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Abstract: There are arithmetic problems for the 
hardware realisation of bit-level median filtering 
algorithms. A design of a majority gate which is 
composed of output-wired inverters is proposed. 
The area and time complexities are better than the 
digital and analogue designs now available. This 
circuit is applied to a median filter design which is 
based on majority selection, the computation 
problems are thus avoided. It is a bit-sliced archi- 
tecture with constant cycle time. Window shapes 
can be arbitrarily changed through mask-and-set 
modules. A median filtering system for two- 
dimensional image processing is presented. A 
binary majority gate is also an essential element in 
decision-making circuitry which is applied in 
fault-tolerant computing systems, artificial neural 
networks or related applications. 

1 Introduction 

Signal smoothing using median filters has grown popular 
in recent years because of its simple operation and robust 
performance. A window with an odd number of elements 
is defined which slides across the digitised input sequence. 
The median filter simply takes the middle value of the 
elements lying in the window, as the window moves 
through the input sequence step by step. Such operation 
can remove impulsive types of noise while preserving 
sharp edges and the desired features of an image [t]. 
Median filtering techniques are widely applied in many 
fields, such as reducing ‘sparkle’ noises in digital TV 
images [l], improving digital speech quality in PCM 
channels [3], enhancing edge gradients of signals [4], 
edge detections [SI, seismic data processing [6] and 
medical image applications [7]. 

Many algorithms and methods have been developed 
and used in median selection. They can be classified into 
two categories: word-level and bit-level. In word-level 
algorithms, the basic operation is applied to a word. The 
selection of the median value from a sorted sequence is 
the simplest method. Bubble sort, selection sort, quick 
sort, or odd-even transposition sort are common exam- 
ples [8]. An updated histogram method [9] picks up the 
median value in a partially modified histogram. A 
moving border method [lo] searches for the median 
element along a moving boundary on the sorted data 
matrix. Both methods have the advantage that only a 
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minor part of the data come in and go out on each move- 
ment of the window. However, they are not suitable for 
hardware implementation because of their irregular data 
structure and operations. Only the odd-even transposi- 
tion sort has been chosen to realise the median filtering 
in hardware [ll-141. 

In bit-level algorithms, the median result comes out 
with one bit at a time. Usually, there is a mask vector to 
define the effective subset in which the target result lies. 
The effective subset will shrink as the inspection proceeds 
from the most significant bits (MSBs) to the least signifi- 
cant bits (LSBs). The major difference is the counting 
schemes they perform. In Reference 15 the number of bits 
‘0’ among the effective subset at each bit position were 
counted. In Reference 16, bit ‘1’ was counted in each 
inspection. Both bit ‘0’ and ‘1’ were counted separately in 
Reference 17 and either of the two numbers was used for 
the subsequent calculation. Hardware architecture 
designs for the last two algorithms were proposed in 
References 18 and 19, respectively. The algorithm in Ref- 
erence 15 was formulated mathematically in Reference 
20. Recently, two similar algorithms based on majority 
selection were developed independently in References 21 
and 22, but with different concerns. The majority selec- 
tion can be a special case of rank selection based on the 
positive Boolean function discussed in Reference 23. 

In hardware implementation, algorithms based on 
binary radix are better for the following reasons: 

(a) It is more intuitive and simple to derive com- 
binational functions on binary variables. 

(b) The basic modules are small, regular and highly 
repeatable. 

(c) Their hardware complexity increases linearly with 
window size and word length of binary representation. 

Most of the word-level algorithms are more suitable for 
software implementation. There is yet another bit-level 
method which selects the median from a sequence of 
threshold decomposed signals [24]. However, its com- 
plexity increases exponentially with word length and 
therefore it is not practical in hardware implementation. 

These bit-level median filtering algorithms are basic- 
ally performing a binary search among the unsorted data, 
while the masking functions are similar. The difficulty in 
hardware implementation is the counting circuit because 
it is either implemented by a large adder tree or by a 
large combinational Boolean function for the speed con- 
sideration. Now we consider whether there is a method 
that can reduce the problem while preserving the high 
speed of throughput. The majority gate is the target. 

2 

A binary majority gate as shown in Fig. 1 is a circuit that 
can determine the majority of binary signals. W is the 

Design of a majority gate 
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‘ I  . 
number of inputs which is usually odd. The output will 
be ‘1’ if over half of its inputs are ‘l’, otherwise it will be 
‘0’. A number of designs can perform this job. They are 
briefly discussed in the following sections. :;D x = ? ?  W 

1 I f  x ( W . 1 ) / 2  
X W  u = ( o  I f  x ( W . I W )  

Fig. 1 Function ofthe majority gate 

2.1 Some existing majority designs 

2.1 . I .  Comparison after summation: This is a direct 
digital implementation of the equation shown in Fig. 1. 
An adder tree can be used to obtain the speed of summa- 
tion. There is a comparison logic which flags the majority 
result. If a binary majority function is implemented by an 
adder tree followed by a comparator, its hardware will 
expand linearly with W while the delay time increases 
with log W .  

2.1 2 Sorting network with position selection: This 
method sorts the binary input signals into an ordered 
sequence. The majority signal will be on the middle line 
of these sorted outputs. Some discussion about the binary 
sorting net is presented in Reference 25. The area com- 
plexity of this circuit grows at an order of O(W2) because 
the o d d w e n  transposition sorting network was used 
[SI. 
2.1.3 Positive Boolean function [23, 261: Instead of 
direct summation as in Fig. 1, one can implement the 
majority by a fully combinational Boolean function. For 
example, if there are three binary signals, a, b and c, the 
majority function will be U = abV bcVca, where V 
denotes a logic OR function. Such a design needs 
C&+,,/, combinations of product terms, so it is not prac- 
tical as W becomes large. 

2.1.4 Threshold logic gate: A majority function is a 
special case of a threshold logic gate when the threshold 
T is equal to (W + 1)/2. An early version of circuit imple- 
mentation of a threshold-logic gate was a voltage divider 
by resistor-transistor logic (RTL) circuits [25]. A MOS 
transistor version of the same circuit was presented in 
Reference 28, which had a resistor network for weighting 
inputs and a voltage source in series with the drain to 
determine threshold level. Although this design is simple, 
the resistors are area-consuming. 

2.1.5 Voltage level comparison: This is an analogue 
approach which detects the difference between a voltage 
divider output and a reference voltage. A design example 
is Reference 24 realised the voltage divider by nMOS cir- 
cuits and compared the voltage levels by a differential 
amplifier. 

22 Device programmable CMOS majority gate 
Our majority circuit design is based on the voltage 
divider in Reference 24, but CMOS technology is used 
instead of nMOS design. The differential amplifier is 
replaced by an inverter to simplify the design. This can 
save the area of the differential comparator and half the 
number of input signals as in the nMOS voltage divider 
approach; both positive and negative inputs were 
required in the nMOS voltage divider. 

The majority gate is shown in Fig. 2. It is made up of 
two parts: a nonlinear voltage divider built by output- 
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wired inverters on the left-hand side and an inverting 
buffer which senses the majority transition and provides 
a positive output is on the right. In addition, this invert- 
ing buffer serves another two purposes: it isolates the 
divider output node from external circuitry to reduce 

T 
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c ( 1 )  c(2)  c(3) c ( 4 )  c ( 5 )  c ( 6 )  c ( 7 )  cl,) c(9)  

Circuit of the 9-majority gate Fig. 2 

noise effect and driving for the next stage and it reshapes 
the output waveform. The characteristics of this majority 
circuit obtained by SPICE simulations based on a 1.2 pm 
CMOS N-well technology is shown in Fig. 3A. Let T be 

2 5  

T (number of ‘1‘ among the inputs) 
a 

Fig. 3A Transfer characteristics ofthe 9-majority gate 

the number of ‘1’s appearing at the input side, so 
W 

T = 1 c(i) 
i = l  

As T increases, the output voltage V, steps down a little 
at first, then the step size broadens at some middle 
values. Thereafter, the step size shrinks again and finally 
goes to zero as all input bits become ‘1’. The current 
through this divider is changed in the same way as the 
output voltage step size; it increases at the middle values 
and goes down to zero at both ends. This phenomenon 
tells us that this circuit is like a spatial inverter, as the 
output will be ‘1’ if ‘0’ is the majority among the input 
signals, and vice versa. The underlying mechanism is that 
the dynamic behaviour of a single inverter is spatially 
quantised by the W-input divider. Fig. 3B shows the I-V 
characterististics of PMOS and nMOS transistors when 
the number of parallel transistors (7‘’ or Tj is increased. 
The intersections indicated (where T, + T,, = 9) are just 
the nonlinearly quantised voltage levels and current 
values of the voltage divider shown in Fig. 3A. 

A conventional inverter is the simplest threshold 
circuit in CMOS design. It is connected to the voltage 
divider to detect the maximum output transition gap. 
There are several ways to adjust the threshold voltage of 
an inverter [27], such as changing the effective surface 
state density (Nss) by implantation, changing the oxide 
thickness (T,J or adjusting channel width ratio (W’W.) 
of the p-channel and n-channel transistors when their 

IEE PROCEEDINGS-G, Vol. 139, No .  I ,  FEBRUARY 1992 



. -  

3 3 .  
3 2 -  

3 1 -  

3 0 -  
2 9 -  
2 8 -  

> 2 7 -  

$ 2 6 -  

> 2 4 -  
z 2 3 -  

2 2 -  

2 2 5 -  

5 2 . 1 -  
2 0 -  

1 9  

1 8 -  

channel lengths are fixed. The last one of these three tech- 
niques may be the best choice because it is process- 
independent and the easiest to design. If we choose nine 
inputs, for example, the majority transition should 
appear when T goes from four to five. Note that nine 
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Fig. 38 Dynamic behauiour afthe nonlinear uoltnge divider 

invertors of the voltage divider should have identical geo- 
metrical structures. The results of tuning their WJW. 
ratios to see their voltage transitions from T =  4 to 
T = 5 are plotted in Fig. 4. It is better to have the gap as 

large as possible. WJW. = 4.0/1.8 = 2.22 is chosen from 
Fig. 4 with V, = 3.38 V, V, = 1.42 V and the middle 
point = 2.40 V. From the plot of threshold voltage 
against channel width ratio shown in Fig. 5, WJW. = 
3.6/1.8 = 2 is picked up as the output inverting buffer for 
its V,, = 2.39 V, which satisfies the middle point require- 
ment. The resulting majority circuit made up of these two 
choices is simulated and the output transfer curve has 
been shown in Fig. 3A. 

For the same design process, a majority circuit with 25 
inputs has also been designed and simulated. Its layout 
dimensions are listed in Table 1 with a 9-majority circuit. 
Note that the 1.2 ns time delay is equal to two invertor 
delays, The power consumption is calculated by 
assuming T is uniformly distributed. This design is low 
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Table 1 : Specifications of t w o  majority gates 

9-maioritv 25-maioritv 

(W/L) (4.0/1.2) (3.0/1.2) Divider 2 - - 
(W/L),  (1.8/1.2) (1.5/1.2) 

(W/L) (3.6/1.2) (3.011.2) B u f f e r 2  - - 
(W/L), (1.8p.2) (1.5/1.2) 



process variation if (Q,, - QL) of the buffering invertor is 
1 V. However, the noise margin of 25-majority is zero in 
the best case, which is why the 25-majority is greatly 
influenced by process variation and external changes. 

when WJW. is between 2 and 2.5, it happens at  T = 4-5 
and when the ratio falls to within 3 and 4, it appears at  
T = 5-6. These phenomena are plotted in Fig. 7. As a 
matter of fact, one can have the desired maximum 

T (number of ' 1  ' among the  inputs) 
a 

T (number of '1' among the inputs) 
b 

Fig. 6 
(I under proms variations 
b under temperature variations 

Transfm curves ofthe 25-mjority 

We think that the majority circuit below nine inputs 
can be designed and can work properly under the varia- 
tion of the process we considered. However, the yield will 
be lower as more inputs of the majority circuit are 
required. If this is desired, a more carefully controlled 
process is required. For an even higher number of inputs, 
some extra circuitry should be involved to compensate 
for the process variation and detect the smaller transition 
gap. 

During the simulations with varying channel width 
ratios, we found that the maximum transition was shifted 
as WdW. increased. For example, when WAW. = 
13/13 = 1, the maximum transition step is at T = 2-3, 
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voltage transition gap by adjusting only the channel 
width ratio. Together with a proper choice of WdW. ratio 
of the inverting buffer, the same circuit structure of the 
majority circuit will become a threshold logic gate with 
equal weighting on each input. The threshold level is pro- 
grammed by the channel width ratio of invertors. The 
majority gate thus becomes a special case. 

In summary, there are three steps in building a major- 
ity circuit: First, the majority transition gap character- 
istics with respect to different channel width ratios should 
be obtained; secondly, the threshold voltage variations of 
invertor with respect to different channel width ratios 
should be available; thirdly, a proper W,lWn ratio with a 
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maximum transition gap must be selected for the nonlin- 
ear voltage divider and an invertor in which the thres- 
hold voltage equals the middle point of this gap. The 
cascading of the two devices makes up  the majority gate. 

. . . , W}. These data are taken to be non-negative integers, 
as, in most of the applications, gray level images have no 
negative pixel and digital signals can also be offset to be 
positive. If each element in the window has an N-bit 

- 

9 

T (number of ‘1’ among the inputs) 

Fig. 7 Transfer curves of nonlinear voltage divider with respect to different channel width ratios 

2.3 Comparison 
Table 2 summarises some features of the new majority 

in Section 2 . 1 .  The two columns furthest to the right are 

area complexity and constant cycle time. However, our 
new design is much better in several ways. First, the ana- 
logue divider approach needs two voltage dividers for 
both the input signal and the reference, while ours needs 
only one; so the transistor number is halved. Secondly, 

for nMOS design while CMOS needs only noncom- for k =  1, ..., N 
plement signals. Thirdly, a digital circuit is much easier Corresponding to binary row vector B ~ ,  two additional 
to manipulate than an analogue circuit. binary vectors Mk and Sk are defined for later use. They 

The simple and regular CMOS design of this majority are 
gate is very attractive, however the programming of 
device geometries for different rank orders in the design- 
ing stage decreases the run-time flexibility. This is and 
because the rank-order is fixed after the majority gate is 
designed. 

3 

In a one- or two-dimensional situation, the total number 
of elements lying in the sliding window can be denoted 
by W (or W = W, * W2), which is called the window size. 
The data within the window are written as {u(i) I i = 1, 

binary representation, then the data value u(i) within the 
window can be defined as 

gate design in comparison with those designs presented 

obviously better than the others because of the linear 

N -  1 

u(i) = 1 b,{i) . 2’ 
j = O  

where bj(i) E ( 1 , 0 } ,  for i = 1 ,  . . . , W .  
For the kth most significant bits (the (N - k + 1)th 

least significant bits) of all data, a binary row vector Bk 
can be formed which is defined as 

they need both complement and noncomplement signals Bk = [bN-k+l(1)7 bN-k+1(2 ) ,  ...> b N - k + t ( W ) l  

= [mk(l)i mk(2)* ...) “dW)l 

Sk = [Sk(l). S,(2), . . . , Sk(W)] for k = 1 ,  . . , N 
where mk(i) and sk(i) E (0, 1 )  for i = 1 , .  . . , W .  

to as a setting vector for 4 .  
3.7 The algorithm 
Generally speaking, a bit-level median filtering algorithm 
determines the kth most significant output bit by inspect- 
ing the kth most significant bits of all elements in the 

Bit-level median filtering algorithm based on 
majority selection 

Mk is referred to as a masking vector and Sk is referred 

Table 2: Comparison for various designs of majority gate 

Tree adder + Sorting PBF Analogue Majority 
comparison network divider 

Area O(W o w *  w O(W1) O ( W  O(W 

Delay time O(log w) O(W) O ( 1 )  O ( 1 )  
complexity 

Technology MOS MOS %AS nMOS CMOS 
Circuit digital digit a I digital analogue digital 
Rank order by circuit by output by Boolean by input by device 

References 18, 19 25, 8 23, 26 24 
selection function line selection function assignment geometries 
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window. Starting from the first MSB, one checks whether 
‘1’ or ‘0’ is the majority and the median is in the subset of 
which the MSB is the majority bit. Thus we set the 
masking-flags mk(i) to be ‘1’ to indicate the desired subset 
where the median value stays, and force the elements 
which are not in the desired subset to a local extreme 
value by putting the corresponding setting-flags sk(i) to be 
the opposite value of the present output bit. Once the 
mk(i) becomes ‘0’ the ith element in the window is no 
longer in the desired subset and the setting value will 
take over for the rest of the calculation, i.e. mAi) = 0 and 
sl(i) = sk(i) for 1 = k + 1, . .., N .  For binary signals, the 
median and majority value are the same. The setting- 
flags help to preserve the rank order of the expected 
median result, so that the majority selection is happening 
in each bit position from MSB to LSB. 

Let the kth MSB of median output result be denoted 
as uk and let ck(i) be a temporary signal corresponding to 
bN-k+l(i)  and sk(i). We use ‘A’, ‘ V ’  and ‘-’ to denote the 
logic AND, OR and NOT operations, respectively. The 
new median filtering algorithm can be formally written as 
follows : 

(i) Initially, all elements in the window are in the 
desired subset ml(i) = 1, for i = 1, . . . , W 

(ii) The following statements (steps (iiiHvi)) are repeat- 
ed from MSB to LSB: k = 1, the first MSB 

(iii) Generate the kth MSB of median output uk by 
finding the majority of intermediate signals ck(i). 

ck(i) = (mk(i)AbN-k+ di))v(-mk(i) A Sk(i)) 
for i = 1, ..., W 

uk = maj {ck(i) I i = 1, . . . , W }  
(iv) If k = N, then stop 
(v) For the masking operation, define the desired 

subset for the next inspection: 

mk + l(i) = mdi) A ((‘k A bN- k +  l(i)) ( uk A - bN- k +  l(i)) 

f o r i =  1, ..., W 
(vi) For the setting operation, assign values to the 

sk+ l(i) = (- mdi) A sk(i)) V (mk(i) A - U,.) 

entries outside of desired subset: 

for i = 1, .... W 
(vii) k = k + 1, goto step (iii). 

The main idea of this new algorithm is to get the median 
output without changing its rank order. In other 
methods [15-171, the rank order of median value had 
been changed during the calculation. Here the point is to 
compress the values which are not in the desired subset 
to be a local extreme value. This process guarantees that 
rank order of median value is unchanged. The advantage 
of preserving its rank order is that majority selection 
alone is enough and there is no need for arithmetic oper- 
ations such as addition or subtraction. An example which 
demonstrate the new algorithm is shown in Fig. 8 with 
N = 4 and W = 9. Those elements which are not in the 
desired subset are marked by a circle and the neighboring 
S values are then taken instead to make a majority deci- 
sion. 

3.2 Discussion 
There are two special properties of this algorithm: First, 
the majority is the median in a set of binary signals with 
an odd number of elements. Secondly, the mask-and-set 
operations presented in steps (v) and (vi) of the algorithm 
will preserve the rank order of median value through all 
N cycles of inspections. The former statement is clearly 
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valid and the latter statement is true because they are 
specially designed to do so. 

For k = 1, the first cycle, we are finding the (W + 1)/ 
2th large (also the (W + 1)/2th small) data value in the 

Fig. 8 Exnmple for  the median selection algorithm 

set of W elements, where W is odd. Let T be the number 
of ‘1’s in bdi)  of the set defined by ml(i) for i = 1, . . . , W, 
i.e. 

W 

T =  1 mlG) A bl(i) 
i =  1 

32.1 Case 1 
If T < (W - 1)/2, u1 = 0, because 0 is the majority. 
Those data values which have bdi)  = 1 # u1 should be 
masked out of the desired subset by letting mr(i) = 0 for 
1 = 2, ..., N .  After this masking operation, T elements 
have been removed. Thus, for k = 2, we will find the 
[(W + 1)/2 - Tlth large data value in (W - T) of ele- 
ments. To preserve the rank order of median value, we 
have to set those elements which have m,(i) = 0 to s,(i) = - u1 = 1 for 1 = 2, . . . , N .  The median value will then go 
back to the (W + 1)/2th large data value in W elements. 
(It is still the (W + 1)/2th small data value in W ele- 
ments.) 

39.2 Case 2 
If T 2 (W + 1)/2, u1 = 1, because 1 is the majority. 
Those data values who have bdC) = 0 # u1 should be 
masked out of the desired subset by letting mdi) = 0 for 
1 = 2,. . . , N .  Thus, (W - T) elements have been removed. 
For k = 2, we will then find the (W + 1)/2th large data 
value among the rest T elements. That is the 
[T - (W + 1)/2]th small value in the T elements. To pre- 
serve the rank order of median value, we have to set 
those elements which have m,(i) = 0 to ski) = -u1 = 0 
for 1 = 2, . . . , N .  The median value will then go back to 
the (W + l)/2th small data value in W elements. (It is still 
the (W + l)/2th large data value in W elements.) 

For k 2 2, the setting values are taken into account to 
preserve the median rank. T should be calculated as 

W 

T = 1 (mk(i)Ab,-,.+l(i))V(.cmk(i)Ask(i)) 
, =1  

The majority decision for k 2 2 is the same as in cases 1 
and 2 but the modification is held only for those data 
values which have mk(i) = 1. Those which have m,.(i) = 0 
are permanently set by s,.(i) throughout the rest of the 
inspections. 

Combining the calculation of cases 1 and 2 from k = 1 
to N, the masking operation should be steps (v) and (vi) 
of the algorithm. 

IEE PROCEEDINGS-G, Vol. 139, No. I ,  FEBRUARY 1992 



4 Flexible median filtering system 

The advantage of this algorithm is evident from its hard- 
ware design. The mask-and-set operations are simple 
combinational logic and the majority is implemented by 
a novel design without arithmetic drawbacks. 

4.1 Word-parallel and bit-pilelined design 
In addition to the majority circuit, all functions are 
included in a mask-and-set (M/S) module. As the algo- 
rithm has been written in a single assignment form, every 
variable is assigned only once. The Boolean functions in 
an M/S module can be obtained by direct transformation 
from the software statements of steps (iiiHvi). Let M, S,  
C and B be the masking, setting, intermediate and binary 
data bit, respectively. If we carefully check the Boolean 
function of signals C and S,  they are the same, which was 
verified in Reference 23. An M/S module is presented in 
Fig. 9. Every M/S module receives M and S signals from ‘-$F- M C.MD.RS ‘T M ( UeC)  

5’:C 
U 

M ‘  S’ 

Fig. 9 MIS module and its functions 

the previous stage with the current input data B to gener- 
ate an intermediate signal C. The maj gate collects these 
C signals from each M/S module to calculate the median 
value U and feeds back to each M/S module to modify 
M and S’ values for the next stage. A single stage of this 
median selection unit is shown in Fig. 10. This structure 

M k S k  

, ........... 

I 
11 ........... 

‘k*+ ’k.4 

Fig. 10 One bit stage of the median selection unit 

is rather simple and regular. It can be cascaded into a 
word-parallel and bit-pipelined design. If M and S’ 
signals are fed back to the same stage, a bit-serial and 
word parallel design is formed. 

As the cascaded N stages work in a pipeline fashion, 
the output may not be correct without properly sched- 
uling the 1/0 data bits, therefore skewing delays are 
needed to delay one more time unit for each successive 
stage. The input data bits can then be fired at a correct 
timing slot. Throughout the filter the output result 
should be skewed back to its original data word. There- 
fore, ‘deskewing’ delays are placed at the output side. 

Note that the shift register column butted to each stage is 
called a window buffer. Only one additional row of 
skewing delays is required for each stage, including both 
input side and output side, rather than W rows of delays 
for each stage as presented in similar designs [ll, 13, 181. 
A bit-sliced architecture with skewing delays is shown in 
Fig. 11. 

3% N - I  delays 

q :;:? I-=-=-- 
one bit N-2 delays 
median 

a..... 
N-1 delays ... . 

one bit 

Fig. 11 Bit-sliced medianfilter structure with skewing delays 

In the hardware realisation of a bit-level median filter- 
ing algorithm, the area complexity is dominated by the 
basic boxes which are for defining the effective subset and 
the time delay of a single stage is dominated by the 
counting circuits. These features are compared in Table 3. 
The majority design is better because of its linear com- 
plexity with constant cycle time. 

4.2 System architecture design 
Owing to the advance of VLSI technology, many soft- 
ware algorithms are embedded on a single VLSI chip for 
cost and performance considerations. Modular, regular 
and repeatable structures are preferred in such a VLSI 
system. The bit-sliced approach of median filtering pro- 
vides a bit-level scalable hardware structure which is 
adaptive to changeable word length. The repeatable 
nature makes it very attractive to a VLSI design. 

In real-time two-dimensional image smoothing, using 
a median filter with window size 3 x 3, we need buffers to 
store data in the former two scan lines as the window 
raster-scans over the image. The structure is as shown in 
Fig. 12. Scan line buffers stand for temporary storage and 
a window buffer expands the pixels lying in the window 
into a column. A shaper butted to the window buffer pro- 
vides four types of window shapes: square, cross, ‘X and 
dot, to meet different background noise conditions. As 
illustrated in Fig. 13, useful pixel bits are indicated by ‘*’, 
while unused pixel bits are masked by ‘1’ or ‘0’ equally, so 
that the rank order of desired output result may not be 
changed. The median selection unit is just the structure 
shown in Fig. 10. 

Table 3: Time and area complexity for hardware realisation of bit-level 
median filtering algorithms 

Counting ’1’ Counting ‘0’ Counting Threshold Majority 

Area complexity O(NW) O ( N W  O(NW) O(2”W) OWW) 
Cycle time O(log W) O(log W) O(log W) O(1) O(1) 

’1’ and ‘0’ decomposition 

References 16. 18 15 17.19 24 
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In the above description, one may notice that the func- 
tion of the shaper is somehow similar to the mask-and- 
set operation. Hence it should be possible to perform 
these shaping functions by properly setting the values of 

window buffer Mk Sk 

bk 

median 
select ion 

. .  . .  
Mk.l ’k+, 

Fig. 12 
ing with 3 x 3 window 

One bit stage ofmedianfilter architecture for image smwth- 

pJ El 
* * I )  0 0 0  

square cross dot ,,Y’ 

Fig. 13 Four types of window shape 

m,(l) and s,(l) signals. For example, the four shaping 
functions can be implemented by the following initial 
assignments : 

(a) square-window: 
M ,  = [m,(l), ..., mt(9)] = [ I  1 1 1 1 1 1 1 I] 

SI = [s,(l), ..., s,(9)] = [- - - - - - - - -1 
(b) cross-window: 

M ,  = Cm,(l), ..., m,(9)] = [0 1 0 1 1 1 0 1 01 
s, = [s,(l), ..., st(9)l = [I - 1 - - -  0 -  01 

(c) ‘X’ window: 

M1 = [m, ( l ) ,  ..., mt(9)] = [I 0 1 0 1 0 1 0 I] 

(d) dot-window: 
M I  =[ml(l), ..., m1(9)]=[OOOO1OOO0] 

S,=[st(l) ,  ..., s1(9)l = [ I  1 1  I - 0 0 0 0 1  

S,=[st(l) ,  ..., s,(9)] = [ -1 -1 -0 -0 -1  

where ‘-’ denotes the ‘don’t-care’ conditions. Thus, 
through initial assignments of ml(i) and sl(i) signals, the 
window shape can be arbitrarily chosen. Each position in 
the window can now be assigned separately. This feature 
allows a very high flexibility in using this structure for a 
variety of image or signal characteristics. 

Testing is a very important issue in today’s VLSI 
systems. In ad hoc testing, it is better to partition a large 
system into several independent submodules so that they 
can be tested separately. Let us consider the testable 
design of a single stage; as the other bit-slices can be 
tested in the same way. Scan lines and window buffers are 
shift registers or memories in nature and there are stand- 
ard procedures to test them. In the mean time, they can 
serve as the scan path buffer for the testing of median 
selection unit. The problem in testing a median selection 
unit is the poor observability on signals C from the M/S 
box to the majority gate. Scan path registers can be 
inserted here to improve the testability of the majority 
gate. The M/S modules can be tested independently in 
the same time by 16 patterns for an exhaustive functional 
test. The majority circuit can be tested in the same way. 
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5 Concluding remarks 

A simple design of a majority gate was proposed, which 
consists of output-wired invertors. It consumes fewer 
transistors and has a constant delay time. The program- 
ming of majority selection is through the choosing of 
channel width ratios of p- and n-channel transistors in 
CMOS circuits. This majority gate was applied to imple- 
ment a median filtering algorithm based on majority bit 
selection. A VLSI system architecture design for two- 
dimensional median filtering was also demonstrated. It is 
window-shape changeable, bit-level scalable and easy to 
implement. It is a flexible system for high speed signal 
smoothing. 

The mask-and-set operation is a basic function in cel- 
lular logic array used in signal processing. The architec- 
ture proposed in the last section is in fact a special 
purpose design for two-dimensional image processing. 
These simple cells should be applicable to many other 
signal processing applications such as speech/image 
smoothing, stack filters and morphological filtering. 

By adjusting channel width ratios, the majority circuit 
may becomes a threshold logic gate with equal input 
weighting . This approach may play an important role in 
majority-decision applications, such as threshold decod- 
ing circuits, fault tolerant systems, binary artificial neural 
networks and many other threshold decision-involved 
designs. 
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