
Bit-sliced median filter design based on majority
gate

C.L. Lee
C.-W. Jen

I Indexing term: Filters andfiltming, Boolean algebra

Abstract: There are arithmetic problems for the
hardware realisation of bit-level median filtering
algorithms. A design of a majority gate which is
composed of output-wired inverters is proposed.
The area and time complexities are better than the
digital and analogue designs now available. This
circuit is applied to a median filter design which is
based on majority selection, the computation
problems are thus avoided. It is a bit-sliced archi-
tecture with constant cycle time. Window shapes
can be arbitrarily changed through mask-and-set
modules. A median filtering system for two-
dimensional image processing is presented. A
binary majority gate is also an essential element in
decision-making circuitry which is applied in
fault-tolerant computing systems, artificial neural
networks or related applications.

1 Introduction

Signal smoothing using median filters has grown popular
in recent years because of its simple operation and robust
performance. A window with an odd number of elements
is defined which slides across the digitised input sequence.
The median filter simply takes the middle value of the
elements lying in the window, as the window moves
through the input sequence step by step. Such operation
can remove impulsive types of noise while preserving
sharp edges and the desired features of an image [t].
Median filtering techniques are widely applied in many
fields, such as reducing ‘sparkle’ noises in digital TV
images [l], improving digital speech quality in PCM
channels [3], enhancing edge gradients of signals [4],
edge detections [SI, seismic data processing [6] and
medical image applications [7].

Many algorithms and methods have been developed
and used in median selection. They can be classified into
two categories: word-level and bit-level. In word-level
algorithms, the basic operation is applied to a word. The
selection of the median value from a sorted sequence is
the simplest method. Bubble sort, selection sort, quick
sort, or odd-even transposition sort are common exam-
ples [8]. An updated histogram method [9] picks up the
median value in a partially modified histogram. A
moving border method [lo] searches for the median
element along a moving boundary on the sorted data
matrix. Both methods have the advantage that only a

Paper 82916 (ElO), first received 29th May 1990 and in revised form
18th February 1 9 9 1
The authors are with the Institute of Electronics, National Chiao Tung
University, 75 Po-Ai Street, Hsinchu 30039, Taiwan, Republic of China

IEE PROCEEDINGS-G, Vol. 139, No. I , FEBRUARY 1992

minor part of the data come in and go out on each move-
ment of the window. However, they are not suitable for
hardware implementation because of their irregular data
structure and operations. Only the odd-even transposi-
tion sort has been chosen to realise the median filtering
in hardware [ll-141.

In bit-level algorithms, the median result comes out
with one bit at a time. Usually, there is a mask vector to
define the effective subset in which the target result lies.
The effective subset will shrink as the inspection proceeds
from the most significant bits (MSBs) to the least signifi-
cant bits (LSBs). The major difference is the counting
schemes they perform. In Reference 15 the number of bits
‘0’ among the effective subset at each bit position were
counted. In Reference 16, bit ‘1’ was counted in each
inspection. Both bit ‘0’ and ‘1’ were counted separately in
Reference 17 and either of the two numbers was used for
the subsequent calculation. Hardware architecture
designs for the last two algorithms were proposed in
References 18 and 19, respectively. The algorithm in Ref-
erence 15 was formulated mathematically in Reference
20. Recently, two similar algorithms based on majority
selection were developed independently in References 21
and 22, but with different concerns. The majority selec-
tion can be a special case of rank selection based on the
positive Boolean function discussed in Reference 23.

In hardware implementation, algorithms based on
binary radix are better for the following reasons:

(a) It is more intuitive and simple to derive com-
binational functions on binary variables.

(b) The basic modules are small, regular and highly
repeatable.

(c) Their hardware complexity increases linearly with
window size and word length of binary representation.

Most of the word-level algorithms are more suitable for
software implementation. There is yet another bit-level
method which selects the median from a sequence of
threshold decomposed signals [24]. However, its com-
plexity increases exponentially with word length and
therefore it is not practical in hardware implementation.

These bit-level median filtering algorithms are basic-
ally performing a binary search among the unsorted data,
while the masking functions are similar. The difficulty in
hardware implementation is the counting circuit because
it is either implemented by a large adder tree or by a
large combinational Boolean function for the speed con-
sideration. Now we consider whether there is a method
that can reduce the problem while preserving the high
speed of throughput. The majority gate is the target.

2

A binary majority gate as shown in Fig. 1 is a circuit that
can determine the majority of binary signals. W is the

Design of a majority gate

63

‘ I .
number of inputs which is usually odd. The output will
be ‘1’ if over half of its inputs are ‘l’, otherwise it will be
‘0’. A number of designs can perform this job. They are
briefly discussed in the following sections. :;D x = ? ? W

1 I f x (W . 1) / 2
X W u = (o I f x (W . I W)

Fig. 1 Function ofthe majority gate

2.1 Some existing majority designs

2.1 . I . Comparison after summation: This is a direct
digital implementation of the equation shown in Fig. 1.
An adder tree can be used to obtain the speed of summa-
tion. There is a comparison logic which flags the majority
result. If a binary majority function is implemented by an
adder tree followed by a comparator, its hardware will
expand linearly with W while the delay time increases
with log W .

2.1 2 Sorting network with position selection: This
method sorts the binary input signals into an ordered
sequence. The majority signal will be on the middle line
of these sorted outputs. Some discussion about the binary
sorting net is presented in Reference 25. The area com-
plexity of this circuit grows at an order of O(W2) because
the o d d w e n transposition sorting network was used
[SI.
2.1.3 Positive Boolean function [23, 261: Instead of
direct summation as in Fig. 1, one can implement the
majority by a fully combinational Boolean function. For
example, if there are three binary signals, a, b and c, the
majority function will be U = abV bcVca, where V
denotes a logic OR function. Such a design needs
C&+,,/, combinations of product terms, so it is not prac-
tical as W becomes large.

2.1.4 Threshold logic gate: A majority function is a
special case of a threshold logic gate when the threshold
T is equal to (W + 1)/2. An early version of circuit imple-
mentation of a threshold-logic gate was a voltage divider
by resistor-transistor logic (RTL) circuits [25]. A MOS
transistor version of the same circuit was presented in
Reference 28, which had a resistor network for weighting
inputs and a voltage source in series with the drain to
determine threshold level. Although this design is simple,
the resistors are area-consuming.

2.1.5 Voltage level comparison: This is an analogue
approach which detects the difference between a voltage
divider output and a reference voltage. A design example
is Reference 24 realised the voltage divider by nMOS cir-
cuits and compared the voltage levels by a differential
amplifier.

22 Device programmable CMOS majority gate
Our majority circuit design is based on the voltage
divider in Reference 24, but CMOS technology is used
instead of nMOS design. The differential amplifier is
replaced by an inverter to simplify the design. This can
save the area of the differential comparator and half the
number of input signals as in the nMOS voltage divider
approach; both positive and negative inputs were
required in the nMOS voltage divider.

The majority gate is shown in Fig. 2. It is made up of
two parts: a nonlinear voltage divider built by output-

64

wired inverters on the left-hand side and an inverting
buffer which senses the majority transition and provides
a positive output is on the right. In addition, this invert-
ing buffer serves another two purposes: it isolates the
divider output node from external circuitry to reduce

T

I I I I I I I I I +
I I I I I I I I

c (1) c(2) c(3) c (4) c (5) c (6) c (7) cl,) c(9)

Circuit of the 9-majority gate Fig. 2

noise effect and driving for the next stage and it reshapes
the output waveform. The characteristics of this majority
circuit obtained by SPICE simulations based on a 1.2 pm
CMOS N-well technology is shown in Fig. 3A. Let T be

2 5

T (number of ‘1‘ among the inputs)
a

Fig. 3A Transfer characteristics ofthe 9-majority gate

the number of ‘1’s appearing at the input side, so
W

T = 1 c(i)
i = l

As T increases, the output voltage V, steps down a little
at first, then the step size broadens at some middle
values. Thereafter, the step size shrinks again and finally
goes to zero as all input bits become ‘1’. The current
through this divider is changed in the same way as the
output voltage step size; it increases at the middle values
and goes down to zero at both ends. This phenomenon
tells us that this circuit is like a spatial inverter, as the
output will be ‘1’ if ‘0’ is the majority among the input
signals, and vice versa. The underlying mechanism is that
the dynamic behaviour of a single inverter is spatially
quantised by the W-input divider. Fig. 3B shows the I-V
characterististics of PMOS and nMOS transistors when
the number of parallel transistors (7‘’ or Tj is increased.
The intersections indicated (where T, + T,, = 9) are just
the nonlinearly quantised voltage levels and current
values of the voltage divider shown in Fig. 3A.

A conventional inverter is the simplest threshold
circuit in CMOS design. It is connected to the voltage
divider to detect the maximum output transition gap.
There are several ways to adjust the threshold voltage of
an inverter [27], such as changing the effective surface
state density (Nss) by implantation, changing the oxide
thickness (T,J or adjusting channel width ratio (W’W.)
of the p-channel and n-channel transistors when their

IEE PROCEEDINGS-G, Vol. 139, No . I , FEBRUARY 1992

. -

3 3 .
3 2 -

3 1 -

3 0 -
2 9 -
2 8 -

> 2 7 -

$ 2 6 -

> 2 4 -
z 2 3 -

2 2 -

2 2 5 -

5 2 . 1 -
2 0 -

1 9

1 8 -

channel lengths are fixed. The last one of these three tech-
niques may be the best choice because it is process-
independent and the easiest to design. If we choose nine
inputs, for example, the majority transition should
appear when T goes from four to five. Note that nine

1 7 ' " " ' ' * * f i
0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 L 5 5 0 5 5

3
Q Q
E

m 2 2 -
m m

0

5 :

0
0 1 2 3 5

;level of Tz5

nMO5- Vd,, V

b

Fig. 38 Dynamic behauiour afthe nonlinear uoltnge divider

invertors of the voltage divider should have identical geo-
metrical structures. The results of tuning their WJW.
ratios to see their voltage transitions from T = 4 to
T = 5 are plotted in Fig. 4. It is better to have the gap as

large as possible. WJW. = 4.0/1.8 = 2.22 is chosen from
Fig. 4 with V, = 3.38 V, V, = 1.42 V and the middle
point = 2.40 V. From the plot of threshold voltage
against channel width ratio shown in Fig. 5, WJW. =
3.6/1.8 = 2 is picked up as the output inverting buffer for
its V,, = 2.39 V, which satisfies the middle point require-
ment. The resulting majority circuit made up of these two
choices is simulated and the output transfer curve has
been shown in Fig. 3A.

For the same design process, a majority circuit with 25
inputs has also been designed and simulated. Its layout
dimensions are listed in Table 1 with a 9-majority circuit.
Note that the 1.2 ns time delay is equal to two invertor
delays, The power consumption is calculated by
assuming T is uniformly distributed. This design is low

IEE PROCEEDINGS-G, Vol. 139, No. I , FEBRUARY 1992

Table 1 : Specifications of t w o majority gates

9-maioritv 25-maioritv

(W/L) (4.0/1.2) (3.0/1.2) Divider 2 - -
(W/L), (1.8/1.2) (1.5/1.2)

(W/L) (3.6/1.2) (3.011.2) B u f f e r 2 - -
(W/L), (1.8p.2) (1.5/1.2)

process variation if (Q,, - QL) of the buffering invertor is
1 V. However, the noise margin of 25-majority is zero in
the best case, which is why the 25-majority is greatly
influenced by process variation and external changes.

when WJW. is between 2 and 2.5, it happens at T = 4-5
and when the ratio falls to within 3 and 4, it appears at
T = 5-6. These phenomena are plotted in Fig. 7. As a
matter of fact, one can have the desired maximum

T (number of ' 1 ' among the inputs)
a

T (number of '1' among the inputs)
b

Fig. 6
(I under proms variations
b under temperature variations

Transfm curves ofthe 25-mjority

We think that the majority circuit below nine inputs
can be designed and can work properly under the varia-
tion of the process we considered. However, the yield will
be lower as more inputs of the majority circuit are
required. If this is desired, a more carefully controlled
process is required. For an even higher number of inputs,
some extra circuitry should be involved to compensate
for the process variation and detect the smaller transition
gap.

During the simulations with varying channel width
ratios, we found that the maximum transition was shifted
as WdW. increased. For example, when WAW. =
13/13 = 1, the maximum transition step is at T = 2-3,

66

voltage transition gap by adjusting only the channel
width ratio. Together with a proper choice of WdW. ratio
of the inverting buffer, the same circuit structure of the
majority circuit will become a threshold logic gate with
equal weighting on each input. The threshold level is pro-
grammed by the channel width ratio of invertors. The
majority gate thus becomes a special case.

In summary, there are three steps in building a major-
ity circuit: First, the majority transition gap character-
istics with respect to different channel width ratios should
be obtained; secondly, the threshold voltage variations of
invertor with respect to different channel width ratios
should be available; thirdly, a proper W,lWn ratio with a

IEE PROCEEDINGS-G, Vol. 139, No. I , FEBRUARY 1992

maximum transition gap must be selected for the nonlin-
ear voltage divider and an invertor in which the thres-
hold voltage equals the middle point of this gap. The
cascading of the two devices makes up the majority gate.

. . . , W}. These data are taken to be non-negative integers,
as, in most of the applications, gray level images have no
negative pixel and digital signals can also be offset to be
positive. If each element in the window has an N-bit

-

9

T (number of ‘1’ among the inputs)

Fig. 7 Transfer curves of nonlinear voltage divider with respect to different channel width ratios

2.3 Comparison
Table 2 summarises some features of the new majority

in Section 2 . 1 . The two columns furthest to the right are

area complexity and constant cycle time. However, our
new design is much better in several ways. First, the ana-
logue divider approach needs two voltage dividers for
both the input signal and the reference, while ours needs
only one; so the transistor number is halved. Secondly,

for nMOS design while CMOS needs only noncom- for k = 1, ..., N
plement signals. Thirdly, a digital circuit is much easier Corresponding to binary row vector B ~ , two additional
to manipulate than an analogue circuit. binary vectors Mk and Sk are defined for later use. They

The simple and regular CMOS design of this majority are
gate is very attractive, however the programming of
device geometries for different rank orders in the design-
ing stage decreases the run-time flexibility. This is and
because the rank-order is fixed after the majority gate is
designed.

3

In a one- or two-dimensional situation, the total number
of elements lying in the sliding window can be denoted
by W (or W = W, * W2), which is called the window size.
The data within the window are written as {u(i) I i = 1,

binary representation, then the data value u(i) within the
window can be defined as

gate design in comparison with those designs presented

obviously better than the others because of the linear

N - 1

u(i) = 1 b,{i) . 2’
j = O

where bj(i) E (1 , 0 } , for i = 1 , . . . , W .
For the kth most significant bits (the (N - k + 1)th

least significant bits) of all data, a binary row vector Bk
can be formed which is defined as

they need both complement and noncomplement signals Bk = [bN-k+l(1)7 bN-k+1(2) , ...> b N - k + t (W) l

= [mk(l)i mk(2)* ...) “dW)l

Sk = [Sk(l). S,(2), . . . , Sk(W)] for k = 1 , . . , N
where mk(i) and sk(i) E (0, 1) for i = 1 , . . . , W .

to as a setting vector for 4 .
3.7 The algorithm
Generally speaking, a bit-level median filtering algorithm
determines the kth most significant output bit by inspect-
ing the kth most significant bits of all elements in the

Bit-level median filtering algorithm based on
majority selection

Mk is referred to as a masking vector and Sk is referred

Table 2: Comparison for various designs of majority gate

Tree adder + Sorting PBF Analogue Majority
comparison network divider

Area O(W o w * w O(W1) O (W O(W

Delay time O(log w) O(W) O (1) O (1)
complexity

Technology MOS MOS %AS nMOS CMOS
Circuit digital digit a I digital analogue digital
Rank order by circuit by output by Boolean by input by device

References 18, 19 25, 8 23, 26 24
selection function line selection function assignment geometries

IEE PROCEEDINGS-G, Vol. 139, No. I , FEBRUARY 1992 67

window. Starting from the first MSB, one checks whether
‘1’ or ‘0’ is the majority and the median is in the subset of
which the MSB is the majority bit. Thus we set the
masking-flags mk(i) to be ‘1’ to indicate the desired subset
where the median value stays, and force the elements
which are not in the desired subset to a local extreme
value by putting the corresponding setting-flags sk(i) to be
the opposite value of the present output bit. Once the
mk(i) becomes ‘0’ the ith element in the window is no
longer in the desired subset and the setting value will
take over for the rest of the calculation, i.e. mAi) = 0 and
sl(i) = sk(i) for 1 = k + 1, . .., N . For binary signals, the
median and majority value are the same. The setting-
flags help to preserve the rank order of the expected
median result, so that the majority selection is happening
in each bit position from MSB to LSB.

Let the kth MSB of median output result be denoted
as uk and let ck(i) be a temporary signal corresponding to
bN-k+l(i) and sk(i). We use ‘A’, ‘ V ’ and ‘-’ to denote the
logic AND, OR and NOT operations, respectively. The
new median filtering algorithm can be formally written as
follows :

(i) Initially, all elements in the window are in the
desired subset ml(i) = 1, for i = 1, . . . , W

(ii) The following statements (steps (iiiHvi)) are repeat-
ed from MSB to LSB: k = 1, the first MSB

(iii) Generate the kth MSB of median output uk by
finding the majority of intermediate signals ck(i).

ck(i) = (mk(i)AbN-k+ di))v(-mk(i) A Sk(i))
for i = 1, ..., W

uk = maj {ck(i) I i = 1, . . . , W }
(iv) If k = N, then stop
(v) For the masking operation, define the desired

subset for the next inspection:

mk + l(i) = mdi) A ((‘k A bN- k + l(i)) (uk A - bN- k + l(i))

f o r i = 1, ..., W
(vi) For the setting operation, assign values to the

sk+ l(i) = (- mdi) A sk(i)) V (mk(i) A - U,.)

entries outside of desired subset:

for i = 1, W
(vii) k = k + 1, goto step (iii).

The main idea of this new algorithm is to get the median
output without changing its rank order. In other
methods [15-171, the rank order of median value had
been changed during the calculation. Here the point is to
compress the values which are not in the desired subset
to be a local extreme value. This process guarantees that
rank order of median value is unchanged. The advantage
of preserving its rank order is that majority selection
alone is enough and there is no need for arithmetic oper-
ations such as addition or subtraction. An example which
demonstrate the new algorithm is shown in Fig. 8 with
N = 4 and W = 9. Those elements which are not in the
desired subset are marked by a circle and the neighboring
S values are then taken instead to make a majority deci-
sion.

3.2 Discussion
There are two special properties of this algorithm: First,
the majority is the median in a set of binary signals with
an odd number of elements. Secondly, the mask-and-set
operations presented in steps (v) and (vi) of the algorithm
will preserve the rank order of median value through all
N cycles of inspections. The former statement is clearly

68

valid and the latter statement is true because they are
specially designed to do so.

For k = 1, the first cycle, we are finding the (W + 1)/
2th large (also the (W + 1)/2th small) data value in the

Fig. 8 Exnmple for the median selection algorithm

set of W elements, where W is odd. Let T be the number
of ‘1’s in bdi) of the set defined by ml(i) for i = 1, . . . , W,
i.e.

W

T = 1 mlG) A bl(i)
i = 1

32.1 Case 1
If T < (W - 1)/2, u1 = 0, because 0 is the majority.
Those data values which have bdi) = 1 # u1 should be
masked out of the desired subset by letting mr(i) = 0 for
1 = 2, ..., N . After this masking operation, T elements
have been removed. Thus, for k = 2, we will find the
[(W + 1)/2 - Tlth large data value in (W - T) of ele-
ments. To preserve the rank order of median value, we
have to set those elements which have m,(i) = 0 to s,(i) = - u1 = 1 for 1 = 2, . . . , N . The median value will then go
back to the (W + 1)/2th large data value in W elements.
(It is still the (W + 1)/2th small data value in W ele-
ments.)

39.2 Case 2
If T 2 (W + 1)/2, u1 = 1, because 1 is the majority.
Those data values who have bdC) = 0 # u1 should be
masked out of the desired subset by letting mdi) = 0 for
1 = 2,. . . , N . Thus, (W - T) elements have been removed.
For k = 2, we will then find the (W + 1)/2th large data
value among the rest T elements. That is the
[T - (W + 1)/2]th small value in the T elements. To pre-
serve the rank order of median value, we have to set
those elements which have m,(i) = 0 to ski) = -u1 = 0
for 1 = 2, . . . , N . The median value will then go back to
the (W + l)/2th small data value in W elements. (It is still
the (W + l)/2th large data value in W elements.)

For k 2 2, the setting values are taken into account to
preserve the median rank. T should be calculated as

W

T = 1 (mk(i)Ab,-,.+l(i))V(.cmk(i)Ask(i))
, =1

The majority decision for k 2 2 is the same as in cases 1
and 2 but the modification is held only for those data
values which have mk(i) = 1. Those which have m,.(i) = 0
are permanently set by s,.(i) throughout the rest of the
inspections.

Combining the calculation of cases 1 and 2 from k = 1
to N, the masking operation should be steps (v) and (vi)
of the algorithm.

IEE PROCEEDINGS-G, Vol. 139, No. I , FEBRUARY 1992

4 Flexible median filtering system

The advantage of this algorithm is evident from its hard-
ware design. The mask-and-set operations are simple
combinational logic and the majority is implemented by
a novel design without arithmetic drawbacks.

4.1 Word-parallel and bit-pilelined design
In addition to the majority circuit, all functions are
included in a mask-and-set (M/S) module. As the algo-
rithm has been written in a single assignment form, every
variable is assigned only once. The Boolean functions in
an M/S module can be obtained by direct transformation
from the software statements of steps (iiiHvi). Let M, S,
C and B be the masking, setting, intermediate and binary
data bit, respectively. If we carefully check the Boolean
function of signals C and S, they are the same, which was
verified in Reference 23. An M/S module is presented in
Fig. 9. Every M/S module receives M and S signals from ‘-$F- M C.MD.RS ‘T M (UeC)

5’:C
U

M ‘ S’

Fig. 9 MIS module and its functions

the previous stage with the current input data B to gener-
ate an intermediate signal C. The maj gate collects these
C signals from each M/S module to calculate the median
value U and feeds back to each M/S module to modify
M and S’ values for the next stage. A single stage of this
median selection unit is shown in Fig. 10. This structure

M k S k

,

I
11

‘k*+ ’k.4

Fig. 10 One bit stage of the median selection unit

is rather simple and regular. It can be cascaded into a
word-parallel and bit-pipelined design. If M and S’
signals are fed back to the same stage, a bit-serial and
word parallel design is formed.

As the cascaded N stages work in a pipeline fashion,
the output may not be correct without properly sched-
uling the 1/0 data bits, therefore skewing delays are
needed to delay one more time unit for each successive
stage. The input data bits can then be fired at a correct
timing slot. Throughout the filter the output result
should be skewed back to its original data word. There-
fore, ‘deskewing’ delays are placed at the output side.

Note that the shift register column butted to each stage is
called a window buffer. Only one additional row of
skewing delays is required for each stage, including both
input side and output side, rather than W rows of delays
for each stage as presented in similar designs [ll, 13, 181.
A bit-sliced architecture with skewing delays is shown in
Fig. 11.

3% N - I delays

q :;:? I-=-=--
one bit N-2 delays
median

a.....
N-1 delays

one bit

Fig. 11 Bit-sliced medianfilter structure with skewing delays

In the hardware realisation of a bit-level median filter-
ing algorithm, the area complexity is dominated by the
basic boxes which are for defining the effective subset and
the time delay of a single stage is dominated by the
counting circuits. These features are compared in Table 3.
The majority design is better because of its linear com-
plexity with constant cycle time.

4.2 System architecture design
Owing to the advance of VLSI technology, many soft-
ware algorithms are embedded on a single VLSI chip for
cost and performance considerations. Modular, regular
and repeatable structures are preferred in such a VLSI
system. The bit-sliced approach of median filtering pro-
vides a bit-level scalable hardware structure which is
adaptive to changeable word length. The repeatable
nature makes it very attractive to a VLSI design.

In real-time two-dimensional image smoothing, using
a median filter with window size 3 x 3, we need buffers to
store data in the former two scan lines as the window
raster-scans over the image. The structure is as shown in
Fig. 12. Scan line buffers stand for temporary storage and
a window buffer expands the pixels lying in the window
into a column. A shaper butted to the window buffer pro-
vides four types of window shapes: square, cross, ‘X and
dot, to meet different background noise conditions. As
illustrated in Fig. 13, useful pixel bits are indicated by ‘*’,
while unused pixel bits are masked by ‘1’ or ‘0’ equally, so
that the rank order of desired output result may not be
changed. The median selection unit is just the structure
shown in Fig. 10.

Table 3: Time and area complexity for hardware realisation of bit-level
median filtering algorithms

Counting ’1’ Counting ‘0’ Counting Threshold Majority

Area complexity O(NW) O (N W O(NW) O(2”W) OWW)
Cycle time O(log W) O(log W) O(log W) O(1) O(1)

’1’ and ‘0’ decomposition

References 16. 18 15 17.19 24

IEE PROCEEDINGS-G, Vol. 139, No. I , FEBRUARY 1992 69

In the above description, one may notice that the func-
tion of the shaper is somehow similar to the mask-and-
set operation. Hence it should be possible to perform
these shaping functions by properly setting the values of

window buffer Mk Sk

bk

median
select ion

. . . .
Mk.l ’k+,

Fig. 12
ing with 3 x 3 window

One bit stage ofmedianfilter architecture for image smwth-

pJ El
* * I) 0 0 0

square cross dot ,,Y’

Fig. 13 Four types of window shape

m,(l) and s,(l) signals. For example, the four shaping
functions can be implemented by the following initial
assignments :

(a) square-window:
M , = [m,(l), ..., mt(9)] = [I 1 1 1 1 1 1 1 I]

SI = [s,(l), ..., s,(9)] = [- - - - - - - - -1
(b) cross-window:

M , = Cm,(l), ..., m,(9)] = [0 1 0 1 1 1 0 1 01
s, = [s,(l), ..., st(9)l = [I - 1 - - - 0 - 01

(c) ‘X’ window:

M1 = [m, (l) , ..., mt(9)] = [I 0 1 0 1 0 1 0 I]

(d) dot-window:
M I =[ml(l), ..., m1(9)]=[OOOO1OOO0]

S,=[st(l) , ..., s1(9)l = [I 1 1 I - 0 0 0 0 1

S,=[st(l) , ..., s,(9)] = [-1 -1 -0 -0 -1

where ‘-’ denotes the ‘don’t-care’ conditions. Thus,
through initial assignments of ml(i) and sl(i) signals, the
window shape can be arbitrarily chosen. Each position in
the window can now be assigned separately. This feature
allows a very high flexibility in using this structure for a
variety of image or signal characteristics.

Testing is a very important issue in today’s VLSI
systems. In ad hoc testing, it is better to partition a large
system into several independent submodules so that they
can be tested separately. Let us consider the testable
design of a single stage; as the other bit-slices can be
tested in the same way. Scan lines and window buffers are
shift registers or memories in nature and there are stand-
ard procedures to test them. In the mean time, they can
serve as the scan path buffer for the testing of median
selection unit. The problem in testing a median selection
unit is the poor observability on signals C from the M/S
box to the majority gate. Scan path registers can be
inserted here to improve the testability of the majority
gate. The M/S modules can be tested independently in
the same time by 16 patterns for an exhaustive functional
test. The majority circuit can be tested in the same way.

70

5 Concluding remarks

A simple design of a majority gate was proposed, which
consists of output-wired invertors. It consumes fewer
transistors and has a constant delay time. The program-
ming of majority selection is through the choosing of
channel width ratios of p- and n-channel transistors in
CMOS circuits. This majority gate was applied to imple-
ment a median filtering algorithm based on majority bit
selection. A VLSI system architecture design for two-
dimensional median filtering was also demonstrated. It is
window-shape changeable, bit-level scalable and easy to
implement. It is a flexible system for high speed signal
smoothing.

The mask-and-set operation is a basic function in cel-
lular logic array used in signal processing. The architec-
ture proposed in the last section is in fact a special
purpose design for two-dimensional image processing.
These simple cells should be applicable to many other
signal processing applications such as speech/image
smoothing, stack filters and morphological filtering.

By adjusting channel width ratios, the majority circuit
may becomes a threshold logic gate with equal input
weighting . This approach may play an important role in
majority-decision applications, such as threshold decod-
ing circuits, fault tolerant systems, binary artificial neural
networks and many other threshold decision-involved
designs.

6 Acknowledgment

The authors wish to thank the anonymous reviewers for
their helpful and constructive comments. This work was
supported by the National Science Council, Taiwan,
Republic of China, under grant NSC77-0201-E009-01.

7 References

1 ARCE, G.R., GALLAGHER, N.C., and NODES, T.A.: ‘Median
filters: theory for one- and two-dimensional filters’, in HUANG, T.S.
(Ed.): ‘Advance in computer vision and image processing’ (JAI Press
Inc., London, 1986), Chap. 3

2 NAQVI, S.S.H., GALLAGHER, N.C., and COYLE, E.J.: ‘An appli-
cation of median filters to digital television’. Int. Conf. Acoust.,
Speech and Signal Processing Tokyo, 1986, pp. 2451-2454

3 JAYANT, N.S.: ‘Average- and median-based smoothing techniques
for improving digital speech quality in presence of transmission
errors’, lEEE Trans., 1976, CON-24, (9). pp. 1W%1045

4 FRIEDEN, B.R.: ‘A new restoring algorithm for the preferential
enhancement of edge gradients’, J . Opt. Aoc. A m , 1976, 66, (3), pp.
28C-283

5 STEIN. R.A., and FOWLOW, T.J.: ‘The use of median filters for
edge detection in noise signals’. Proc. Int. Symp. Circuits and
Systems, Kyoto, 1985, pp. 1331-1334

6 BEDNAR, J.B.: ‘Applications of median filtering to deconvolution,
pulse estimation, and statistical editing of seismic data’, Geophysics,
1983.48, (12), pp. 1598-1610

7 RITENOUR, E.R., TNELSON, T.R., and RAFF, U.: ‘Applications
of the median filter to digital radiographic image’. Proc. Int. Conf.
ASSP, 1984, pp. 23.1.1-23.1.4

8 KNUTH, D.E.: ‘The art of computer programming. Vol. 3: sorting
and searching’ (Addison-Wesley, New York, 1973)

9 HUANG, T.S., YANG, G.J., and TANG, G.Y.: ‘A fast two-
dimensional median filtering algorithm’, IEEE Trans., 1979, ASSP-
27, (I), pp. 13-18

10 AHMAD, M.O., and SUNDARARAJAN, D.: ‘A fast algorithm for
two-dimensional median filtering’, IEEE Trans., 1987, CAS34, (l l) ,
pp. 1364-1374

1 1 OFLAZER, K.: ‘Design and implementation of a singlechip 1-D
median filter’, lEEE Trans., 1983, ASP-31, (S), pp. 1164-1168

12 DEMASSIEUX, N., JUSTAND, F., DANA, M.: ‘A low cost custom
IC for real time image median filtering’. IEEE Custom Integrated
Circuit Conf, 1986, pp. 1 6 1 6 9

13 KARAMAN, M., ONURAL, L., and ATALAR, A.: ‘Design and
implementation of a general purpose median filtering VLSI: in
VLSI signal proccssing I11 (IEEE Press, 1988), pp. 111-1 19

1EE PROCEEDINGS-G, Vol. 139, No. I , FEBRUARY 1992

14 CHRISTOPHER, L.A., MAYWEATHER, W.T., and PERLMAN,
S.S.: ‘A VLSI median filter impulse noise elimination in composite
or component TV signals’, IEEE Trans., 1988, CE-34, (I) , pp. 262-
267

15 KARAMAN, M., and ONURAL, L.: ‘New radix-2-based algorithm
for fast median filtering’, Electron. Lett., 1989,25, (1 I), pp. 723724

16 ATAMAN, E., AATRE, V.K., and WONG, K.M.: ‘A Cast method
for real-time median filtering’, IEEE Trans., 1980, ASP-28, (4),
pp. 415420

17 DANIELSSON, P.-E.: ‘Getting the median faster’. Computer
graphic and image processin& 1981,17, pp. 71-78

18 ROSKIND, J.A.: ‘A fast sort-selection filter chip with efficiently
linear hardware complexity’. Int. Conf. Acoust., Speech, Signal Pro-
cessing, Tampa, USA, 1985, pp. 1519-1522

19 ARAMBEPOLA, B.: ‘VLSI architecture for high-speed rank and
median filtering’, Electron. Lett., 1988.24, (18), pp. 1179-1180

20 HOCTOR, R.T., and KASSAM, S.A.: ‘An algorithm and a pipelined
architecture for order-statistic determination and L-filtering’, IEEE
Trans., 1989, CAS-%, (3), pp. 344-352

21 CHANG, L.W., and LIN, J.H.: ‘Bit-level systolic arrays for median
filters’. Int. Conf. Acoust., Speech, Signal Process., New Mexico,
USA, 1990,54.D13.10

IEE PROCEEDINGS-G, Vol. 139, N o I , FEBRUARY I992

- -

22 LEE, C.L., and JEN, C.-W.: ‘A novel design of binary majority and
its application to median filtering’. Int. Symp. Circuits and Systems,
New Orleans, 1990, pp. 57&573

23 CHEN, K.: ‘Bit-serial realizations of a class of nonlinear filters
based on positive boolean functions’, IEEE Trans., 1989, CAS-%,
(6), pp. 785794

24 HARBER, R.G., BASS, S.C., and NEUDECK, G.W.: ‘VLSI imple-
mentation of a fast rank order filtering algorithm’. Int. Conf.
Acoust., Speech, Signal Processing, Tampa, USA, 1985, pp. 1396
1399

25 HURST, S.L.: ‘The logical processing of digital signals’ (Grane,
Russak & Company, New York, 1978)

26 FITCH, 1.P.: ‘Software and VLSI algorithms for generalized ranked
order filtering’, IEEE Trans., 1987, CAS-34, (5). pp. 553-559

27 TRONT, I.G., and THAKAR, A.V.: ‘An analysis of FET based
multiple-valued logic circuits’. Int. Symp. Multiple Valued Logic,
Paris, France, 1982, pp. 69-76

28 GLASER, A.B., and SUBAK-SHARPE, G.E.: ‘Integrated circuit
engineering’ (Addison-Wesley, Massachusetts, 1977)

29 HWANG, K.: ‘Computer arithmetic, principles, architecture, and
design’ (John Wiley & Sons, 1979)

71

