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The non-local effect caused by the finite laser beam size in the laser induced Freedericksz
transition for the homeotropically aligned nematic liquid crystal film is derived andyticaly and
caculated numericaly. The influences on the transition threshold and the dynamic response are
discussed. The coupling between backflow effect and the non-local effect isshown to be important
for the films with a free surface by the calculated results and by comparing with the existing
experimental results.

I. INTRODUCTION

Recently, the turn off times of molecular reorientation of nematic liquid crystal (NLC)
films have been studied in severa works.!> The films with a free surface (FS) and the films
sandwiched between two glasses, i.e, the so-caled hard boundaries (HB) films, have been
shown having different turn off times in both of the laser induced Freedericksz transition work’
and the magnetic field induced Freedericksz work.” The backflow effect and the different flow
boundary conditions are considered as the cause of the difference. A careful derivation has
been given in Ref. 2 for a uniform magnetic field. However in a more detail measurement on
the turn off time caused by varying the intensity of incidental .4r™ laser light,3 it is found that
the difference can not be explained by the backflow effect only. Although severa studies of the
laser-induced molecular reorientation in nematic liquid crystal films have shown that the non-
local effect is signiﬁcant.4'5 A pure non-local effect correction, where the angle variation on
transverses direction caused by the finite laser beam size is considered, can not explain the dif-
ference satisfactorily, either. In this work, we start with the original equation of motion of
molecular orientation under a laser field with a Gaussian distribution, then the contribution on
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non-local effect, backflow effect,® which is caused by the coupling of orientational motion and
trandational motion, and particularly the coupling of these two effects are derived and dis-
cussed.

1. EQUATION OF MOTION

For comparing with cxpcriments,3 we consider homeotropical NLC films with thickness
ranging from 150 to 300 u#m and a linearly polarized Ar * laser beam being normally incidental
upon the films. The laser beam intensity at the NLC sample is assumed having a symmetrical
Gaussian profile, i.e, I(p) = Ioexp(-pz/wz), with 2w equal to 500 um. We set z-axis along the
light propagation direction, and the polarization direction of the laser beam along the x-axis, the
director fi is(n,, 0, n,) = (sinf, 0, cosf). Here the orientation angle of NLC director, 6, is a
function of x, y and z to reflect the finite-size effect on the molecular reorientation.

Following the Ericksen and LeslieT's continuum theory of NLC,7 and using the one constant
approximation, the coupled differential equations of motion for small angle 8 are obtained as.

o .9
C_110+}\(5—23+Vt2)0—710-—02$v$= 0, (la)
o, 0 1,
“ i b - 1b
026264-1;0 8z2v,; + 204V,vx 0, (1b)

where K is the elastic constant, Clsno’[l-(no’/ne')z]/c, c is the speed of light, n,’ and n,’
are respectively the ordinary and the extraordinary refractive index of NLC with respect to the
pump beam wavelength, y; is the viscosity coefficient for molecular rotation, n,= 1/2(as +as-
az), v1 =(asz-az) and ay, az..., ag are the various viscosity coefficients coupling the rotational
and trandational motion, and V,2 is the Laplacian operator in the transverse plane. The term
1/2a4V,2vx in Eg. (Ib) shows the coupling between the backflow effect and the non-local effect.
The detailed derivations are given in the appendix. For neatness of equations, the partia deriva-
tives with respect to spatial coordinates will be denoted by a4 or with ",&" in subscript. For ex-
ample, azz = 0%/0z%, and Vyz = 0/0z vy

[1l. THRESHOLD INTENSITY, It

Here, we derive the threshold laser intensity, I,;, of the laser induced Freedericksz tran-
sition for a film with thickness, d. Only when I, is greater than /,;, the molecular angle 6(z) is
not zero.

In the steady state, 6 =v, = 0, Eqg. (1) becomes:

C(p)8(p,d,2) + K(87 + Vi)0(p, ¢,2) = 0, (2)

where the cylindrical coordinates (p,¢,z) are used.
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Due to the radial symmetry of the laser intensity and the one-constant approximation, 6
is independent of ¢, i.e, 8 =8(z, p). Using V,2 = «32/ap2 +1p G/B,DEVPZ, Eg. (2) becomes:

C™1(p)b(p, )+ K(97 + V3)6(p, 2) = 0. (3)

With the variable separation technique and setting 8{(p,z) = R(p)Z(z), we get:

0:Z(z) = —¢*Z(2), (49)
ViR(p) + [ CIK I(p) - qzl R(p) = 0, (4b)

where ¢ is a constant. For films with a strong homeotropical anchoringl’z on the free surface,

the boundary conditions for both of the FS samples and the HB samples are 6(z = +d/2) = 0, thus
from Eq. (4a), we obtain

Z(z) = cos(qz), (5)

with g = z/d for the lowest order solution, which corresponds to a small angle variation and
thus a small energy increasing.

In general, Eq. (4b) can not be solved analytically for a Gaussian type of I(p). However,
L. Csllag et al®> have introduced an approximation for the Gaussian beam profile and derived
the threshold analytically. We summarize their results at follows. In order to obtain the analytic
solution, they replaced the Gaussian profile by an effective profile?

_[ I, forp<w,
I(p) = { 0. forp>w, (6)

which keeps the power P = Io(nwz) unchanged. In this situation, the non-trivial solution of Eg.
(4b) with the boundary conditions R(p = 0) = finite, R’(p = 0) =0 and R(p =) =0 is:?

goJo(/\p)’ p<uw,
0.6K,(ap), p > w,

rep) = |

whereJ, and K, are the zeroth-order Bessel-function and modified Hankel-function, respective-
ly, B is a constant, and A% = (I,/CK)-(xt/d)*. Solutions of physical meaning are obtained only
with A = 0, which implies the existence of a certain threshold. The threshold intensity is then
expressed in an empirical form,

Ly = Itho(l + bgkg(m_l))> (7)

where Iy, = CK(n/d)z, k = nw/d, and the fitted parameters are » = 1.43 and m = 0.24.’
Eqg. (4b) with the origind Gaussian laser beam profile can be solved easily by numerica
method T for the same boundary conditions without the approximation of Eq. (6) for given w and




132 ANALYSIS OF BEAM SIZE EFFECT ON THE LASER INDUCED... VOL. 30

d. The numerical solution of the maximum molecular reorientation angle 6, of Eq. (4b) as a
function of the laser intensity |I,, for w = 250 gm and d = 200 um is shown in Fig. (la) as an
example. The existence of threshold is obvious from the curve. In Fig. (Ib) we show some of
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FIG. 1. (@) The numerica solution of the maximum molecular reoricntation angle 6, as a function of the
laser intensity&, for a Gaussian profile intensity with w =250 gm and d = 200 um; (b) the threshold
intensity (7in) versus inverse of square of film thickness (1 /d2) for w = 100, 200, and 300 @m, respec-
tively. Solution without non-loca effect is shown with dashed line.
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these I as a function of (n/d)z, for w = 100,200, and 300 um, respectively. Here we have used
n,'= 154, n,/ =1.73,T and K =0.72 X 107 dyne.” Fitting these points of numerical results
with same form as in Eq. (7), we found that b and m are 1.7 and 0.4, respectively. Thus the
threshold intensity estimated with approximation in Eq. (6) is smaller than that with a Gaussian
profile by a factor about 1.26, for the cases with w = 250 um and-d ranging from 150 to 300 wm.
However, Eq. (7) is still a good expression for I only that the values for b and m are readjusted
as mentioned.
Now, Eg. (7) can be rewritten as

Lin = CK*(n/d)?, (8)

where K* = K[1+b%*™-1)],b = 1.7, and m = 0.4. This the same form for the threshold for
a infinite large beam, ,5,, ONly that an effective elastic constant K™* is used instead of the true

elagtic constant K. Since K* is greater than K, the non-local effect makes the threshold intensity
increased.

IV. DYNAMIC RESPONSE TIME CONSTANTS, Ton AND Toff

If the laser intensity 1, is changed abruptly from an initia intensity I; smaler than I;; to
an intensity I, larger than I, the molecules will begin to rotate, we define the beginning ex-
ponential time constant as the turn-on time constant, 7,,. Similarly, if the laser intensity is
changed from I, larger than I to I, smaller than I,;, the molecular orientation will relax to 6
= &0, the turn-off time constant, Toff; 1S defined as the exponential time constant at the end. In
both cases, the time constant are evaluated at small angles, and 6 « /7. However Ton IS poSitive
while 7,z is negative. In this chapter, we derive these time constants as a function of laser in-
tensity I,.

Again, using variable separation:

6(t,p,z) = 0,(t,2)Re(p), (9a)

Ve(t, p, 2) =vi(t, 2)Ru(p), (9b)
and substituting into Eq. (1), one obtains:

C~1I(p)01 Ro(p) + K[03(01)Ra(p) + 01V Ra(p)]

| (10a)
—7191R9(p) — Qo) ; RU(P) =0,

. R 1 ,
an(81) 2 Re(p) + 105 (v1) R (p) + :2‘01401V;Ru(P) =0. (10b)

Here we still use the approximation as in Eqg. (6) but with the modified values of b and 71 in {,
then Ra(p), V5°Ré(p), R, (p) and V,,°R,(p) are same functions ofp except with different constant
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factors. Here we also assume that Rg(p) and R,(p) have the same form of R(p) which is the
steady state solution when I, is just above I;,. Eq. (4b) becomes:

VioR(p)+a’R(p) = 0, (11)
where a® = (b/w)*(aw/d)®™. Eq. (10) is then simplified as:
C-lloel + ]\’[622 - 02]91 - ')’191 - 02'[)112 = O, (123)

J1 -
0 [a2by + nevy ;] — :Zaqazvl = 0. (12b)

For HB case, the following trial solution is used to satisfy the boundary conditions
6(z = +d/2) = v(z = +d/2) = 0,}?

8.(t, z) = 6, cos(qz)et/, (13a)
v1(t, z) = vo[sin(gz) — 22/d]e!". (13b)

Substituting into Eg. (12), one obtains:

- gt : 2

(61, — K(¢* + a?) = 218, cos(qz) ~ enfg cos(gz) = J]ve = O, (142)
a3 . 2 . 1 2 . 2z

-—qu,, sin(gz) — n.¢*v, sin(gz) — 3%4a vo[sin(gqz) — 7] =0. (14b)

The variable z is diminated by integrating from z = -d/2 to z = + d/2, after multiplying Egs.
(14a) and (14b) with cos(qz) and sin(qz), respectively, these equations then become

- 8

[C~' L, ~ K(¢* + a?) - 7';1]90 —az(q - w_d)vo =0, (15a)
o4 1 8

=900 — [1e0” + s (1= v, = 0. (15b)

Combining the last two equations, the time constant z; yp(l,) is obtained as:

1

-1 _ _
TL,HB(IO) = __C'YIL,HB (1o — Itn), (16a)
where
, ~ 1
Hiemn = {1~ glad/mu)ll+ = (as/ne/o?) ). (16b)

The subscript L denotes the finite TLaser T beam size effect to distinguish from a uniform field.
For FS sample, the boundary conditions are:!?
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f=v, =0, at z=-d/2; § =v;,=0, & z= +d/2. (17)
To satisfy these boundary conditions, we choose the trial solutions for Eq. (12) as

01 (t,z)=0,cos(qz)et/™, (18a)

vi(t, z) = v,[1 + sin(qz)]e!/". (18b)
By similar work, the response time constant of FS samples, 7; rs(/,), is obtained as

1

' ps(Le) = Criz ps (Io = In), (19a)
where
Ters Zn{l—(e3/vn)l + %(M/T)c)(a/Q)Z]—l} (19b)

If the non-local effect is neglected, then a = 0, and y*;;, g reduces to y*; yp = yil1-
1/6(a22/‘}’177c)] and y*;1, s reduces to y*; rs = y1(1- azz/ymc), which are the effective viscosity
coefficients in the uniform field. Thus the non-local effect make the effective viscosity coeffi-
cient increased.

According to our definitions, both 7,, and 7,5 are with small molecular orientation.
Therefore Egs. (16a) and (19a) can be used for both cases.

If the applied laser intensity is reduced to zero from I, the zero intensity turn off rate
7,.71(0) from Egs. (16a and 193) is,

ro1(0) = (K" /vip (7% /d%), (20)

where y*11,i = v*11, 1B (or v* 11 Fs) for HB (or FS) samples. For the case of uniform field, r'l(O)
=-(K/')/*1)(.7Z2/d2), with y*1 = y*1,u8 = y*1,rs for HB and FS samples, respectively.

V. RESULTS

Here we present our calculated results for various situations. Using the parameters for
5CB as in previous sections, the threshold intensity of the case without non-local effect, 140, as
a function of 1/d% is also shown in Fig. (Ib) by a dashed line. The non-local effect on the
threshold intensity is obvious from this figure.

For comparing the non-local effect and the backflow effect on the dynamic properties, the
time constants are caculated with Eq. (16a) and (194) for the following 5 situations, and the
effective elagtic constants and effective viscosities used are shown in the parenthesis.

(1) neglecting both of the two effects, (K, v1);

(2) including only non-local effect, (K, v1):
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(3) including only backflow effect, (K, y*1);
(4) including both the two effects, but neglecting the non-local effect on the effective vis-
cosity, (K*,y*1);
and
(5) including both the two effects and the coupling of these two effects, which is the non-
loca effect on the effective viscosity, (K*,y*;L).

Beside the parameters mentioned earlier, the other parameters for S5CB used are: y1 =
0.68 P, @y =-0.723 P, a4 = 0.8 P, 7. = 1.53 p,% and d = 200 um.

The calculated results for 1/t versus intensity I, are shown in Fig. 2(a) for FS case. The
long dashed line is for situation (1), where neither non-local effect nor backflow effect is con-
sidered. The short dashed line is for situation (2), it showed that the pure non-local effect would
shift line 1 to the right for a constant value leaving the slope unchanged. The dotted line is for
situation (3), it shows a pure backflow effect makes the slope steeper but leaves the threshold
unchanged. The aternate dashed line shows the combination of situation (2) and (3), the slope
is same as for a pure backflow effect, but the threshold is shifted as a pure non-local effect. With
the solid line, the coupling of non-local effect and the backflow effect is added and the line is
less steeper than lines 3 and 4 but still steeper than lines 1 and 2.

For the HB case, the relations of these five situations are similar to FS as shown in Fig.
2(b). The shift of threshold is the same as for FS film. However, the influence of backflow is
smaller, the coupling with non-local effect is even less significant. Line 4 is aimost overlapping
with line 5. The coupling effect can be neglected for HB case, and the equations of motion can
be smplified once more by dropping the transverse Laplacian term in Eq. (Ib).

VI. CONCLUSION

The response time of the free surface film is less than that for the hard boundaries film.
When consider backflow only, the ratio of the response time for HB and FS surface (which is
same as to comparing the ratio of zero field turn off times at same thickness) is the same as the
ratio under a uniform magnetic field.> Due to the non-local effect caused by the finite size of
laser beam and the elastic interaction of liquid crystals, the effective viscosity caused by backflow
is modified. We call this the coupling effect between non-local effect and backflow effect. Due
to this coupling, we predict the measured ratio as above mentioned should be more closer to 1
than that from the uniform magnetic field experiments. Our example shows that the ratio chan-
ges from 1.8 to values between 1.55 and 1.69 for the thickness between 150 and 300 um. The
ratio is dslightly dependent on the thickness due to the thickness dependence of y*;; asin Egs.
(16) and (19). This conclusion can explain the recent experimental study on the dynamics of
laser induced Freedericksz transition.
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Calculated dynamic response rate (I/t) as a function of the laser intensity (o) for S situations: (1)
neglecting both the non-local effect (NLE) and the backflow effect (BFE); (2) including only NLE,
neglecting the BFE; (3) including only BFE, neglecting the NLE; (4) including both the two effects,
but neglecting the NLE on the effective viscosity; and (5) including both the two effects and the NLE
coupling on the effective viscosity. (8) For FS case, and (b) for HB case.
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APPENDIX: DERIVATIONS OF THE EQUATIONS OF MOTION FOR
MOLECULAR REORIENTATION INDUCED BY A LASER BEAM IN
NEMATIC LIQUID CRYSTAL FILMS

We set z-axis aong the light propagation directior, the polarization direction of the laser
beam alongx-axis, the director n then can be written as: n= (n,0,n;) = (sin8,0,cos8), here 6
is a function of x, y and z, to reflect the finite-size effect on the molecular reorientation. With
the one constant approximation, the elastic free energy density, F, is given by:’

1
F= ZK[nl_ +nl,+2n..n,,
2 (A1)

2 2 2 2
+(nr,y + nzy + L + Nz~ 2"-‘!5.2”1,1«')]»

where K is the distortion éastic constant of NLC. The comma in subscript denotes partial dif-
ferentiation w.rt. spatial coordinates, e.g., n,, =dn,/dz.

The external applied body force’G on the director /1 due to the electric field E of the laser
beam is: G = e /4 < (n+ E)E >, where ¢, is the anisotropy of the dielectric constant; e, =
(ne')* - (n,")%, n,' and n,’ are the ordinary and the extraordinary refractive indices, respectively,
and E = (E,, 0, E,;). E, is determined by the continuity of the tangentia component of E, E,
= E,, where E, is the eectric vector of the incoming light beam; E, is caculated from the con-
dition of z-¢-E =0, which leads to E, = -1/2Eoeasin29/[(ne’)2-easinzﬂ].n Thus,

-t ! 2 1 ]
G =(G.,0,G,) =p3e () SN0 [, o €aSndcosd
47 (n)? — e, sin® 6 (nL)2—¢e,sin?f
Using the Ericksen and Ledie¥s continuum theory of NLC,” assuming the fluid-flow
velocity v = (vy,y,v2), With each component v;i = x,y, and z, being a function of x,y, and z,
and neglecting the inertial effect, we can obtain six coupled partial differential equations as fol-
lowing:
Gz + ysn 0+ K{cos V0 — sn 6[(8 .)2 +(0,)%+(0..)%]}
(A.2a)

—71c088 —ay cosfvz , — azcosBv, » — y2sinfuv, , = 0,

azsinfvzy + azsinfvy; + azcosfv,y + ascosfv, , =0, (A.2b)
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G,+v cos 0+ K{—sn V20— cos 8[(6.)* + (8,,)*+(0.)%]}

. (A2¢)
+71 s§in @ —ag3 sin By, ; —ag sin Bv, ;~ 3 cos fv, . = 0,
tx:z:,x + ty:c,y + tz:r,z = 01 (A2d)
toyz +lyyy +tzy,:=0, (A.24
trz,x + yz,y +tzz,z = 0; (A?.f)
where
2 1 . A 1 .2 .
tre = —p—K(65)° + 572 sin(26)6 + Z(?al sin® § — as —az + as + ag) sin(20)vz ;
1 . .
+Z(2a1 sin? @ + as + az+as:ag) sin(20)v; -
. . 1 .
+[ay sin* § + as+(as+ag) sin® flvy , + 7 sin(20)v; ,
1 .
te = —K(02)(0y) +3laat(as+as)sin® focy
1 .
+§[a4 + (26 —a3)sin® Oy, ;
1 . 1 .
+Z(a5 — ag)sin(20)vy . + Z(ae + a3)sin(28)v, 4,
t.e = —K(0:)(0:)+ (a2 cos? § — a3 sin? 9)6
1.1 .9 2 .2 2 s 2
+§(—2-al sin®20 — a2 cos” @ + azsin® @ + ay + as cos” § + agsin” 6) v ,
11 .9 2 -2 2 in?
+ =((zo1sin” 20 + a3z cos™ § —ag sin® § +a4 + a5 cOs 6 + agsin” v, »
L 4
1 .9 . 1 9 )
+§(a1 sin® @ + as)sin(20)vz -z + 5((11 cos” 6 + ag) sin(20)v; ,,
1 .
tey = =K(6:)(8y) + glas +(as. ag)sin® 6oz,
1 .
+§[a4 + (85 —ag)sin®flvy
1 . 1 .
+Z(a5 — ag) sin(20)vy,; + Z(as + ag)sin(26)v; 4,
tyy - —P—K(B8,)*+ aqvy y,
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i 1
ty = —K(B,y)(ﬁ,,)-k 5[(1’4 +(C!5+02) cos? 6]1:,,1,
1
t3les + (5 = az) cos Ol
1 . 1 .
+Z(a5 +a3) sin(20)v, 4 + Z(as — a3) sin(26)vy -,
tzs = —K(0:)(0.)+(—azsin®0+ ascos? 6)f

1
+-§—(§a1 sin® 260 + a5 sin® 0 — ag cos? 6 + a4 + as sin? 6 + ag cos? 0)vz .

1.1 . . .
+-(z sin? 20 — a5 sin? 6 + a3 cos? § + as + assin? 6 + ag cos® 0)v, o

2°2
1 . 2 . 1 2 .
+§(a1 sin“ 6 + ag) sin(20)v; - + 5(011 cos® 6 + as) sin(260)v, ,,
1
ty. = —K(6,)(0.)+ —2~[a4 + (@6 + a3) cos? v, 4
1
+—2—[a4 + (@6 ~ a3) cos® O]y ,
1 . 1 .
+Z(a6 +as) sin(20)v, 4 + Z(as —a3) sin(20)vy -,
| S .1
t..= —-p—K(6, )2 - 572 sin(20)0 + Z(Qal cos? 8 + as + as + as + ag) sin(260)v; ,
1
+Z(2a1 cos?§ — @z — a3 + a5 + ag) sin(20)v, -
+[ory cos* 0 + ag + (a5 + ag) cos? 8]v, , + %al sin?(20)v, ..
In above equations, y andp are arbirary (indeterminate) constants, and y;=as-az, y2=as+as
and ay,...,.a¢ are the viscosity coefficients following the notations of Ref. (14).

Combining Eqg. (A.2a) and Eq. (A.2c) by subtracting Eq. (A.2a) X cosf and Eq. (A.2c)
X sinB, one can obtain:

1eqnin!Isin(26)
c[(nl)? — g, sin? 9)3/2

. L
+ KV%0— 7,0 + 5[71 — 72 cos(20)}vz,
(A3)

1
Fe

2[’}’1 + 72 ¢05(20)]v; - — 72 Sin 6 cos 6(ve z—v;,.)=0.

where I = ( <E? > /4r) (Len'gpp), and n' g = n,,'ne’[(lze’)z-easinZG)'l/2 is the effective refractive
index of the e-beam.

The equations are so complicate, it is impossible to solve these equations of motion analyti-
cally. Even using numerical approach, it would still be a terrible tedious work. To simplify these
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equations, we consider the case with small angle 8, therefore we can set sin6 =6 and cos6 = 1,
then linearize these equations by keeping only terms up to the first order in 6 and v;. The results
are

C~16 + KV — 710 — agvz;, —a3v; = 0, (A.4a)
ay(6) . + %[(as — )z 2. + (a5 + az)v, 0 0] + %a4V2vz =0, (A.4b)
03(9),r s (as+ar)v.z .+ %(013 +as+as) Vi, - o, (A.40)
(@2 + a3+ as(l—as/a2)]vsy.: + aaV3vy = 0, (Add)
a3V .y + agvy ; =0, (Ade)

where C'l= no'[l-(no’/ne')z]/C, c is the speed of light, and we have used the incompressible con-
dition Of material, i.e., E;;=0.7

Physicaly, from Eq. (A.4a), we know that the externd light field < E?>  which is a func-
tion of transverse coordinate,x andy, induces molecular reorientation, 8, and € induces the fluid-
flow (vy,vy,v;) through Egs. (A.4b)-(A.4e). Conversdly, v, and v, aso influence 6 through Eq.
(A.4a). The induced fluid-flow is the so-caled backflow.6

Now comparing the force sources of the backflow, i.e., az(é),z in Eg. (A.4b) and a3(é),x in
Eq. (A.4c), because l(é),xl SI(é),zl due to the non-local effect, ¥ and |a3}<<|az|for SCB
i n the nematic phase,’® |@3(8) ., | is much less |a(§) ;|. Therefore |v,| is much smaller than
|vx| . The effect of v, can be neglected in the Egs. (A.4a) and (A.4b). Moreover, comparing
the coefficients of v,; and v, in these two equations: |a3|<<|ay| and |4(as + a))|=|(as
-a)|, we can aso conclude that the effect of v, can be neglected. The effect of v, can be aso
neglected by similar considerations through Egs. (A.4d) and (A.4e). Thus the equations of mo-
tion are further simplified as following:

C™I0+ K(02 + V)8 — 116 — agv, . = 0, (A.59)
. 1
az(8),; +1:02vz + éaN?vz = 0, (A.5b)

where 7. =1/2(as + a4 - az), 3;> = 9%dz%, and V2 is the Laplacian operator in the transverse
coordinate.

When the external applied field < E2 > is a uniform field, V%6 = V> = 0, and the Egs.
(A.5a) and (A.5b) are reduced to the simple forms as for the case of the uniform magnetic field.”
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