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AI1 dimensional parameters in most gravitational models can be promoted to dimensional

field variables which can be embedded in some higher dimensional Kaluza-Klein vielbein. An

elegant method of computing dimensional reduction process via vielbein and differential form is

introduced. We compute the reduced lower dimensional effective scale invariant action after the

dimensional reduction takes place. Some applications to the inflationary universe are also

discussed.

Kaluza-Klein theoryí has been an attractive and promising candidate for unifying gravita-

tion and gauge interactions. In this approach, gauge connections are considered as off block-

diagonal components of some higher dimensional spin connections. These gauge fields assume

their low energy effective shapes immediately after the dimensional reduction takes place. The

dimensional reduction process is generally believed to be active beyond the Planck scale under

a (still) unknown mechanism. It is, however, suspected that the mechanism of the dimensional

reduction might be similar to the mysterious spontaneous symmetry breaking algorithm induced

by the Higgs mechanism. Therefore, it is important to study the Kaluza-Klein theory in greater

details.

Moreover, the scale invariant effective theor+ has been shown to indicate that the scale

symmetry should be a manifest symmetry in many aspects. It is found that we can embed the

dimension of all the dimensional parameters via the dimension-one scalars fields $i in @v such

that the general scalar measure 8x6 is made dimensionless. In that case, dimgpv = 2. There-

fore, ~3~ = g,&&?  becomes a dimensionless measure and hence all the dimensional

parameters can be induced dynamically. The scale invariance can thus be introduced in a

natural way (see below).

Our approach also differs from previous works3 that imposes conformal frame in order to

reproduce a q52R interaction mainly by our motivation and its intrinsic physics that resolves the

dimensional mystery and reproduces the scale invariant action simultaneously in a more con-

vincing way. For example, the action S = - $ G ($2R + 1/2V,&V~@),  with VI1 E dp - Sp, is a
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well-known conformal invariant action. It is also noted that the conventional scalar metric

measure s,&?dy”  should be modified2 as ~5~ E #2gP&&V in order to preserve local scale

invariance. To be more specifically, we will interprete the conformal metric GPy = $ëgPy  in

this conformal invariant theory as a product of a scalar field # and the conventional Riemannian

metric gPv.

In what follows,4 the lower case latin indices a, b, c from the beginning and 1, m, n from

the middle of the alphabet will denote flat and curved internal space indices respectively. Also,

the greek indices a, /I, y from the beginning and p, Y, 1 from the middle denote flat and curved

space-time indices respectively. We use the coordinate ZM = (3, yî)  with x and y denoting

the space-time and internal space coordinate respectively. Letís denote also D and d as the

dimension of x-space andy-space respectively. We will write N = D + d for convenience, i.e.

we are considering an N-dimensional Kaluza-Klein theory (with fl denoting its base manifold)

which undergoes a dimensional reduction process to a D-dimensional Einstein-Yang-Mills

theory. Also all hatted variables (e.g. fi) denotes N-dimensional variables and un-hatted vari-
. ables (e.g. R) denote D-dimensional variables respectively whenever it is necessary.

In this paper, we will show that the proposed N-dimensional vielbeinl

E; =
A$, BATR:

0, CRî,
(1)

can be considered as a consistent ansatz. Here we have assumed E/(Z) = E,&(x)  and as-

sumed further that all variables hidden in the vielbein (1) are y-independent. If the internal

y-space general coordinate transformation is to be interpreted as [U# abelian gauge transfor-

mation, one can show that B = C/e with e denoting the coupling constant associated with the

gauge field +. Assuming dim ~~~ = 1, or equivalently dim A = dim C = 1 and dim ePa =

dim R,a = dim B = 0, we can derive the reduced action and solve for an inflationary solution.

Therefore, we will consider the N-dimensional pure gravitational action given below:

s= dNZ&(-&A)J
Here A is a dimensionless cosmological constant and GMN denotes the N-dimensional (pseudo-)
Riemannian metric tensor. Note that dim GMN = 2 implies dim ? = 0. It is straightforward

to show that an N-dimensional general coordinate transformation ZPM = ZM + ~~ will induce

the following D-dimensional transformation

6A = &$A (3)

6B = cîd,B (4)
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(5)

(6)

Here we have assumed E,&(Z)  = E,/(X)  and ~~(2) = (p(x),  .?(x)).  Note that if B = C/e,
the transformation (8) can be interpreted as a D-dimensional general coordinate transformation

on a vecter field plus a [U# gauge transformation. Furthermore, (3)-(7) show that A, B, C and

R,,,’ are to be interpreted as D-dimensional general scalar and ePa is to be interpreted as D-

dimensional vielbein.

It is known that ~~~ given by (1) signifies the zero mode expansion of action (2). We need

to show, however, that (1) is indeed a consistent ansatz to the field equation. The proof can be

completed by noting that the Euler-Lagrange equaiton for the N-dimensional theory reads

6(&i) = x@iMN - ;GMN(R_t  A))6GMN = 0. (9)

Note also that SC,, = dGMNldA 6A + dGMN16C  6C + dGM&Apm  6Apm + dG,&dg,,,,

~grn?! -I- dG.&dgpy dgpy.  Here Gm = EM~ENA,  g,,,, = RmaR,a  and gpv E epaeva  with E,+.tA

given by (1).

It is thus straightforward to show that 6(<L) = 0, the Euler-Lagrange equation for the

D-dimensional Kaluza-Klein reduced effective theory described by the effective reduced action

S 3 J flc(E~~(A,  C, Apm,  gpv)) = J GL(A,  C, Apm, gpv), is exactly the same as (9) once
we adopt the metric tensor of the form given by (1). Hence we show that the Kaluza-Klein viel-

bein (1) is indeed compatible with the dimensional reduction process specified by the Kaluza-

Klein vieibein (1). Thus (1) can be considered as a consistent ansatz.

One remarks here that there may exist nontrivial constraint that excludes many unphysical

ansatze by above consistency check. For example, it has been shown in ref. [5] that the the stand-

ard Kaluza-Klein ansatz for massless gauge fields is in general inappropriate. Exceptions are the

compactifications from an eleven dimensional manifold M” to IV? x S7 in d = 11 supergravity.

Although it is possible that the inconsistency may be resolved if we understand the mechanism

of the compactification better, it is, however, important to make sure that our ansatz does survive

the consistency check at this stage. This will enable us to treat the compactified lower dimen-

sional action as effective theory.

In order to perform a consistency check,’ we will in general need the detailed form for

.
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the Ricci tensor RMN. This can be easily derived by using differential form formalism. Let us

define the curvature 2-form as ?_,,t~ E 112  iumdZM A dZN = dwM + WAC A WCB.  Here

WAB = wABMdZM  is the coMection l-form, and WABM E E~DMEB~  k the connection for the

corresponding base Riemannian manifold. Note that the Ricci tensor ff,+m~ G ~MNP’  and the

curvature 2-form ~,UN = EM~EN~~~  are defined differently with different symmetries under

permutation with respect to M and N.

We will writie $ = A, p = C and h,, = p2g,,,,,. Note that we can set q5 = 1 for con-

venience and restore the q5 field afterwards. Note that restoring the #J field is rather straightfor-

ward by observing that the compatibility of g,,,,,  (Dtgmn = 0) implies the compatibility of &,

(3 #~ìg,~).  Note that @*R(&y)  = R&Y)  + 2(D - l)O,#ln q5 + (D - l)(D - 2)$ln $a,ln $I.

This will simplify our computations greatly. By setting q5 = 1, one derives the following expres-

sions for the curvature 2-form ?m:

-;dZía(D,F,pa  +  Fa+,APba  - FP-tbAaba  + zFapbA-,ab)

-dZab (:FcqaFp-yb  i- A,,.Ap,b)

(10)

6,, = - ;dZpy ( Dp Fala - FaBbAyab  ïI FPybAaab)

+dZPb  (iFr,aFg_rs - DpAaab  + 2A,,,A,bp  - 2A,,bAacp - AaebApoc)
(11)

+ ;dZbC  FaPbAPac

Cab =
1
;FmyaFp-yb  + A,,a Aw) + dZQc  (;A,ac F-,at, - 2’  AytxFyoa)

(12)

Here we have defined Aaab  = l/2 &&,,&,ì~~”  and Aa& = l/2  hmn&maG??b  ’ while
R m c p-1&m.a Also, we have written dZM A dZN  as dZMN for simplicity. Note that all com-

ponents of the curvature tensor k,,r~c~ can be read off directly from (lo)-(12). After some al-

gebra, one derives

s= ~~D-2{-~+(D-l)~,lnh~Pin~+(D-1)(D-2)~,inq58ëln~J
-&” FPíììh

(13)

442 IJV
,,,,, + ia, In h8’ In h + ~cë?,h,,i)phm” - Mí>  9

after a long but straightforward calculation. Here Iz s det h,,,. Note that we can reproduce

the result in Ref. 1 by settingg,,,,  = drnn,  @ = br and d = cpd = fi.
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Note that (13) has many different applications if h,, is chosen differently. In what follows,

we will give a few well-known example shortly. Note that the scale symmetry can be introduced

by observing that the scale invariance can be guaranteed if the vielbein E,Q~ is kept fixed while

varying its embedded physical fields $, ePa, p and R," accordingly.

For example, the well-known local scale (Weyl) transformation

$4’  = SQ

will simply imply Etpa

variance of the action

(14

(15)

= Epa. Here s = S(X) is the local scale parameter. Therefore the in-

under (14) and (15) is apparently correct. Note that additional scale

transformations can also be introduced by requiring p and R,,,O transform accordingly. Note

also that there is, however, no room for Apm to transform in this approach. This is expected

and well-known result. We hence generated a whole class of scale invariant theories given by

(13) which are derivable from Kaluza-Klein action (2).

For example, if we take h,, = p2dm,, one has

S=
J

,/j$D-2ípd{-R  + (D - l)(D - 2)~3,  In&YíIn~  + d(d- l)a, ln#ëlncp

-$F;FT5,, + 2d(D - l)a, In cpdP In 4 - A@ì}

If p = u (a constant), Apm = 0 and D = 4, we will have

3 =
J

&(-+"R + 6d,,$GYë+  - Ac#Iî).

Here t = udJddy. We can further write 7 = ~I#J and 1 = A/X$ such that

(16)

(17)

Here E = l/6. Note that the action (18) is, however, not stable due to the negative kinetic energy

term for F. This is a general feature for the action (16) that all dimensional one fields 9 and ëp

tend to be unstable. In general, there are a few ways out of this trouble. The first choice is that

the Weyl symmetry has to be broken by imposing an asymptotic boundary condition on F in ac-

tion (18), namely,

J(r _ ,C0) = v. (19)

To be more specific, F = q(t) = v is the only stable configuration to (18). Or equivalently, if

the Kaluza-Klein induced Weyl invariant effective theory is suggestedí to play an important role



112 KALUZA-KLEININDUCEDWEYLINVARIANTEFFECI'IVETHEORY VOL.30

in the inflationary universe, the stability of the action (18) favors the constant configuration

T = v. Therefore, the action (18) reduced to

Here E = av2. If (20) has something to do with the inflationary process in the very early universe,

it has to admit a Robertson-Walker type inflationary solution. The Robertson-Walker metric can

be read off directly from the expression: d.s2 = -d$ + a2(t)(dgll-kg  + g&2). Here dS2 is the

solid angle dQ = d82 + sin2f3dp2, and k = 0 , +- 1 stand for a flat, closed or open universe respec-

tively.

Indeed, the equation of motion for (20) can be shown2 to be

(aí)’  + k Xv*
a2 =4 (21)

. 2QN + (uí)~  + k = E
a a2 4 (22)

Note that (21) and (22) have an inflationary solution, a = aoe fit + ke-fií.  Similar
Av2ao

argument as shown in Ref. 2 can be applied to show that above solution indicates a small cos-

mological constant observed today.

Also, the other choice out of the stability trouble is that at least one of the #J and p fields

must be Weyl transformed to other fields in order to reverse the negative kinetic term. For ex-

ample, by requiring #D-2pd = 1 and $Dpd = $JD, one should wri te  $ = FDn and
-2D--D=

p=$-=--. Therefore, (16) becomes

Herep = D2(D-2)/2d  (D +d-2) 1 0 for D L 2. Note that there are other feasible combinations

considered previously.3

In summary, we have shown that a whole class of Weyl invariant effective theories can be

generated from a higher dimensional Kaluza-Klein theory by promoting all dimensional

parameters to dimensional field variables which can be embedded in the Kaluza-Klein vielbein

in a natural way. We have also performed a simple consistency check to show that the vielbein

ansatz (1) is indeed a proper ansatz to (2). We are now studying the generalization to non-

abelian  embedded Kaluza-Klein theories which are also very interesting.

-___- ___~ -
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