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Abstract. Let y,(G) and 4(G) denote respectively the total chromatic number and maximum degree
of graph G. Yap, Wang and Zhang proved in 1989 that if G is a graph of order p having
A(G) = p — 4, then %,(G) < 4(G) + 2. Hilton has characterized the class of graph G of order 2n
having 4(G) = 2n — 1 such that 3,(G) = 4(G) + 2.In this paper, we charactarize the class of graphs
G of order 2n having 4(G) = 2n — 2 such that x,(G) = A4(G) + 2.

1. Introduction

Throughout of this paper, all graphs are finite, simple, and undirected. Let G be a
graph, and its vertex set, edge set, chromatic index, complementary graph, and the
maximum degree be denoted by V(G), E(G), ¥'(G), G, and 4(G) respectively. For
convenience, without mentioning otherwise, if H is isomorphic to a subgraph of G,
we will simply call H is a subgraph of G. Other terms and notation not defined in
this paper can be found in [3]. '

A total coloring © of a graph G is a mapping n: V(G)U E(G) - {1,2,...} such
that no two adjacent vertices receive the same color, no two edges incident with the
same vertex receive the same color, and no edge receives the same color as either
of the vertices it is incident with. Define a k-total coloring of G, the total chromatic
number ¥,(G) of a graph G is the smallest integer k such that G has a total coloring
having image set {1,2,...,k}. From the definition of x,(G), it is clear that y,(G) >
A(G) + 1. Behzad [2] and Vizing [8] made the following conjecture.

Total Coloring Conjecture (TCC). For any graph G, x,(G) < 4(G) + 2.

The TCC has been verified for several classes of graphs [6, 7, 10], especially those
graphs with very low or very high degree. Thus, similar to the argument of the
chromatic index y'(G) of G, we classify those graphs which satisfy the TCC.

Definition 1.1. A graph G is said to be of type one if x,(G) = 4(G) + 1 and it is of
type two if x,(G) = A(G) + 2.
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In [5], Hilton proves the following theorem.

Theorem 1.1. Let J be a subgraph of K ,,, let e = |E(J)| and let j(J) be the maximum

size of a matching in J. Then y(K,, — E(J))=2n+ lifandonlyife+j<n— 1.
From this theorem, he deduces

Corollary 1.2. If H = K,, — E(J), then H is of type one provided that 2n — 1 >

e+ j=>n,and H is of type two whenever e +j <n — 1.

This corollary gives a complete classification of graphs of order 2n having
maximum degree 2n — 1. Since the graphs of order 2an with A(G) = 2n — 2 also
satisfy the TCC, we shall now classify these graphs. Our main result is as follows.

Theorem 1.2. Let G be a graph of order 2n and A(G) = 2n — 2. Then G is of type two
if and only if G is a disjoint union of an edge and a star having 2n — 3 edges.

2. Proof of Theorem 1.2

Let S, be a star having x edges. In what follows, two graphs are said to be dis-
joint provided that they have no vertex in common. The union of disjoint k
stars S, , S,.,...,S, is denoted by S(ny,n,,....m). For 2n=k+3Y %, n,

we let G(ng,ny,....m) = K,, — ES(n,n,,...,m), ie. G(ng,n,,...,n) =
S(ny,n,, ..., m)" It is easy to see that A(G(ny,n,,...,n)) =2n — 2.
Lemma 2.1. Let G be a graph of order 2n having A(G) = 2n — 2. Then G is a subgraph
k
of G(ny,ny,...,n,) for somen;,i=1,2,....k suchthatk + Y, n;=2n.
=1
Proof. Since 4(G) = 2n — 2, G° contains a spanning forest F. In F, by deleting those
edges which are incident with two vertices of degrees greater than one, we obtain a
k
spanning star S(ny,n,,...,n,) forest of G, where k + Y n; = 2n. This implies that
i=1
G is a subgraph of G(ny,n,,...,n,). ]

Now we are ready to work on the total coloring of G. Suppose x,(G) =g and =
is a g-total coloring of G. We say that the color ¢; occurs on the vertex v if either
n(v) = ¢; or there is an edge e which is incident with v and n(e) = ¢;. For each color
¢;, let r; be the number of vertices for which ¢; occurs. It is easy to see that

]
Zl ri = |V(G)| + 2|E(G)]. 1)
We will use this fact to prove the following lemma.

Lemma 2.2. G(1,2n — 3) is of type two.

Proof. Assume that G(1,2n — 3) is of type one, ie., 3 (G(1,2n — 3)) = 2n — 1. Let
{u, v} be the independent edge which forms S, in G(1,2n — 3)°. First, suppose u and
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v are colored with the same color, c;. Since the center w of the deleted star S,,_5 is
adjacent to u and v, n(w) = ¢,, n({w,u}) = c,, and n({w, v}) = c; are not ¢;. Hence
r<2n—2. (n(y);éc ifye V(G)\{u v,w}.) Forcolor¢;, i #1,2,3,j,r;<2n— 1.

In total, we have Z R<n—2+4+32M+2n—5-2n—-)=4n> —4n+3 <

[V(G(1,2n — 3))]| + 2|E(G(1 2n — 3))]. Thus 2n — 1 colors are not enough. Next,
suppose u and v are colored with different colors. There exists a vertex in

G)\ {u, v, w} which is colored with color ¢; = n(w). Similarly, Z r=r + Z r;

2n + (2n—2)2n—1) < |V(G(1,2n — 3))| + 2|E(G(1,2n — 3))| Again, 2n -1
colors are not enough. Hence G(1,2n — 3) is type two. O

Later we shall prove that G(1,2n — 3) is critical in the sense that without
lowering the maximum degree of G(1,2n — 3), if we delete one edge from
G(1,2n — 3), then the new graph obtained is of type one.

Before we prove the above fact, let us consider the type one graphs first. A perfect
matching of K,, is called a 1-factor of K,,. It is well-known that K,, can be
decomposed into 2n — 1 1-factors. Let & = {F,, F,,..., F,,_,} be such a collection
of 1-factors. & is said to be a 1-factorization of K,,. The following theorem is a
result of Andersen and Mendelsohn.

Theorem 2.3. [1] Let D be a set of edges of K ,,,, where |D| < 2m — 2. Then K,,, has

a 1-factorization with all edges of D in distinct 1-factors if and only if D is not the
edge-set of the graph H,,,, or, if m =3, of H; or Hg. (Fig. 1.)

2m—3 vertices

W I i . ° * [ . 1]
—e
HZm Hé H6

Fig. 1

Now we can prove

Lemma 2.4. Let Z n; = 2n — k and G(ny,n,,...,n.) be a graph which is not isomor-
phic to G(1,2n — 3) Then G(n,,n,,...,n) is of type one.

Proof. Obviously, G(n,)is a complete graph of order 2n — 1 which is type one. Now
consider k > 2 and n > 4. Since G(n,,n,,...,n,) is not isomorphic to H,, and
G(ny,n,,...,m) has at most 2n — 2 edges, ey, €,, ..., €;,—, k > 2, by Theorem 2.3
there exists a 1-factorization of K,, with all edges of G(n,,n,,...,n.) in distinct
1-factors. Without loss of generality, let the 1-factorization be {F,,F,,...,F,, {}
and ¢;e F,, i=1, 2,...,2n — k; let the edges e, e,,..., e, form the star §,;
€n 41> +++3 €, 1n, ITOM the star §,, and so on. Now define a mapping 7 from the vertex
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set and edge set of G(n,n,,...,n) to {1,2,...,2n} as follows: (i) for each e € F\ e,
n(e) = i,and (ii) for each star S, in G(n,,n,...,m) with V(S, ) = {o{”, v{"),..., 0"},
i—-1
we color v} and v{" with the same color ) n; + 1;j = 1,2,..., k, we color u{" with

j-1 i=1

Z n; + hyh =2,3,..., n.Itiseasy to see that tis a total coloring of G(n, n,, ..., )
i=1

using 2n — 1 colors. Hence G(ny,n,,...,n,) is of type one provided that n > 4. For
the case n = 3, a total coloring each of G(1, 1, 1) and G(2,2) can be obtained by the
following color-tables where the (i, i) entry is the color of the vertex v; and (i, j) entry
is the color of the edge {v;,v;} (see Fig. 2.). The case n < 2 is easy to settle. 0

Now we can show that G(1,2n — 3) is critical in the sense of total coloring.

Vi V9 Vg V4 Ve Vg Vi V9 Vg V4 Ve Vg
vl x| 43512 Vi 2| x| x| 314
Vo x| 1|3 158}124 vo | x| 1 4121513
vg 41312 x]11]35 va | X 4125 |3]1
\7 3|5 | x]2 4|1 7 312154 |x]|x
Vel 9| 2| 1413 x ve | 1|5 3 x| 4]2
\L 214151 x]|3 Vg 4 13|11 x]|25
A 5—total coloring of G(1,1,1). A 5—total coloring of G(2,2).
Fig. 2

Lemma 2.5. Let H be a proper subgraph of G = G(1,2n — 3) with A(H) = 2n — 2.
Then H is of type one.

Proof. 1t suffices to show that for any edge e € E(G), G — e is of type one. Let the
vertex set of G be {vg, 01,0555 U3,—25Vz,—1 }» Where v,,_, is not adjacent to v,,_,
and v, is not adjacent to v, i =1, 2,..., 2n— 3. Without loss of generality, we
consider the following three cases: (i) e = {v,, 05, }, (ii) e = {v,,v,}, and (iii) e =
{vosVan_y }- First, let n > 4. In Case (i), G — e + {vo, v} is actually a G(2,2n — 4)
graph which by Lemma 2.4, is of type one. In Case (ii), G\ e + {vo,v,} + {vg,0,} is
a G(1,1,2n — 5) graph which by Lemma 2.4 again, is of type one. In Case (iii),
a(2n — 1)-total coloring  of G can be obtained by modifying a (2n — 1)-total color-
ing  of K,,_;: Let p=2n — 1 and let the vertex set of K, be {1,2,...,p}. The p
colorclassesof pare C(j) = {{j —i,j+i}li=1,2,...,.n—=1}U{j}Li=1L2...,p,
where j — iandj + i are calculated modulo p. The color classes of  are C(1) U {2n},
C(j) for j=2,3,...,p—1 and C(p) — {n— 1,n} U {n,2n}. Finally, for the case
n < 3, it is not difficult to establish a (2n — 1)-total coloring for G. O

Combining Lemma 2.2, 2.4, and 2.5, we have proved Theorem 1.2, i.e., we have
shown that a graph G of order 2n and 4(G) = 2n — 2 is of type two if and only if
G¢ is a disjoint union of an edge and a star with 2n — 3 edges.
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Remark and acknowledgement. The deficiency of a graph G, def(G), is given by the summation of
(4(G) — deg(@)), for all v € V(G), i.e., def(G) = ZueV(G) (4(G) — deg(G)). G is conformabile if G has
a vertex coloring ¢ with 4(G) + 1 colors such that

def(G) > |{iz |¢™10)| = |V(G)| + 1 (mod 2), 1 < i < A(G) + 1}

In [4], Chetwynd and Hilton conjectured that a simple graph G with 4(G) > 1| |V(G)| + 1] is type
two if and only if G contains a non-conformable subgraph H with A(H) = 4(G). Now, it is not
difficult to see that G(1,2n — 3) is conformable, thus this disproves the conjecture.

Finally, we would like to express our thanks to both Professor A.J.W. Hilton and Professor
H.P. Yap for their helpful comments.
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