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Abstract. 

The amortized analysis is a useful tool for analyzing the time-complexity of performing a sequence of 
operations. The disk scheduling problem involves a sequence of requests in general. In this paper, the 
performances of representative disk scheduling algorithms, SSTF, SCAN, and N-StepSCAN, are ana- 
lyzed in the amortized sense. A lower bound of the amortized complexity for the disk scheduling problem 
is also derived. According to our analysis, SCAN is not only better than SSTF and N-StepSCAN, but also 
an optimal algorithm. Various authors have studied the disk scheduling problem based on some 
probability models and concluded that the most acceptable performance is obtained from SCAN. Our 
result therefore supports their conclusion. 
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1. Introduction. 

Disk scheduling is impor t an t  to operat ing systems and database  m a n a g e m e n t  

systems. M a n y  disk scheduling algori thms have been proposed,  such as the First- 

Come-First-Service (FCFS) [6], Shortest-Seek-Time-First (SSTF) [6], S C A N  [6], 

N-StepSCAN [8], and  V(R) [9]. In  the literature, these a lgori thms are analyzed 

based upon  probabi l i ty  models  [4, 6, 8, 9, 11, 22, 23]. In  this paper,  we shall use the 
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amortized analysis techniques [18, 19,20,21] to analyze three disk scheduling 
algorithms: SSTF, SCAN, and N-StepSCAN. 

The amortized analysis [18,19, 20, 21] was proposed by Tarjan. It is a very useful 
tool for analyzing the time-complexity of performing a sequence of operations. Since 
the disk scheduling problem involves a sequence of requests, amortized analysis is 
a very suitable tool to analyze a disk scheduling algorithm which performs a se- 
quence of operations on these requests. 

According to our analysis, SCAN is the best among the three algorithms. We also 
showed that SCAN is optimal in amortized sense. This matches the previous result 
E4, 6, 8]. 

In the rest of this section, the disk scheduling problem and the technique of 
amortized analysis are introduced. The amortized analysis of the three disk schedul- 
ing algorithms is included in Section 2. A lower bound of the amortized complexity 
for the disk scheduling problem is derived in Section 3. Section 4 compares the three 
algorithms according to our analysis. Concluding remarks are given in Section 5. 

1.1. The disk scheduling problem. 

The disk scheduling problem canbe described as follows: Consider a single disk. 
Data are stored on various cylinders. At any time, there are a set of requests to 
retrieve data on this disk. This set of requests is called a waiting queue and these 
requests are called waiting requests. The problem is a typical on-line problem 
[10, 13, 14]. It selects one of waiting requests as the next request to be served. 

For example, assume that initially there is a sequence of requests (waiting 
requests) to access data stored on cylinder 9, 2, 8, 4 and 6 respectively. To simplify 
our illustration, we assume that the disk head is initially located on cylinder 0 and no 
more requests arrive afterwards. 

Suppose that we use a very straight forward algorithm, namely the FCFS 
algorithm, to schedule this sequence. The disk head may first move from cylinder 
0 to 9, then to 2, 8, 4, and 6. The total service time of this sequence of requests 
(9,2,8,4,6)isi0-  91 + 19-  21 + 12-- 8t + 18-- 41 + J4-- 61 = 9 + 7 + 6 + 4 + 2 = 
28. Here we assume that the time for the disk head to move from cylinder i to j is 
li -J l .  

On the other hand, suppose that we use another algorithm, namely the SSTF 
algorithm, to schedule this sequence. In this algorithm, the nearest request is served 
next. The disk head first moves from cylinder 0 to 2, then to 4, 6, 8, and 9 with total 
time 2 + 2 + 2 + 2 + 1 = 9. This shows that different algorithms may produce 
different results. 

In this paper we consider a sequence of m requests processed by a single disk. 
During the entire process, these requests may keep coming in. If the waiting queue is 
longer than m, we will ignore those requests outside the m requests. In other words, 
the maximum length of the waiting queue considered here is m. On the other hand, 
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we assume that the minimum length of the waiting queue is W where W > 2. A disk 
scheduling algorithm would select a request in the waiting queue to process. Denote 
the ith service time by ti. Then the amortized complexity of a disk scheduling 
algorithm is the worst case of ~7'= 1 tgm. 

In the rest of this paper we shall assume that a disk has Q + l cylinder numbered 
from 0 to Q with the disk head initially located on cylinder 0. Moreover, we shall 
assume that the time for the disk head to move from cylinder i to j is li -J l -  

Since we only consider a sequence of m requests, the length of the waiting queue 
will be tess than W after the (m - W + 1)th servicing. To satisfy our assumption 
(that the minimum length of the waiting queue is W), (W - 1) dummy requests placed 
on the same cylinder of the last served request are added after the considered 
sequence of requests. Note that since the dummy requests are all located on the same 
cylinder of the served request, they will not increase the total service time of the 
considered sequence of requests. Moreover, since the dummy requests are not 
processed really, they will not increase the length of the considered sequence of 
requests. These dummy requests are only added to satisfy our assumption and will 
not effect the amortized complexity. 

1.2. Technique of amortized analysis. 

The "potential function" technique [18, 19, 20, 21] is useful in amortized analysis, 
and is employed in our analysis. Consider a disk scheduling algorithm X. Let 
~ _  1 and ~ be the potentials before and after the ith handling of the requests, 
respectively. The amortized time a x of this is defined as 

(1) a/x = t x + +~ - +f :  1, 

where t x is the actual service time of the ith request. Summing the amortized time of 

all m requests, we have 

<2) ~ a f =  ~ ( t  x + < / > x - @ x - 1 ) =  ~ t x + + x - @ x "  
i=1 i=1 i=1 

By deriving an upper bound A x of a x, we obtain an upper bound of ~.7'= ~ tx as 

follows: 

(3) ~ tx= ~ a x +@x_q~x <_m.A x + + x - + x .  
i=l i=l 

To prove that this upper bound cannot be tightened, a case in which ~7'= 1 tx is 
exactly equal to the upper bound must be given. Then m" A x + 4 ~g - ~x is shown to 

f ,, be the worst case o ~i  = 1 ~- Averaging this result by m, the amortized complexity of 
the disk scheduling algorithm X is then obtained. 
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2. Amortized analysis for SSTF, SCAN, and N-StepSCAN. 

2.1. Analysis of Shortest-Seek-Time-First. 

In SSTF, the nearest request is always served next. In the case where more than 
one nearest request appears in the waiting queue, we assume, without loss of 
generality, that the one with the smallest cylinder number is selected. The direction 
toward the nearest request is called the service-direction. 

Consider the status after the ith servicing, where 0 < i < m. Let N~ ~ be the number 
of waiting requests located in the service-direction, E~ the distance (in number of 
cylinders) between the disk head and the nearest request, and DIs the number of 
cylinders in the service-direction. The definition of/J~ and/ )~  can be seen clearly in 
Figure 1. The potential function of SSTF is defined as 

disk head the nearest 
after the ith servicing request 
service-direction (---,) 

4 1 I 
t. Lr q 
l" zJ~ 

Fig.  1. T h e  def in i t ion  of/2~ a n d  D~L 

min g~, 

/ fN~ s = 1, 

/ f N ? >  1. 

Three properties associated with ~7" are stated in the following lemmas: 

LEMMA 1. ~ _> 0 where 0 <_ i <_ m. 

PROOF. Holds trivially since N~ ~,/2~ and D~ s are all >_ O. []  

~r~is < Q where 0 < i <_ m. LEMMA 2. 

PROOF. Consider the case that N~ s = 1. Since W > 2, there is at least one waiting 
request located in the opposite direction (with respect to the service-direction). 
Assuming that the time needed for disk head moving in the opposite direction for the 
nearest request in that direction is t', it is clear that EZ < t' or the disk head will move 
in the opposite direction. Thus, we have E~ + t ' <  Q. However, since 
L~ < t', 2E~ < Q, i .e. , /~ _< Q/2. Therefore, ~/~ < Q/2 when N7 s = 1. 

In the case when N ~ >  2, since D7 ~ _<_ Q, we have ~r~i" = min(/5~,D~*/2)< 
D~/2 < Q/2. [] 
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LEMMA 3. ~ s  =< /-~ where 0 < i <_ m. 

PROOF. Holds trivially by the definition of q~. [] 

The above three temmas are used in deriving the amortized complexity of SSTF in 
the following theorem. 

THI~ORI/M 1 (Amortized Complexity of SS TF). The amortized complexity of SSTF 
is (m + 1)Q/2m. 

PROOF. Consider the ith transaction, where 0 _< i _< m. The actual service time to 
treat this request is ~s and the amortized time is a~ ~ = t~ ~ + ~ - q~_ ~. To derive an 
upper bound A ~ of a~ ~, the following three cases are considered: 

[Case 1]. N~Sl = 1. 
In this case, ¢~_ ~ =/27_ ~ by the definition of potential function. Then 

= ¢ + 

= t? + ~ s  _/2~_ 

_< + Q / 2 -  

<_ Q/2 

according to (1), 

S$  since ~ _  1 =/2i-1 by definition, 

since q~-~ < Q/2 by Lemma 2, 

since E~_ 1 = tt s's" 

[Case 2]. N~ ~_ 1 > 1 and/5~_ 1 < D~  i/2. 
In this case, ~,~.~_ 1 is also equal to L~_ l- Hence a~ ~_ 1 < Q/2 as in Case 1. 

[Case 3]. N~ ~_ 1 > 1 and/~_  1 > D~ ~- l/2. 
In this case, ~ _  1 = D~ ~- i. Since N~ ~_ ~ > 1, there are some requests, other than the 
nearest request, located in the service-direction. Let t" be the distance (in cylinders) 
between the nearest request and the second nearest one among all requests located 
in the service-direction. D ~  l, /~T-~, and t" are shown in Figure 2. After the ith 

disk head second 
before the ith servicing nearest nearest 

service-direction t--* ) request~ ]request t 

I_ J 
i - I  

b . "  't i--I 

Fig. 2. The disk system before the ith transaction. 
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I 

disk head "second 
Mter the ith servicing nearest 
service-direction, (;),, l'request"l 

- -  8 8  IL [~llss~i_l L~_ 1 I 

Fig.  3. T h e  d isk  sy s t em af te r  the  i th tu rn .  

transaction, the disk system can be illustrated by Figure 3. Because of the "second 
nearest request", the service time of the (i + 1)th turn is bounded by t", i.e., E~ < t". 
Therefore, we have 

(4) 
s s  $ s  s s  $$  Then, ai = ti + ~ i  - ~ i -  1 

$ s  

$ $  s s  <-- t7 s q- [ D i - 1  --  I~ i -1]  - -  q~/s- 1 

< D i - I  i - 1  

= 1/2 <_ Q/2. 

Hence A ~ = Q/2. 

S $  S S  

E~ < t" <__ D i_  1 - -  If, i_ 1. 

by Lemma 3, 

by (4), 

since/~]_ 1 = g~, 

s~ ~ 1/2, since ~i-1 = Di- 

The total service time T s' to serve a sequence ofm requests is then obtained by (3) 
as follows: 

T~ = ~'~=1 t~ ~ = ~ = 1  a7 ~ + ¢~o ~ -- ~Y~, 

• s s  _ _  A s s  <_ m Q/2 + rb~o ~ - ~ since ai < = Q/2 

_< (m + 1). Q/2 since, by Lemma 1 and Lemma 2, 
the maximum of ~o ~ is Q/2 and 
the minimum of ~ is 0. 

To show that the upper bound (m + 1)- Q/2 cannot be tightened, consider a se- 
quence of m requests located on cylinders as follows: 

(Q/2, Q, (0, Q/2) (r"- 3)/2, 0), 
Y 

where X r means iX,  X , . . . ,  X)~ Suppose that the number of waiting requests is 2 at 
any time and m odd. Then this sequence of requests would be processed as follows: 

((Q/2, Q). 
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Hence the total service time of this sequence is (m + 1). Q/2, which is just equal to 
the upper bound of T ss. The amortized complexity of S S T F  is therefore 

(m + l)a/2m. • 

2.2. Analysis for SCAN.  

SCAN is similar to SSTF  except that it chooses the nearest request in the 
sweepdirection. Assuming that initially the sweep direction is outward, S CAN will 
not change this direction until the disk head reaches the outermost cylinder or until 
there is no  waiting request in this direction, and vice versa. 

Consider the status after the ith transaction, where 0 < i < m. If the sweep- 
so. d as direction is not changed, N~ is define the number of requests having been served, 

and D~ c is defined as the distance which the disk head has been moved in the current 
sweep (including this transaction); otherwise, N~ c and D~ ~ are set to zero. Nb ~ and 
D~ c are zero intuitively. The potential function of S CAN is then defined as 

~ = N~ ¢" O /W - O~ c. 

TI-mOREM 2 (Amortized Complexity of SCAN). The amortized complexity of  

SCAN is Q(m - 1)~Win + Q/m. 

PROOF. 
Consider the ith serving, where 0 < i __< m. Suppose that the actual service time to 

serve this request is ~', the amortized time is a~ c, and an upper bound ofa~ ~ is A ~c. To 

derive A% the following two cases are considered: 

[Case 1]. The sweep-direction is not changed after serving this request. In this 

case, N~ c = Ni ~_ 1 + t and D~ ~ = D~_ ~ + ~c. Then 

~ =  ~ + ~ -  ~_~ 

= N ~ W ~ ~c *~ + [  ~ Q~ - D i ] - [ N i _ I Q / W - D i _ I ]  

= ~ + [(N~ ~_ ~ + 1)" O . / W  - (OT-  ~ + ~ ) ]  - [N~_ ~" Q / w  - D~_ ~] 

= Q/W. 

[Case 2]. The sweep-direction is changed after serving this request. In this case, 
N~ c = 0 and D7 c = 0. ~ = 0. 

a~C = tsc + ~ c  _ ~ L  l 

= t7  + [ 0 ]  - -  [ N ~ L  1 a / w  - D "~,_~] 

= t~ ° - [ N T -  ~ Q / W  - D~ ~_ ~]. 

Since the minimum length of the waiting queue is W by assumption, the minimum 
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number of requests served in one sweep is also W. That  is, the sweep-direction 
cannot be changed when the number of requests served in the current sweep is less 

than W. Therefore, N~ ~_ 1 > (W - 1) and 

~C SC ~C a, <.t ,  - [ ( W - 1 ) Q / W -  D,_I]  

<_ [ ¢  + D~L 1 -- Q] + Q/W. 

Moreover, since the maximum distance which the disk head moves in one sweep is 
Q, ~c + O'C ~-t -< Q. Therefore, a sc < Q/W. 

According to the above discussions, A se = Q/W. Let T ~ be the total service time to 
serve a sequence of m requests. Then 

m 8c sc  =Ei=lat +~0-ff#~ by(3), 

<_ m Q / W  + ~o c - ff/,~ since a~. c <_ A 'c = Q/W. 

Since both N~ and LPo c are zero, ~ = 0 and hence T ~ _< rn Q / W  - ~ .  Moreover, 
if N ~ = 0 ,  then D ~ = 0  and ffr~=0.  Otherwise, D ~ s [ 0 , Q ]  and 

= N ~ . Q / W  - D~ > Q / W  - Q. Since Q / W  - Q < O, the minimum of #~ is 
Q / W  - Q. Accordingly, 

T sc < m Q / W  - ( Q / W  - Q) < (m - 1)Q/W + Q. 

Consider a sequence of m requests which are respectively located on cylinders 

((Q4, 04)(m - 1)/8, Q) 

and the number of waiting requests is 4 at any time. Let W = 4. Suppose that (m - 1) 
is a multiple of 8. Then, this sequence of requests should also be scheduled and 
processed by the sequence ((Q4, 04)tin - 1)/s, Q). The total service time of this sequence 

is 2 Q ( m - 1 ) / 8 + Q = 2 Q ( m - 1 ) / 2 W + Q = ( m - 1 ) . Q / W + Q ,  which is just 
equal to the upper bound of T ,c obtained. Therefore, the amortized complexity of 
S C A N  is Q(m - 1)/Wm + Q/m. I 

2.3. Analysis  f o r  N - S t e p s S C A N .  

In N - s t e p S C A N ,  requests are grouped in size of N or less (if less than N requests 
remain) according to their arriving order, and are served group by group. A group of 
requests is served as follows [8]: (a) Select the direction with nearer farthest request 
and move the disk head to this farthest request processing the requests on its path. 
(b) Scan back to serve the remaining requests. If no requests remains, (b) is unnecess- 
ary. Thus, for each group, at most two sweeps are needed. 

Consider the status after the ith turn, where 0 < i < m, and assume that this serves 
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a request belonging to the kth group. Let P be the disk head position after the 
(k - 1)th group of requests is completed, and P'  that after the ith transaction. 
Suppose that this is not the last of the kth group. Then F~ ~ is defined as the smaller of 
the distance from P to both ends of the disk, i.e., F~ ~ = min(P, Q - P). Nr ~ is 
defined as the number  of requests having been served and D~ ~ is defined as the 
distance which the disk head has been moved in processing the kth group. Other- 

wise, F~  = min(P',  Q - P') and N~ ~ = D~" = 0. Ng ~ and D~ ~ are also zero intuitive- 

ly. The potential function of N - S t e p S C A N  is then defined as 

• 7 = N;~N/~ - 07" + Wo 

where : = min (N, W). 
Before analyzing N - S t e p s S C A N ,  an important  lemma concerning the F~ ~ is 

proved below. 

LEMMA 4 (Property of the F~). Consider the processing o f  a group o f  requests in 

N - S t e p S C A N .  Le t  this group be the k th  group o f  requests and end with the x th  

transaction. Dk is the total distance o f  the disk head moving in the k group. Then, 

Dk + F~ ~ <<_ Q + F~_I. 

PROOF. Consider the case requiring only one sweep to serve this group of 
requests. Let P and P '  be the positions of disk head just after the processing of the 

(k - 1)th and the kth groups of requests. Dk = IP -- P'I and F~ ~ = min(P' ,  Q - P') by 
definition. Then we only have to consider the following four cases: 

[Case I].  P >_ e '  and P '  _> (Q - P'). 
In this case, Dk + F~ ~ = P -- e '  + (Q - e ' )  = P + (Q - 2P'). Since e '  > (Q - P'), 

Dk + F~ ~ < P < Q. 
[Case 2]. P _> P'  and P'  < (Q - P'). 
In this case, Dk + F~ ~ = P - P '  + P '  = P. Therefore, Dk + F~ ~ <_ Q. 

[Case 3]. P < P'  and P' > (Q - P'). 

Then, Dk + F~ ~ = e '  - P + (Q - e ' )  = Q - P < Q. 

[ case  4]. e < P'  and P'  < (Q - P'). 
In this case, Dg + F~ ~ = 2P' - P. Since P' < (Q - P'), Dk + F~ ~ < Q - P < Q. 

From the discussions above, we may conclude that Dk + F~" < Q if only one 

sweep is needed to process the group of requests. 
Consider the case requiring two sweeps. Let Da + Db = Dk, and Da < F~ ~- 1 since 

the distance between the disk head and the nearer farthest request is F~C ~. On the 
other hand, the second sweep can be analyzed as it were from a single sweep, which 

we did in the above four cases. Therefore, Db + F~ ~ < Q. Then 

D k + F~ s = D,  + Db + F~ ~ <- F n~- ~ + Q since D, < F ~  t and Db + F~ ~ < Q. • 

The amortized complexity of N - S t e p S C A N  is derived in the following theorem. 
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THEOREM 3 (Amort ized Complex i ty  of  N - S t e p S C A N ) .  T he  amort ized complex i ty  

o f  N - S t e p S C A N  is (Q/m)[(m - 1)/o: + 1]. 

PROOF. Consider  the ith serving, where 0 < i < m. Suppose  that  the actual  service 
t ime to service this request  is t7 s, the amor t ized  t ime is a7 s, and  an upper  bound  of  
a7 ~ is A ?Is. Consider  the following two cases: 

[Case  1]. This  request  is not  the last served in the current  group.  In this case, 
F/~ = F~j_ 1, N~ S = N~_t ,?Is and  D~ ~ = Di_l?is + t~s. 

n s  ? i s  ? is  n s  Therefore,  a i = t  i + ~ i  - ~ i _ 1  

= t7 s + [N'~ s" Q/o: - 07 S + F'~ ~] - [NI ~- 1" Q/~ - D~L 1 + F] '~- 1] 

= t ?  + [(~?~_ 1 + 1)- Q/o: - (D7-1 + t?) + F; ~'_ 12 

IlS ?IS n s  - [ N i - i  .Q/o: - D i _  1 + F~_I] 

= Q/o:. 

[Case 2]. This request  is the last served in the current  group.  In  this case, N~ s = 0 
and D7 s = 0. 

n s  n s  ?is ?is 
a i =t~  + ~ i  - - ~ i - 1  

?i8 ?IS ?IS = t7 ~ + [N;'S.Q/o: - D, + ~.y] - [N~_ 1" Q/o: - D , - I  + ~ - 1 ]  

n s  ?is -- t?  + IF.y] - [N~_ 1" Q/~ - D~-l?is + r~_ d .  

Consider  the size of  a group:  I f N  < W, it is N; otherwise it is at  least liE. It  is clear 
that  the size of  a g roup  is at least O:(= rain(N,  W)). Hence  N~_I > (a - 1), and  

n ~  n s  F I ~ s  n s  ai <_ t~ + - [(o: - D" Q/o: - D~_ 1 + FI ~- 1] 

<_ [ ( t?  + DT~ 1) + F~ S + F.7 - Q - F ~  d + Q/o:. 

Moreover ,  since t7 s + D7 ~_ 1 is the total  distance of  the disk head  m o v e d  in the process 
of the group,  (t7 s + D7 ~_ 1) + F'~ ~ <<- Q + F~'~-I by L e m m a  4. Therefore,  (t~ s + D7 ~_ 1) + 
.s .s .~ < Q/~. F I - 1 - Q - F I - 1  < 0 a n d a  i _ 
According to the discussions above,  A ?I, = Q/o:. 

Let T ?I, be the total  service t ime of  a sequence of  m requests. Then  

T "s= X~"_-~ t? 

< mQ/o: + ~ s  _ ~ since A "s = Q/o: 

< m .  Q/o: - ~',~ since ¢i~s = 0 (i.e., N~ s _- Do?iS = F~S = 0). 

Moreover ,  ifN~, s = 0, then D~, ~ = 0 and  ~ = / ~  > 0. Otherwise,  D~ ~ [0, Q] and  

rP "s = N?I~'Q/O: - D ~  + f~s > Q/o: _ Q + F~S > Q/o: _ Q. Since Q/o: - Q < O, the 
m i n i m u m  of  ~,~ is Q/o: - Q. Therefore,  

T ?IS <_ m'Q/o: - (Q/ct - Q) <_ (m - 1).Q/o: + Q. 
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To show that the upper bound (m - t).Q/a + Q cannot be tightened, consider 
the following case. Suppose N = 5 and the number of waiting requests is 4 at any 
time. Let W = 4. Then ~ = min(N, W) = min(5,4) = 4. Suppose a sequence of 
m requests which are respectively located on cylinders ((Q4 04)(m - t)/S Q) and (m - 1) 
is divisible by 8. By the scheduling of N-StepSCAN, this sequence of requests should 
also be processed as follows: 

((Q4, 04)(m- 1)/8, Q). 

The total service time of this sequence is therefore 2Q(m-  1)/8 + Q = 
(m - 1)- Q/~ + Q, which is just equal to the upper bound of T "~ obtained. The same 
result is obtained if we choose N _ W in this case. Therefore, the amortized 
complexity of N-StepSCAN is (Q/m)[(m - 1)/~t + 1]. [] 

3. A lower bound of amortized complexity for the disk scheduling problem. 

To explore how the best scheduling algorithm will behave, a lower bound of the 
amortized complexity of disk scheduling problem is derived in the following the- 
orem. 

THEOREM 4 (Lower bound of the disk scheduling problem). The amortized complex- 
ity of any disk scheduling algorithm must be > Q/W. 

PROOF. TO prove the amortized complexity is lower-bounded by Q/W, suppose 
that there is a scheduling algorithm with amortized complexity less than Q/W. 

Consider a sequence of requests ((QW, OW)k) for arbitrarily large k. Suppose the 
number of waiting requests in W at any time. This sequence should also be 
scheduled and processed by the sequence ((QW, oW)k). The length of this sequence is 
2 Wk. Since the disk head is initially placed on cylinder 0, the total service time of this 
sequence is 2Qk. The average service time of this sequence is then Q/W which 
contradicts our previous assumption. [] 

4. Comparisons. 

Here comparisons are made among SSTF, SCAN, and N-Step-SCAN with 
respect to their amortized complexities. The results obtained in the previous section 
are listed in the first column of Table I. Note that another famous disk scheduling 
algorithm FCFS is actually the 1-StepSCAN. Therefore the row t-StepSCAN in 
Table 1 can be viewed as the complexities of FCFS. 

It is difficult to compare these disk scheduling algorithms for arbitrary m from the 
first column of Table 1. However, as m ~ ~ ,  the second column shows that both 
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Method Amortized Complexity Amortized Complexity 
(m~ oo) 

SSTF 
SCAN 

1-StepSCAN(FCFS) 
N-StepSCAN(N < W) 
N-StepSCAN(N > W) 

Lower Bound 

(m + 1). Q/2m 
(m - 1)/m'Q/W + Q/m 

(m - 1)/m'Q + Q/m 
(m - 1)/m'Q/N + Q/m 
(m - l)/m" Q/W + Q/m 

Q/w 

Q/2 
Q/w 
Q 

Q/N 
O/W 
Q/W 

SCAN and N-StepSCAN with N > W are optimal in amortized complexity, but 
N-StepSCAN is not optimal when N < W. We conclude that SCAN is the best disk 
scheduling algorithm among SSTF, SCAN, and N-StepSCAN in amortized sense. 
The 1-StepSCAN (FCFS) is the worst among them. 

5. Conclusion. 

The performance of three representative disk scheduling algorithms, SSTF, 
SCAN, and N-StepSCAN, are analyzed in amortized sense. A lower bound of the 
amortized complexity for the disk scheduling problem is also derived. According to 
our analysis, SCAN is not only better than SSTF and N-StepSCAN, but is also an 
optimal algorithm. Various authors have studied the disk scheduling problem based 
on probability models [4, 6, 8] and concluded that the most acceptable performance 
is obtained from SCAN. Our result therefore supports their conclusion. 

As far as the authors know this is the first paper performing amortized analysis on 
a set of practical algorithms for computer systems. We believe that we have opened 
a new field, namely, applying amortized analysis to many existing algorithms 
involving a long sequence of operations. 
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