢ and ¢
tend to be unstable. In general, there are a few ways out of this trouble. The first choice is that

the Weyl symmetry has to be broken by imposing an asymptotic boundary condition on ¢ in ac-
tion (18), namely,

é(r —o0) = V. (29

To be more specific, ¢ = $(t) = v is the only stable configuration to (18). Or equivaently, if
the Kaluza-Klein induced Weyl invariant effective theory is suggestedT to play an important role
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in the inflationary universe, the stability of the action ( 18) favors the constant configuration
¢ = v. Therefore, the action (18) reduced to

§= /\/5(—%53_ %v‘*). (20)

Here € = ev?. If (20) has something to do with the inflationary process in the very early universe,
it has to admit a Robertson-Walker type inflationary solution. The Robertson-Walker metric can
be read off directly from the expression: ds® = -df? + a*(f)(dr*/1-kr? + PdQ). Here dQ is the
solid angle d2 = de* + sin26d<p2, and k = 0, =1 stand for aflat, closed or open universe respec-
tively.

Indeed, the equation of motion for (20) can be shown? to be

(a)2+k _ M? 21

= (21)
a’  (a)+ k  3xa?

Q—a— + a2 = 4 (22)

Note that (21) and (22) have an inflationary solution, a =ageV 4y 3 ]; e~V 2t Similar
veag

argument as shown in Ref. 2 can be applied to show that above solution indicates a small cos-
mological constant observed today.

Also, the other choice out of the stability trouble is that at least one of the ¢ and ¢ fields
must be Weyl transformed to other fields in order to reverse the negative kinetic term. For ex-
ample, by requiring ¢?%p? =1 and ¢Pp° = 32, one should write ¢ = 2 and

—2p-D2

o=¢ 2 .Therefore, (16) becomes

S = /\/5(—1%- %’auln&a“ lné—AéD). (23)

Here p = D¥(D-2)/2d (D +d-2) 2 0 for D= 2. Note that there are other feasible combinations
considered previously.>

In summary, we have shown that a whole class of Weyl invariant effective theories can be
generated from a higher dimensional Kaluza-Klein theory by promoting al dimensiona
parameters to dimensiona field variables which can be embedded in the Kaluza-Klein vielbein
in a natura way. We have aso performed a simple consistency check to show that the vielbein
ansatz (1) isindeed a proper ansatz to (2). We are now studying the generalization to non-
abelian embedded Kduza-Klein theories which are aso very interesting.
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