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Abstract. Let zt(G) and A(G) denote respectively the total chromatic number and maximum degree 
of graph G. Yap, Wang and Zhang proved in 1989 that if G is a graph of order p having 
A(G) >_ p - 4, then ;gt(G) <- A(G) + 2. Hilton has characterized the class of graph G of order 2n 
having A(G) = 2n - 1 such that xt(G) = A(G) + 2. In this paper, we charactarize the class of graphs 
G of order 2n having A(G) = 2n -- 2 such that zt(G) = A(G) + 2. 

1. Introduction 

Throughout  of this paper, all graphs are finite, simple, and undirected. Let G be a 
graph, and its vertex set, edge set, chromat ic  index, complementary  graph, and the 
maximum degree be denoted by V(G), E(G), Z'(G), G c, and A(G) respectively. For  
convenience, wi thout  ment ioning otherwise, if H is isomorphic to a subgraph of G, 
we will simply call H is a subgraph of G. Other  terms and notat ion not  defined in 
this paper can be found in [3]. 

A total coloring n of a graph G is a mapping  n: V ( G ) U E ( G ) ~  {1,2 . . . .  } such 
that no two adjacent vertices receive the same color, no two edges incident with the 
same vertex receive the same color, and no edge receives the same color as either 
of the vertices it is incident with. Define a k-total coloring of G, the total chromatic  
number  z~(G) of a graph G is the smallest integer k such that G has a total coloring 
having image set { 1, 2 , . . . ,  k}. F r o m  the definition of zt(G), it is clear that  zt(G) >_ 
A(G) + 1. Behzad [2] and Vizing [8] made the following conjecture. 

Total Coloring Conjecture (TCC). For  any graph G, z,(G) <_ A(G) + 2. 

The T C C  has been verified for several classes of graphs [6, 7, 10], especially those 
graphs with very low or  very high degree. Thus, similar to the a rgument  of the 
chromatic  index z'(G) of G, we classify those graphs which satisfy the TCC. 

Definition 1.1. A graph G is said to be of type one if zt(G) = A(G) + 1 and it is of 
type two if zt(G) = A(G) + 2. 
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In [5], Hil ton proves the following theorem. 

Theorem 1.1. Le t  J be a subgraph o f  K2n, let e = I E(J)I and let j ( J )  be the max imum 
size o f  a matching in J. Then Zt(K2, - E(J) )  = 2n + 1 i f  and only i f  e + j < n - 1. 

From this theorem, he deduces 

Corollary 1.2. I f  H = K2n -- E(J), then H is o f  type one provided that 2n - 1 >_ 
e + j >_ n, and H is o f  type two whenever e + j <<_ n - 1. 

This corollary gives a complete classification of  graphs of  order 2n having 
maximum degree 2n - 1. Since the graphs of  order  2n with d(G)  = 2n - 2 also 
satisfy the TCC, we shall now classify these graphs. Our  main result is as follows. 

Theorem 1.2. Le t  G be a graph o f  order 2n and 3(G)  = 2n - 2. Then  G is o f  type two 

i f  and only i f  G ~ is a disjoint union o f  an edge and a star having 2n - 3 edges. 

2. Proof of Theorem 1.2 

Let S x be a star having x edges. In what  follows, two graphs are said to be dis- 
joint provided that they have no vertex in common.  The union of  disjoint k 
stars S,1, S,2, . . . .  S,k is denoted by S ( n l , n  2 . . . . .  nk). For  2 n = k + ~ i k = l n i ,  

we let G ( n l , n 2 , . . .  , nk) = Kzn -- E ( S ( n l , n  2 . . . .  , nk)), i.e. G(n 1 , n 2 , . . .  , nk) = 
S (n l ,n2  . . . . .  nk) ~. It is easy to see that  A ( G ( n l , n z  . . . . .  nk) ) = 2n -- 2. 

Lemma 2.1. Le t  G be a graph o f  order 2n having d (G) = 2n - 2. Then  G is a subgraph 
k 

o f  G(n 1, n2 . . . .  , rig) f o r  some nl, i = 1, 2 . . . . .  k, such that k + ~ nl = 2n. 
i = 1  

Proof. Since A(G) = 2n -- 2, G ~ contains a spanning forest F. In F, by deleting those 
edges which are incident with two vertices of degrees greater than one, we obtain a 

k 
spanning star S(n l ,  n 2 , . . . ,  nk) forest of  G c, where k + ~ ni = 2n. This implies that  

i = 1  

G is a subgraph of G(nl ,  n 2 . . . . .  n k ) .  [] 

N o w  we are ready to work on the total coloring of  G. Suppose zt(G) = g and 
is a g-total coloring of  G. We say that  the color  cl occurs on the vertex v if either 
~(v) = c i or  there is an edge e which is incident with v and n(e) = ci. For  each color  
c~, let ri be the number  of vertices for which ci occurs. It is easy to see that 

g 

r, = IV(G)[ + 2[E(G)I. (1) 
i = 1  

We will use this fact to prove the following lemma. 

Lemma 2.2. G(1,2n -- 3) is o f  type two. 

Proof. Assume that  G(1,2n - 3) is of  type one, i.e., z t (G(1 ,2n  - 3)) = 2n - 1. Let 
{u, v} be the independent edge which forms S 1 in G(1, 2n - 3) c. First, suppose u and 
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v are co lored  with the same color,  c~. Since the center  w of  the deleted s tar  $2,-3 is 
adjacent  to u and v, n(w) = cl,  rc({w, u}) = c2, and  n({w,v})  = c3 are  not  cj. Hence  
r~ <_ 2n - 2. (n(y) v~ cj i f y  ~ V(G)\{u ,v ,w} . )  F o r  color  c i, i # 1, 2, 3 , j ,  ri < 2n - 1. 

g 

In total ,  we have ~ r~ < ( 2 n -  2) + 3(2n) + ( 2 n -  5 ) ' ( 2 n -  1) = 4n 2 - 4n + 3 < 
i = 1  

]V(G(1,2n - 3))1 + 21E(G(1,2n - 3))1. Thus 2n - 1 colors  are not  enough.  Next ,  
suppose u and  v are co lo red  with different colors. There  exists a vertex in 

0 0 

V(G)\{u,  v, w} which is co lo red  with co lor  cl = n(w). Similarly,  ~ rl = r~ + ~ rg < 
i= l  i = 2  

2n + ( 2 n - 2 ) ( 2 n - 1 )  < I V ( G ( 1 , 2 n - 3 ) ) I  + 2]E(G(1 ,2n-3) )1 .  Again,  2 n - 1  
colors are no t  enough.  Hence  G(1, 2n - 3) is type two. [ ]  

La te r  we shall  prove  tha t  G ( 1 , 2 n -  3) is critical in the sense tha t  wi thout  
lowering the m a x i m u m  degree of G ( 1 , 2 n - 3 ) ,  if we delete one edge from 
G(1, 2n - 3), then the new graph  ob ta ined  is of type one. 

Before we prove  the above  fact, let us cons ider  the type one graphs  first. A perfect 
matching of K2,  is called a 1-factor of K2, .  I t  is wel l -known that  K2n c a n  be 
decomposed  into  2n - 1 1-factors. Let  ~ = {F~, F2 . . . . .  F2,-1 } be such a col lect ion 
of 1-factors. J~ is said to be a 1-factorizat ion of K2,.  The fol lowing theorem is a 
result of Andersen  and  Mendelsohn .  

Theorem 2.3. [1]  Let  D be a set o f  edges o f  K2m , where ]D[ ~ 2m - 2. Then K2m has 
a 1-factorization with all edges o f  D in distinct 1-factors if and only if D is not the 
edge-set o f  the graph H2m , or, i f  m = 3, of  H'5 or H'6. (Fig. 1.) 

2m-3 ve r t ices  
J �9 

H2m 

Fig. 1 

N o w  we can prove  

Lemma 2.4. Let  ~ nl = 2n - k and G(n 1, n2, . . .  , rig) be a graph which is not isomor- 
i = 1  

phic to G(1,2n - 3). Then G(nl,na,  ... ,nk) is o f  type one. 

Proof. Obvious ly ,  G(nl) is a comple te  g raph  of  o rde r  2n - 1 which is type one. N o w  
consider  k > 2 and  n > 4. Since G(n 1, n z . . . .  , rig) c is not  i somorph ic  to Hzm and  
G(nl ,n2 , . . . ,nk)  c has at  mos t  2n --  2 edges, e l ,  ea . . . . .  e2,_ k, k > 2, by T he o re m 2.3 
there exists a 1-factor izat ion of K a ,  with all edges of G(n~,na . . . . .  rig) c in dis t inct  
1-factors. W i t h o u t  loss of  general i ty,  let the 1-factorizat ion be {F1, F 2 . . . . .  F2,_ 1 } 
and ei ~ Fz, i =  1, 2 . . . . .  2 n -  k; let the edges e~, ea . . . . .  e,, form the s tar  S,,;  
e,l+ ~ . . . . .  e.,+,2 from the s tar  S.2 and  so on. N o w  define a m a p p i n g  rc f rom the vertex 
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set a n d  edge  set of  G(nl,n 2 . . . . .  nk) to  {1,2 . . . . .  2n} as fol lows:  (i) for  each  e e F,.\ei, 
n(e) = i, a n d  (ii) for  each  s t a r  S.~ in  G(nl ,  n2 . . . . .  nk) c with  V(S.~) --  {v) ~ . . . . .  v).j)}, 

j - 1  

we c o l o r  v) ~ and/)~1) wi th  the  s ame  c o l o r  ~" ni + 1; j  = 1, 2 . . . .  , k, we color/))h) wi th  
j - 1  i=1 

~, n i + h; h -- 2, 3, . . . ,  nj. I t  is ea sy  to  see t h a t  ~z is a t o t a l  c o l o r i n g  of  G(n x , n 2 . . . . .  nk) 
i=1 

using  2n - 1 co lors .  H e n c e  G ( n x ,  n 2 . . . . .  rig) is of  t ype  one  p r o v i d e d  t h a t  n _> 4. F o r  
the case  n = 3, a t o t a l  c o l o r i n g  each  of  G(1, 1, 1) a n d  G(2, 2) can  be o b t a i n e d  by  the  
fo l lowing  c o l o r - t a b l e s  whe re  the  (i, i) e n t r y  is the  c o l o r  of  the  ve r tex  vi a n d  (i, j )  e n t r y  
is the c o l o r  of  the  edge  {vl, vj} (see Fig .  2.). T h e  case  n < 2 is easy  to  settle.  [ ]  

N o w  we can  s h o w  t h a t  G(1, 2n - 3) is c r i t i ca l  in the  sense  of  t o t a l  co lo r ing .  

v 1 

v 2 

v 3 

v 4 

v 5 

v 6 

A 5 - to t a l  coloring of G(1,1,1). 

v 1 v 2 v 3 v 4 v 5 

1 x 4 3 5 

x 1 3 5 2 

4 3 2 x 1 

3 5 x 2 4 

5 2 1 4 3 

2 4 5 1 x 

v 6 

2 v 1 

4 v 2 

5 v 3 

1 v 4 

x v 5 

3 v 6 

v 1 v 2 v 3 v 4 v 5 v 6 

2 x x 3 1 4 

x 1 4 2 5 3 

x 4 2 5 3 1 

3 2 5 4 x • 

1 5 3 x 4 2 

4 3 1 x 2 5 

A 5 - t o t a l  coloring of G(2,2). 

Fig. 2 

L e m m a  2.5. L e t  H be a proper subgraph o f  G = G(1 ,2n  - 3) with A ( H )  = 2n - 2. 
Then H is o f  type one. 

Proof. It  suffices to  s h o w  t h a t  for  a n y  edge  e e E(G), G - e is of  t ype  one.  Le t  the  

ver tex  set of  G be {v o, v 1,/)2 . . . . .  /)2n-2,/)2,-1 }, w h e r e  v2,_ 2 is n o t  a d j a c e n t  to  /)2n-1 
and  v o is n o t  a d j a c e n t  to  vl, i = 1, 2, . . . ,  2n - 3. W i t h o u t  loss  of  genera l i ty ,  we 
cons ide r  the  fo l l owing  th ree  cases:  (i) e = {/)1,/)2,-1 }, (ii) e = {/)1,/)2}, a n d  (iii) e = 
{/)o, v2,-1 }. F i r s t ,  let  n > 4. In  Case  (i), G - e + {v o, vl } is a c t u a l l y  a G(2, 2n - 4) 
g r a p h  which  by  L e m m a  2.4, is of  t ype  one.  In  Case  (ii), G \ e  + {Vo,/)l} + {Vo,/)2} is 
a G(1, 1, 2n - 5) g r a p h  whicfi  by  L e m m a  2.4 aga in ,  is of  t ype  one.  In  C a s e  (iii), 
a (2n - 1)- total  c o l o r i n g  lr of  G can  be  o b t a i n e d  b y  m o d i f y i n g  a (2n - 1)- tota l  co lo r -  
ing ~0 of  K z n _ l :  Le t  p = 2n - 1 a n d  let  the  ver tex  set  of  Kp be {1,2 . . . . .  p}. T h e  p 
co lo r  classes  of  q~ are  C ( j )  = { { j -  i , j  + i}]i = 1,2 . . . .  , n -  1 } U { j } , j  = 1 ,2  . . . . .  p, 
w h e r e j  - i a n d j  + i a re  c a l c u l a t e d  m o d u l o  p. T h e  c o l o r  c lasses  o f n  a re  C(1) U {2n}, 
C ( j )  for  j = 2, 3 . . . . .  p - 1 a n d  C(p) - { n -  1, n} U {n, 2n}. F ina l l y ,  f o r  the  case  
n _< 3, it is n o t  diff icult  to  e s t ab l i sh  a (2n - D - t o t a l  c o l o r i n g  for  G. [ ]  

C o m b i n i n g  L e m m a  2.2, 2.4, a n d  2.5, we have  p r o v e d  T h e o r e m  1.2, i.e., we have  
shown  tha t  a g r a p h  G of  o r d e r  2n a n d  A(G) = 2n - 2 is of  t ype  t w o  if a n d  on ly  if 
G c is a d i s jo in t  u n i o n  of  an  edge  a n d  a s t a r  wi th  2n - 3 edges.  
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Remark and acknowledgement. The deficiency of a graph G, def(G), is given by the summation of 
(/I(G) - deg(G)), for all v ~ V(G), i.e., def(G) = ~,~v(G~(zI(G) -- deg(G)). G is conformable if G has 
a vertex coloring ~b with 3(G) + 1 colors such that 

def(a)  >_ I{i: I~-X(i)l - I V(G)I + 1 (mod 2), 1 < i < A(G) + 1}l 

In [4], Chetwynd and Hilton conjectured that a simple graph G with A(G) > 12 [I V(G)I + lJ is type 
two if and only if G contains a non-conformable subgraph H with zl(H) = A(G). Now, it is not 
difficult to see that G(1, 2n - 3) is conformable, thus this disproves the conjecture. 

Finally, we would like to express our thanks to both Professor A.J.W. Hilton and Professor 
H.P. Yap for their helpful comments. 
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