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Initial misalignment is one of the major error 
sources of inertial navigation systems (INS). For 
terrestrial navigation, the initial alignment errors 
will affect the system error not only in the attitude 
indication but also in the velocity and position 
information [l-31. Therfore, prior to normal 
navigation, alignment process must be performed 
to determine the orientation of the platform axes 
with respect to the navigation coordinate frame. One 
method for obtaining the initial angular orientation 
is through the use of an external reference by optical 
means. However, this method is very limited to 
operational enviroments. Alternatively, for most 
ground based applications, a self-contained alignment 
method known as gyrocompassing [2-7] provides 
another operational approach. As a general rule, 
gyrocompassing consists of two phases, that is, 
leveling and azimuth alignment. The basic principle of 
gyrocompassing consists of feeding signals propotional 
to the accelerometer outputs or/and velocity error 
outputs to the appropriate level gyros and azimuth 
gyro. 

The purpose of initial alignment process is to 
drive the misalignment angles to zero. Unfortunately, 
this goal can never be achieved in a practical system. 
This drawback is deduced from the sensor errors 
which cannot be compensated ideally. From the 
control theorectical point of view, the basic difficulty 
associated with the self-alignment technique is that the 
system is not completely observable [%lo]. 

The determination of unobservabale states 
during initial alignment process is very important 
in consideration of system performance. Generally, 
the system state variables can be transformed into 
the observable canonical form. It means that the 
observable part and unobservable part can be 
seperated intentionally. However, the choice of 
observable (unobservable) states is certainly not 
unique since the number of transformations are 
innumerable. Early research workers showed that 
the determination of unobservable states was a part 
of physical judgments. This interesting problom of 
selection of the suitable unobservable states motivates 
us to investigate the observability of INS during ground 
alignment phase of operation. 

We examine the observability of a linearized INS 
error model of a stationary vehicle. The horizontal 
velocity outputs of INS are the system measurements. 
We have found that the unobservable states which 
are distributed in two decoupled subspaces can be 
systematically determined. Also, the leveling errors 
can be estimated from the system measurements 
and their first derivatives. However, to estimate 
the azimuth error, the second derivative of system 
measurement is needed. It is equivalent to state that 
the estimation of azimuth error can be obtained from 
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the estimates of leveling error and leveling error rate. 
This phenomenon may facilitate the designing of filters 
for leveling and azimuth alignment simultaneously, 
without using gyro outputs explicitly. 

II. GROUND ALIGNMENT ERROR MODEL 

In order to look into the behavior of an inertial 
navigator, a proper error model is now derived. It 
is well known that the description of the INS error 
propagation using a linearized error model is quite a 
good approximation. The characteristcs of INSs can be 
derived from the linear error model. 

Many different error models can be found in 
the literature. For the purpose of our analyses, we 
adopt the Bar-Itzhack and Berman’s [lo] derivation 
of the error model for INS in ground alignment. 
Assuming the navigation system coordinate frame 
is the local-level north (N), east (E), and down (D) 
coordinate system. Since the coupling of the vertical 
channel with the horizontal channels is very weak, 
the vertical channel can be ignored. When the initial 
alignment process is done at a fued ground base where 
the geographic position is known precisely, then the 
gravity error and the position error state can be ruled 
out. Moreover, the system is nearly stationary and 
hence the Coriolis acceleration can also be ignored. 
Under these assumptions, the error dynamics including 
the horizontal velocity errors and the attitude errors 
can be made considerably simple. In this case, the INS 
ground alignment error model can be written as [lo] 

where d v  and $ represent the velocity error and 
attitude error, respectively; ba and dw represent, 
respectively, the generalized accelerometer error 
and the generalized gyro drift rate [ll]; g is the 
local gravity; R represents the Earth rate; finally, 
the subscripts N, E, and D denote the corresponding 
components in the North-East-Down navigation 
coordinate system. Note that a form of this error 
model can be used for gimballed systems as well as 
strapdown systems [ll, 121. 

Rewrite (1) in compact notation 

x’ = A’x’ + b (2) 

where the variables x’ ,  A’, and b are identified with 
its counterpart in (1). It is reasonable and practical 
to assume the generalized accelerometer errors and 
gyro drift rates as constant in ground alignment phase. 
Hence, the sensor errors can be modeled as 

(3) 

where 6a = [6aN,6aEIT represents the generalized 
accelerometer error vector and 6w = [ b w N , 6 w E , d ~ D ] ~  
represents the generalized gyro drift rate vector. 

Combing (2) and (3), yields 

A’ I x‘ 

[ : l=[O 01 [ b l  (4) 

where I is the identity matrix. This linear dynamic 
error model can also be expressed in compact notation 
as 

X=Ax (5) 

where xT = [ ~ ’ ~ , 6 a ~ , 6 w ~ ]  and the definition of A is 
obvious from (4). 

velocity components as the system measurements, 
namely, 

Finally, we consider the outputs of INS horizontal 

z = [ Z 1 , Z 2 ] T  = [6vN,6vEIT. (6) 

Then the relationship between the measurements and 
the system A‘ in (2) can be written as 

z = C’X) (7) 

where 

Similarily, the relationship between the measurements 
and the system A in (5) can be written as 

z = c x  (9) 

where 

1 0 0 0 0 0 0 0 0 0  
0 1 0 0 0 0 0 0 0 0  C =  [ ] * (10) 

Now, the observability of the system A’ and the 
system A can be analyzed. 

Ill. OBSERVABILIW EXAMINATION 

Consider a linear time-invariant system. If the rank 
of the observability test matrix is equal to the order of 
the system, then the system is completely observable. 
On the contrary, if the system is not completely 
observable, the number of unobservable states is the 
difference between the order of the system and the 
rank of the observability test matrix. In general, the 
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observability test matrix for the system matrix A with 
measurement matrix C can be expressed as [SI 

r c i  

O = I  CAn-’ I 
where n is the order of the system. Therefore, the 
necessary condition for the observable system is that 
the observability test matrix is full rank. 

with measurement matrix C’ can be written as 
Now, the observability test matrix for the system A’ 

Q‘ = [ . (12) 

After some explicit calculations by substituting (8) and 
the definition of A’ (see (2)) into (12), it is easily seen 
that the rank of Q’ is 5 which is equal to the order of 
the system A‘. Thus the matrix Q’ is full rank. So, the 
system A’ is completely observable. It implies that if 
the sensor errors are fully compensated, the estimation 
problem during alignment process can be automatically 
solved. 

observability test matrix can be written as 
For the system A with measurement matrix C, the 

Q =  [ F A ] .  

CA4 

After some explicit calculations by substituting (10) 
and the definition of A (see (5))  into (13), it can be 
found that the rank of Q is 7 which is smaller than the 
system order 10. Thus the matrix Q is not full rank. 
So, the system A is not completely observable and the 
estimation becomes an unsolvable problem with three 
unobservable states. It is clear that the observability 
loss in system A is generated by the augmentation 
from (2)-(5). It implies that the system can be made 
observable if the dynamics of the sensor errors are 
ignored. However, this assumption is practically 
weak. The determination of the unobservable states 
is now a key problem for estimation in alignment and 
calibration phase of operation. 

Since the system measurements are observable 
by definition, states ~ V N  and ~ V E  are undoubtly 
observable. Fbr convenience, let’s define the following: 

and 

Y1 = [3 

Since the rank of a matrix is invariant under 
elementary row operations, the observability associated 
with the matrix Q, (13), is equivalent to the solvability 
of the following equation 

I O  

0 0 Q3 

[i] = [ O  Q2 :] [i] 

and 

Q3 = 

0 1 0 

SRN 2% g 

-g 

-3gnD 
w:, -3gnNnD -4nh -3gnD 

15gn; + gn;RD -7gnNnh - gni -8n; -I@‘, -go; 

(22) 

Equation (20) shows that the observability of the 
system can be determined by the solvability of three 
decoupled matrix equations. It is obvious that x1 is 
observable. Hence the three unoservable states must 
reside in x2 and x3 which are, respectively, governed by 

i 
y2 = Q2x2 (23) 

and 
y3 = Q3~3.  

It is easily found that when the system is not at the 
Earth pole, RN # 0. Notice that the first column of 
Q2 is a linear combination of other three columns. 
So, from (21), the rank of Q2 is 3 which is one less 
than the order of Q2. Therefore, only one unobservable 
state can be chosen from the components of x2. 
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Similarily, because the first column of Q3 is a linear 
combination of the third and fourth columns, the 
second column of Q3 is equal to the fourth column 
times ON. From (22), the rank of Q3 is 2. It is thus 
obvious that there are two unobservable states 
contained in x3. By observation, $D and ~ W E / R N  have 
the same effect on the measurement derivatives y3. 
Therefore, (24) can be rewritten as 

y3 = 

which shows that only one of $D and  WE can be 
observed at a time. However, they can be chosen as 
unobservable states simultaneously. Thus $N and ~ U E  

must be observable. 
Note that when the system is located at the Earth 

pole, RN = 0, both the fourth column of Q2 and the 
second column of Q3 are zero. Then both ~ W D  and 
$Q are def i te ly  unobservable. That is why the INS 
cannot be self-aligned at the pole. In this case, the 
rank of Q2 is reduced to 2 and the rank of Q3 is 
unchanged. 

IV. ESTIMATION OF MISALIGNMENT ANGLES 

The objective of initial alignment is to drive the 
misalignment angles $N, $E, and $D to zero or as 
small as possible. It is necessary that these states be all 
observable. Following the discussions given in Section 
111, 6 a E  and  WE in x3 are inevitably unobservable. 
Then, only one unobservable state can be chosen from 
the components of x2. Theorectically, the choice is 
arbitary except $E. However, in order to achieve better 
accuracy, the unobservable state must be selected 
carefully. Intuitively, from the f i s t  two columns of Q2, 
it is obvious that $E and 6aN/g are strongly coupled. 
Besides, if we do not choose ~ U N  as the unobservable 
state, more time derivatives of measurements are 
needed to compute the estimate of $E. That causes 
poor estimation which should be avoided in practice. 
Therefore, the best choice of the unobservable states 
are 6aN, b a ~ ,  and   WE for the system in ground 
alignment process. In this case, both ~ W N  and ~ W D  can 
also be estimated for the purpose of calibration. 

Once the unobservable states have been selected, 
we can engage in designing an estimation algorithm 
for computing the estimates of misalignment angles. 
Combing the first equation of (23) and the first two 

$E = '(6VN - 2RDdVE - 6aN) (30) 
g 

1 dWE 

gRN N 
$D = -(6vN - 3RD6vE - 2R;dvN + RD6aE) - 7. 

(31) 

Since we have chosen 6 a E ,  6aN, and  WE as 
unobservable states, the best estimates can be obtained 
by setting these unobservable states to zero, i.e., 

(32) 

(33) 

1 
g 

& = --(6VE + 2RDdVN) 

1 
= g(dVN - 2QDdVE) 

1 
gRN 

$D = -(6VN - 3RDd\;E - 2nL6vN). (34) 

These equations show that the leveling errors, @N and 
$E, can be estimated from the system measurements 
and their first time derivatives, and that the azimuth 
error, $D, can be estimated from the measurements 
and their time derivatives up to second order. 

errors in the estimation are 
It is evident, from (32)-(34) and (29)-(31), that the 

where L is the geographic latitude at the system 
location. This result is identical with the accuracy 
that is often shown in the self-alignment schemes 
[2, 7, lo]. Obviously, this is consistent with physical 
interpretations. The leveling estimation errors are 
caused by the accelerometer errors. The azimuth 
estimation error is caused by the east gyro drift rate 
and the north leveling error. Both of them are latitude 
dependent. For example, the leveling estimation error 
due to 1 mg accelerometer error is 3.4 arc-min. The 
azimuth estimation error due to 0.015 de@ east gyro 
drift rate is 3.4 sec L arc-min; and due to 1 mg east 
accelerometer error is -3.4 tan L arc-min. 
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Finally, differentiating (33), yields 

Substituting (32) and (36) into (34), it can be found 
that 

(37) 
A 1 .  

#D = -($E + RD&) 
RN 

which shows that the azimuth error can be computed 
from the estimates of the leveling e m r  about north 
axis and the leveling error rate about east axis. Note 
that the estimation of azimuth error does not explicitly 
depend upon gyro output signals. This phenomenon 
can be used in an alternate filter design for leveling 
and azimuth alignment simultaneously. 

It is also easy to modify the estimation algorithm 
for aligning an arbitary wander-azimuth mechanization 
system. 

Though this paper focuses on analyzing the 
local-level north-slaved system, it can be easily 
extended to cover arbitary wander-azimuth 
mechanization systems. 

REFERENCES 

V. CONCLUSIONS 

Based upon the Bar-Itzhack and Berman’s INS 
error model, the observability of INS operating in 
ground alignment phase is analyzed. It is realized 
that the unobservable states are induced by the 
augmentation of sensor errors. In general, there 
are three unobservable states with one contained 

x3 = [#N,f#Q,daE,dWE]T. The selection of unobservable 
state from x2 is arbitary. However, the unobservable 
states in x3 cannot be arbitarily chosen in that $D and 
  WE cannot be observed at the same time. 

When the system is located at the Earth pole, 
the number of unobservable states becomes 4 among 
which #D and ~ U D  are definitely unobservable states. 

The determination of the unobservable states 
is dependent upon mission requirements. For the 
purpose of alignment, the best choice of unobservable 
states are d a ~ ,  ~ U E ,  and   WE. An estimation algorithm 
has been derived for aligning the INS on ground 
stationary base. It is shown that the leveling errors 
can be estimated from the measured velocity outputs 
and their first time derivatives. While the second 
time derivative of north-velocity component is 
needed in estimating the azimuth misalignment angle. 
Furthermore, the estimated azimuth misalignment 
has been found proportional to the estimates of the 
leveling error about the north axis and the leveling 
error rate about the east axis. This property is useful 
for designing alternate filter algorithms for leveling and 
azimuth alignment. 

in X2 = [#E,daN,6WN,6WD]T and W O  COntahed in 

Pinson, J. C. (1963) 
Inertial guidance for cruise vehicles. 
In C. ‘E Leondes (Ed.), Guidance and Control of 
Amapace E&cle. 
New York McGraw-Hill, 1963, ch. 2 

Britting, K. R. (1971) 
Inertial Navigation System Ana&sk. 
New York Wiley-Interscience, 1971. 

Kayton, M., and Fried, W. R. (1%9) 
Avionics Navigation Systems. 
New York Wiley, l%9, ch. 7. 

Navigation, inertial. 
Encycbpeda of Physical Science and Technology, Vol. 8. 
New York Academic Press, 1987,668-717. 

Alignment of inertial guidance systems by 
gyrocornpassing-linear theory. 
Journal ofthe Aerospuce Science, 2 8 , l l  (Nov. 1%1), 
885-895 and 912 

Self-alignment techniques for inertial measurement units. 
IEEE Transactwns on Aempace and Electronic Systems, 

Siouris, G. M. (1987) 

Cannon, R. H., Jr. (1%1) 

Hung, J. C., and White, H. V. (1975) 

AES-11, 6 (NOV. 1975), 1232-1247. 
Stieler, B., and Winter, H. (1982) 

Gyroscopic instruments and their application to flight 
testing. 
AGARDograph 160,15 (1982). 

Contml System &st@, An Intro&ctwn to State-Spce 
Methods. 
New York McGraw-Hill, 1987. 

Design and analysis of low-order filters applied to the 
alignment of inertial platforms 
In Practical aspect of Kalman filtering implementation, 
AGARD lecture series 82 (AD-A024377), Mar. 1976. 

Control theorectic approach to inertial navigation systems. 
Journal of Guidance, Control and @namics, 11,3 
(MayJune 1988), 237-245. 

Inertial navigation system error-model considerations in 
Kalman filtering applications. 
In C. T. Leondes (Ed.), Control and Dynamic Systems. 
New York Academic Press, 20 (1983). 

Weinreb, A., and Bar-Itzhack, I. Y. (1978) 
The @-angle e m r  equation in strapdown inertial 
navigation systems. 
IEEE Trans. Aermpace and Electronic Systems, AES-14, 3 
(May 1978), 539-542 

Friedland, B. (1987) 

Kortum, W. (1976) 

Bar-Itzhack, 1. Y., and Berman, N. (1988) 

Huddle, J. R (1983) 

% 

I 

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 28, NO. 1 JANUARY 1992 

~~ - -- __ 



Yeon Fuh Jiang was born in Tmiwan, R.O.C., on April 10, 1954. He received the 
B.S. and the M.S. degree in physics from the University of Chinese Culture and 
the National Tsing Hua University in 1976 and 1978, respectively. After serving 
two years in the Chinese Army, he was employed by the Chung Shan Institute of 
Science and Technology from 1980 to 1987. He has experiences in the design and 
analysis of inertial navigation systems. 

He is currently a doctoral student in the Institute of Electronics, National 
Chiao Tung University, 'hiwan, R.O.C. His research area are inertial technology 
and control engineering. 

Yeon Fuh Jiang is a student member of the IEEE, also a member of Phi n u  
Phi. 

Yu Ping Lin was born in Kwangsi, China, on Dec. 10, 1929. He received the B.S. 
degree in mechanical engineering from the Chinese Naval College of Technology 
in 1953 and the B.S. in electrical engineering from the U.S. Naval Postgraduate 
School in 1965, and the M.S. degree and electrical engineer degree in electrical 
engineering from Stanford University, Stanford, CA, in 1972. 

He served in the Chinese Navy as a technical officer for eight years, and as 
jointed faculty member of Chung Cheng College of Science and Technology as 
professor of system engineering for ten years. He has been a fellow of the Center 
for Advanced Engineering Studies, M.I.T. in 1975-1976 specializing in inertial 
navigation. He is currently the Professor and Chairman of the Control Engineering 
Department, National Chiao Tung University, Hsinchu, Tmiwan, R.O.C. 

JlANG & LIN: ERROR ESTIMATION OF INS GROUND ALIGNMENT THROUGH OBSERVABILITY ANALYSIS 97 

- r  


