Total Colorings of Graphs of Order $2 n$ Having Maximum Degree 2n-2*

Bor-Liang Chen and Hung-Lin Fu
Department of Applied Mathematics National Chiao-Tung University, Hsin-Chu, Taiwan, Republic of China

Abstract

Let $\chi_{t}(G)$ and $\Delta(G)$ denote respectively the total chromatic number and maximum degree of graph G. Yap, Wang and Zhang proved in 1989 that if G is a graph of order p having $\Delta(G) \geq p-4$, then $\chi_{I}(G) \leq \Delta(G)+2$. Hilton has characterized the class of graph G of order $2 n$ having $\Delta(G)=2 n-1$ such that $\chi_{t}(G)=\Delta(G)+2$. In this paper, we charactarize the class of graphs G of order $2 n$ having $\Delta(G)=2 n-2$ such that $\chi_{t}(G)=\Delta(G)+2$.

1. Introduction

Throughout of this paper, all graphs are finite, simple, and undirected. Let G be a graph, and its vertex set, edge set, chromatic index, complementary graph, and the maximum degree be denoted by $V(G), E(G), \chi^{\prime}(G), G^{c}$, and $\Delta(G)$ respectively. For convenience, without mentioning otherwise, if H is isomorphic to a subgraph of G, we will simply call H is a subgraph of G. Other terms and notation not defined in this paper can be found in [3].

A total coloring π of a graph G is a mapping $\pi: V(G) \cup E(G) \rightarrow\{1,2, \ldots\}$ such that no two adjacent vertices receive the same color, no two edges incident with the same vertex receive the same color, and no edge receives the same color as either of the vertices it is incident with. Define a k-total coloring of G, the total chromatic number $\chi_{I}(G)$ of a graph G is the smallest integer k such that G has a total coloring having image set $\{1,2, \ldots, k\}$. From the definition of $\chi_{t}(G)$, it is clear that $\chi_{t}(G) \geq$ $\Delta(G)+1$. Behzad [2] and Vizing [8] made the following conjecture.

Total Coloring Conjecture (TCC). For any graph $G, \chi_{t}(G) \leq \Delta(G)+2$.
The TCC has been verified for several classes of graphs [6,7,10], especially those graphs with very low or very high degree. Thus, similar to the argument of the chromatic index $\chi^{\prime}(G)$ of G, we classify those graphs which satisfy the TCC.

Definition 1.1. A graph G is said to be of type one if $\chi_{t}(G)=\Delta(G)+1$ and it is of type two if $\chi_{t}(G)=\Delta(G)+2$.

[^0]In [5], Hilton proves the following theorem.
Theorem 1.1. Let J be a subgraph of $K_{2 n}$, let $e=|E(J)|$ and let $j(J)$ be the maximum size of a matching in J. Then $\chi_{t}\left(K_{2 n}-E(J)\right)=2 n+1$ if and only if $e+j \leq n-1$.

From this theorem, he deduces
Corollary 1.2. If $H=K_{2 n}-E(J)$, then H is of type one provided that $2 n-1 \geq$ $e+j \geq n$, and H is of type two whenever $e+j \leq n-1$.

This corollary gives a complete classification of graphs of order $2 n$ having maximum degree $2 n-1$. Since the graphs of order $2 n$ with $\Delta(G)=2 n-2$ also satisfy the TCC, we shall now classify these graphs. Our main result is as follows.

Theorem 1.2. Let G be a graph of order $2 n$ and $\Delta(G)=2 n-2$. Then G is of type two if and only if G^{c} is a disjoint union of an edge and a star having $2 n-3$ edges.

2. Proof of Theorem 1.2

Let S_{x} be a star having x edges. In what follows, two graphs are said to be disjoint provided that they have no vertex in common. The union of disjoint k stars $S_{n_{1}}, S_{n_{2}}, \ldots, S_{n_{k}}$ is denoted by $S\left(n_{1}, n_{2}, \ldots, n_{k}\right)$. For $2 n=k+\sum_{i=1}^{k} n_{i}$, we let $G\left(n_{1}, n_{2}, \ldots, n_{k}\right)=K_{2 n}-E\left(S\left(n_{1}, n_{2}, \ldots, n_{k}\right)\right)$, i.e. $G\left(n_{1}, n_{2}, \ldots, n_{k}\right)=$ $S\left(n_{1}, n_{2}, \ldots, n_{k}\right)^{c}$. It is easy to see that $\Delta\left(G\left(n_{1}, n_{2}, \ldots, n_{k}\right)\right)=2 n-2$.

Lemma 2.1. Let G be a graph of order $2 n$ having $\Delta(G)=2 n-2$. Then G is a subgraph of $G\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ for some $n_{i}, i=1,2, \ldots, k$, such that $k+\sum_{i=1}^{k} n_{i}=2 n$.
Proof. Since $\Delta(G)=2 n-2, G^{c}$ contains a spanning forest F. In F, by deleting those edges which are incident with two vertices of degrees greater than one, we obtain a spanning star $S\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ forest of G^{c}, where $k+\sum_{i=1}^{k} n_{i}=2 n$. This implies that G is a subgraph of $G\left(n_{1}, n_{2}, \ldots, n_{k}\right)$.

Now we are ready to work on the total coloring of G. Suppose $\chi_{t}(G)=g$ and π is a g-total coloring of G. We say that the color c_{i} occurs on the vertex v if either $\pi(v)=c_{i}$ or there is an edge e which is incident with v and $\pi(e)=c_{i}$. For each color c_{i}, let r_{i} be the number of vertices for which c_{i} occurs. It is easy to see that

$$
\begin{equation*}
\sum_{i=1}^{g} r_{i}=|V(G)|+2|E(G)| \tag{1}
\end{equation*}
$$

We will use this fact to prove the following lemma.
Lemma 2.2. $G(1,2 n-3)$ is of type two.
Proof. Assume that $G(1,2 n-3)$ is of type one, i.e., $\chi_{t}(G(1,2 n-3))=2 n-1$. Let $\{u, v\}$ be the independent edge which forms S_{1} in $G(1,2 n-3)^{c}$. First, suppose u and
v are colored with the same color, c_{j}. Since the center w of the deleted star $S_{2 n-3}$ is adjacent to u and $v, \pi(w)=c_{1}, \pi(\{w, u\})=c_{2}$, and $\pi(\{w, v\})=c_{3}$ are not c_{j}. Hence $r_{j} \leq 2 n-2 .\left(\pi(y) \neq c_{j}\right.$ if $y \in V(G) \backslash\{u, v, w\}$.) For color $c_{i}, i \neq 1,2,3, j, r_{i} \leq 2 n-1$. In total, we have $\sum_{i=1}^{g} r_{i} \leq(2 n-2)+3(2 n)+(2 n-5) \cdot(2 n-1)=4 n^{2}-4 n+3<$ $|V(G(1,2 n-3))|+2|E(G(1,2 n-3))|$. Thus $2 n-1$ colors are not enough. Next, suppose u and v are colored with different colors. There exists a vertex in $V(G) \backslash\{u, v, w\}$ which is colored with color $c_{1}=\pi(w)$. Similarly, $\sum_{i=1}^{g} r_{i}=r_{1}+\sum_{i=2}^{g} r_{i} \leq$ $2 n+(2 n-2)(2 n-1)<|V(G(1,2 n-3))|+2|E(G(1,2 n-3))|$. Again, $2 n-1$ colors are not enough. Hence $G(1,2 n-3)$ is type two.

Later we shall prove that $G(1,2 n-3)$ is critical in the sense that without lowering the maximum degree of $G(1,2 n-3)$, if we delete one edge from $G(1,2 n-3)$, then the new graph obtained is of type one.

Before we prove the above fact, let us consider the type one graphs first. A perfect matching of $K_{2 n}$ is called a 1 -factor of $K_{2 n}$. It is well-known that $K_{2 n}$ can be decomposed into $2 n-1$ 1-factors. Let $\mathscr{F}=\left\{F_{1}, F_{2}, \ldots, F_{2 n-1}\right\}$ be such a collection of 1 -factors. \mathscr{F} is said to be a 1 -factorization of $K_{2 n}$. The following theorem is a result of Andersen and Mendelsohn.

Theorem 2.3. [1] Let D be a set of edges of $K_{2 m}$, where $|D| \leq 2 m-2$. Then $K_{2 m}$ has a 1-factorization with all edges of D in distinct 1 -factors if and only if D is not the edge-set of the graph $H_{2 m}$, or, if $m=3$, of H_{5}^{\prime} or H_{6}^{\prime}. (Fig. 1.)

Fig. 1

Now we can prove

Lemma 2.4. Let $\sum_{i=1}^{k} n_{i}=2 n-k$ and $G\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ be a graph which is not isomorphic to $G(1,2 n-3)$. Then $G\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ is of type one.

Proof. Obviously, $G\left(n_{1}\right)$ is a complete graph of order $2 n-1$ which is type one. Now consider $k \geq 2$ and $n \geq 4$. Since $G\left(n_{1}, n_{2}, \ldots, n_{k}\right)^{c}$ is not isomorphic to $H_{2 m}$ and $G\left(n_{1}, n_{2}, \ldots, n_{k}\right)^{c}$ has at most $2 n-2$ edges, $e_{1}, e_{2}, \ldots, e_{2 n-k}, k \geq 2$, by Theorem 2.3 there exists a 1 -factorization of $K_{2 n}$ with all edges of $G\left(n_{1}, n_{2}, \ldots, n_{k}\right)^{c}$ in distinct 1 -factors. Without loss of generality, let the 1 -factorization be $\left\{F_{1}, F_{2}, \ldots, F_{2 n-1}\right\}$ and $e_{i} \in F_{i}, i=1,2, \ldots, 2 n-k$; let the edges $e_{1}, e_{2}, \ldots, e_{n_{1}}$ form the star $S_{n_{1}}$; $e_{n_{1}+1}, \ldots, e_{n_{1}+n_{2}}$ from the star $S_{n_{2}}$ and so on. Now define a mapping π from the vertex
set and edge set of $G\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ to $\{1,2, \ldots, 2 n\}$ as follows: (i) for each $e \in F_{i} \backslash e_{i}$, $\pi(e)=i$, and (ii) for each star $S_{n_{j}}$ in $G\left(n_{1}, n_{2}, \ldots, n_{k}\right)^{c}$ with $V\left(S_{n_{j}}\right)=\left\{v_{j}^{(0)}, v_{j}^{(1)}, \ldots, v_{j}^{\left(n_{j}\right)}\right\}$, we color $v_{j}^{(0)}$ and $v_{j}^{(1)}$ with the same color $\sum_{i=1}^{j-1} n_{i}+1 ; j=1,2, \ldots, k$, we color $v_{j}^{(h)}$ with $\sum_{i=1}^{j-1} n_{i}+h ; h=2,3, \ldots, n_{j}$. It is easy to see that π is a total coloring of $G\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ using $2 n-1$ colors. Hence $G\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ is of type one provided that $n \geq 4$. For the case $n=3$, a total coloring each of $G(1,1,1)$ and $G(2,2)$ can be obtained by the following color-tables where the (i, i) entry is the color of the vertex v_{i} and (i, j) entry is the color of the edge $\left\{v_{i}, v_{j}\right\}$ (see Fig. 2.). The case $n \leq 2$ is easy to settle.

Now we can show that $G(1,2 n-3)$ is critical in the sense of total coloring.

	$\begin{array}{lllllllll}\mathrm{v}_{1} & \mathrm{v}_{2} & \mathrm{v}_{3} & \mathrm{v}_{4} & \mathrm{v}_{5} & \mathrm{v}_{6}\end{array}$					
v_{1}	1	x	4	3	5	2
v_{2}	X	1	3	5	2	4
v_{3}	4	3	2	x	1	5
v_{4}	3	5	X	2	4	1
v_{5}	5	2	1	4	3	X
v_{6}	3	4	5	1	X	3

A 5-total coloring of $G(1,1,1)$.

A 5-total coloring of $G(2,2)$.

Fig. 2

Lemma 2.5. Let H be a proper subgraph of $G=G(1,2 n-3)$ with $\Delta(H)=2 n-2$. Then H is of type one.

Proof. It suffices to show that for any edge $e \in E(G), G-e$ is of type one. Let the vertex set of G be $\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{2 n-2}, v_{2 n-1}\right\}$, where $v_{2 n-2}$ is not adjacent to $v_{2 n-1}$ and v_{0} is not adjacent to $v_{i}, i=1,2, \ldots, 2 n-3$. Without loss of generality, we consider the following three cases: (i) $e=\left\{v_{1}, v_{2 n-1}\right\}$, (ii) $e=\left\{v_{1}, v_{2}\right\}$, and (iii) $e=$ $\left\{v_{0}, v_{2 n-1}\right\}$. First, let $n \geq 4$. In Case (i), $G-e+\left\{v_{0}, v_{1}\right\}$ is actually a $G(2,2 n-4)$ graph which by Lemma 2.4, is of type one. In Case (ii), $G \backslash e+\left\{v_{0}, v_{1}\right\}+\left\{v_{0}, v_{2}\right\}$ is a $G(1,1,2 n-5)$ graph which by Lemma 2.4 again, is of type one. In Case (iii), a $(2 n-1)$-total coloring π of G can be obtained by modifying a $(2 n-1)$-total coloring φ of $K_{2 n-1}$: Let $p=2 n-1$ and let the vertex set of K_{p} be $\{1,2, \ldots, p\}$. The p color classes of φ are $C(j)=\{\{j-i, j+i\} \mid i=1,2, \ldots, n-1\} \cup\{j\}, j=1,2, \ldots, p$, where $j-i$ and $j+i$ are calculated modulo p. The color classes of π are $C(1) \cup\{2 n\}$, $C(j)$ for $j=2,3, \ldots, p-1$ and $C(p)-\{n-1, n\} \cup\{n, 2 n\}$. Finally, for the case $n \leq 3$, it is not difficult to establish a $(2 n-1)$-total coloring for G.

Combining Lemma 2.2, 2.4, and 2.5, we have proved Theorem 1.2, i.e., we have shown that a graph G of order $2 n$ and $\Delta(G)=2 n-2$ is of type two if and only if G^{c} is a disjoint union of an edge and a star with $2 n-3$ edges.

Remark and acknowledgement. The deficiency of a graph $G, \operatorname{def}(G)$, is given by the summation of $(\Delta(G)-\operatorname{deg}(G))$, for all $v \in V(G)$, i.e., $\operatorname{def}(G)=\sum_{v \in V(G)}(\Delta(G)-\operatorname{deg}(G))$. G is conformable if G has a vertex coloring ϕ with $\Delta(G)+1$ colors such that

$$
\operatorname{def}(G) \geq\left|\left\{i:\left|\phi^{-1}(i)\right| \equiv|V(G)|+1(\bmod 2), 1 \leq i \leq \Delta(G)+1\right\}\right|
$$

In [4], Chetwynd and Hilton conjectured that a simple graph G with $\Delta(G) \geq \frac{1}{2}\lfloor|V(G)|+1\rfloor$ is type two if and only if G contains a non-conformable subgraph H with $\Delta(H)=\Delta(G)$. Now, it is not difficult to see that $G(1,2 n-3)$ is conformable, thus this disproves the conjecture.

Finally, we would like to express our thanks to both Professor A.J.W. Hilton and Professor H.P. Yap for their helpful comments.

References

1. Andersen, L.D., Mendelsohn, E.: 1 -factorizations of $K_{2 m}$ with given edges in distinct 1 -factors. University Center of Aalborg (1985) (preprint)
2. Behzad, M., Chartrand, G., Cooper, J.: The colouring numbers of complete graphs. J. London Math. Soc. 42, 226-228 (1967)
3. Bondy, J.A., Murty, U.S.R.: Graph theory with applications. Elsevier North Holland, Inc., 1976
4. Chetwynd, A.G., Hilton, A.J.W.: Some refinements of the total chromatic number cojecture. Congressus Numerantium 66, 195-216 (1988)
5. Hilton, A.J.W.: A total-chromatic number analogue of Plenatholt's theorem. Discrete Math. 79, 169-175 (1989/90)
6. Kostachka, A.V.: The total coloring of multigraph with maximal degree 4. Discrete Math. 17, 161-163 (1977)
7. Rosenfeld, M.: On the total coloring of certain graphs. Israel J. Math. 9(3), 396-402 (1971)
8. Vizing, V.G.: On an estimate of the chromatic class of a p-graph (Russian). Diskret. Analiz 3, 25-30 (1964)
9. Yap, H.P. Total colourings of graphs. Bull. London Math. Soc. 21, 159-163 (1989)
10. Yap, H.P. Wang Jian-Fang, Zhang Zhongfu: Total chromatic number of graph of high degree. J. Aust. Math. Soc. (Series A) 47, 445-452 (1989)

Received: July 17, 1990
Revised: June 4, 1991

[^0]: * Research supported by National Science Council of the Republic of China (NSC 79-0208-M009-15)

