
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 9, SEPTEMBER 1997 1025

Identifying Invalid States for
Sequential Circuit Test Generation

Hsing-Chung Liang, Chung Len Lee,Senior Member, IEEE, and Jwu E. Chen,Member, IEEE

Abstract—For sequential circuit test pattern generation incor-
porating backward justification, we need to justify the values on
flip-flops to activate and propagate fault effects. This takes much
time when the values to be justified on flip-flops appear to be
invalid states. Hence, it is desirable to know invalid states, either
dynamically during the justification process or statically before
proceeding to test generation.

This paper proposes algorithms to identify, before test gener-
ation, invalid states for sequential circuits without reset states.
The first algorithm explores all valid states from an unknown
initial state to search the complete set of invalid states. The second
algorithm finds the complete set of invalid states from searching
the reachable states for each state. The third algorithm searches
the invalid states which are required for test generation to help
stop justification early by analyzing dependency among flip-flops
to simulate each partial circuit. Experimental results on ISCAS
benchmark circuits show that the algorithms can identify invalid
states in short time. The obtained invalid states were also used
in test generation, and it was shown that they improved test
generation significantly in test generation time, fault coverage,
and detection efficiency, especially for larger circuits and for
those that were difficult to generate.

Index Terms—Invalid states, sequential test generation, VLSI
testing.

I. INTRODUCTION

T EST generation for digital circuits mainly consists of
two processes, i.e., activating the target fault and then

propagating the fault effects to primary outputs. Both processes
involve justification of line values which are required for
making fault activation and propagation be possible. For
combinational circuits, the above step is relatively easy as it is
performed only in one time frame. However, for sequential
circuits, the justification may involve more than one time
frame. This first increases the memory usage for test genera-
tion. For example, the sequential circuit test generators [1]–[4]
which utilize both theforward time processing(FTP) and the
reverse/backward time processing(RTP/BTP) to generate tests
require much memory to memorize the information of time
frames for propagating faults and justifying the values; and
even for the test generators which use only the RTP approach

Manuscript received October 11, 1996. This work was supported in part
by the National Science Council, Taiwan, R.O.C., under Grant NSC-86-2215-
E009-054. This paper was recommended by Associate Editor T. Cheng.

H.-C. Liang is with the Department of Electronics Engineering, Van Nung
Institute of Technology and Commerce, Chung-Li, Taiwan, R.O.C.

C. L. Lee is with the Department of Electronics Engineering, National Chiao
Tung University, Hsin-Chu, Taiwan, R.O.C.

J. E. Chen is with the Department of Electronics Engineering, Chung Hua
University, Hsin-Chu, Taiwan, R.O.C.

Publisher Item Identifier S 0278-0070(97)09004-0.

[5]–[10] and process the circuit in one time frame, they still
need to memorize the justified states and the information
of previous justified time frames in order to speed up test
generation. Second, the computation complexity is increased
greatly. This is because, during the process of backward
justification, there is a large searching space on the states of
flip-flops. The test generator may justify the states that are, in
fact, unjustifiable. These unjustifiable states areinvalid states
of the circuit, i.e., they cannot appear on flip-flops no matter
what input sequences are applied to the circuit from the initial
state. The test generator will search in vain for all the possible
values of lines or may get into an infinite loop and finally
abort the process. This degrades the test generation efficiency.

Hence, it is desirable to obtain the information on invalid
states during or before test generation. Chen and Bushnell [11]
have developed a test generator to dynamically identify invalid
states during test generation, however, they only provided the
results of small circuits. To identify invalid states before test
generation, Longet al. [12] used implicit state enumeration
based on binary decision diagrams to find some invalid states.
In addition, the symbolic simulation method [13] was also
proposed to find some invalid states of sequential circuits.

In this paper, three algorithms are proposed to identify
invalid states before test generation. The obtained information
on invalid states is applied to test generation to improve the
efficiency of the test generator. The first two algorithms search
the complete set of invalid states, and the third algorithm
identifies only the invalid states which are required for test
generation. The first one simulates the circuit to explore all
of the valid states to find invalid states. The second algorithm
makes use of the fact that valid states are the states that can
be reached from all other states for an initializable sequential
circuit. For the third algorithm, this is because, for test
generation, only a partial set instead of the complete set of
invalid states is required. Three algorithms have been applied
to ISCAS benchmark circuits [14] to identify invalid states.
The time spent was small, and the obtained information on
invalid states was shown to improve test generation efficiently,
especially for larger circuits and those circuits for which test
generation was difficult.

II. I DENTIFICATION OF COMPLETE SET OF INVALID STATES

The sequential circuits treated are at the gate level without
reset states, i.e., with unknown initial states. First, some
terminologies are defined.

For a sequential circuit, a state is said to be able toreach
another state if there exists an input sequence to make the

0278–0070/97$10.00 1997 IEEE

1026 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 9, SEPTEMBER 1997

Fig. 1. State diagram example of a sequential circuit, where statess1; s2,
and s3 are valid states ands4 is an invalid state.

Fig. 2. Grouping of states as valid states and invalid states of a sequential
circuit.

circuit go from state to state . A sequential circuit is
called initializable [15] if it can be brought to a unique final
state, starting with all memory elements in the unknown
state, through athree-value, i.e., [0, 1,], logic simulation
of an input sequence. Hence, if a sequential circuit with
flip-flops is initializable, each of its states can reach one
specific state after it is applied with some input sequence. In
an initializable sequential circuit, avalid stateis a state that
can be reached by any other states, including itself, while an
invalid stateis a state that cannot be reached by some states
under whatever three-value input sequences. These definitions
are more general than those of [16], which assumed reset states
for the circuit. It is mentioned that the defined initializable
here is under three-value logic simulation, and sometimes an
uninitializable circuit, such as510 in [14], is functionally
initializable [17]. All states of this type of circuit will be
considered as invalid states in this work.

For an initializable sequential circuit, the valid and invalid
states can be obtained from their state transition diagram if
given. Fig. 1 shows an example of the state transition diagram
of a sequential circuit. Assume the circuit is initializable, i.e.,
it has at least one valid state that can be reached from the
unknown initial condition. In the diagram, states and

can be reached by all four states and statecan only be
reached by itself. Therefore, states , and are valid
states and is an invalid state. In general, the states of a
sequential circuit can be grouped into valid states and invalid
states as shown in Fig. 2.

From the above definitions, two algorithms are proposed to
find all invalid states of a sequential circuit without reset states.
The first one simulates the circuit to explore all valid states
to find and arrange invalid states. The second one identifies
the invalid states by making use of the fact that every state
can reach all of the valid states and every valid state cannot
reach all of the invalid states. In addition to identifying invalid
states, these two algorithms can also identify initializability of
the circuit.

A. Algorithm 1 for Complete Set of Invalid States

As mentioned above, the first algorithm directly simulates
the circuit to explore all valid states and then to find invalid
states. The simulation starts from an unknown initial state
at an arbitrary time frame with all of the possible input

Fig. 3. Algorithm 1 for finding complete set of invalid states.

combinations. If all of the next states are still unknown, as
happened for510, the simulated circuit is referred to as unini-
tializable. Otherwise, if any new state appears at flip-flops, it
is recorded and simulated later. The process continues until
no new states appear. The states that never appear are invalid
states. This method is similar to that of finding the initialization
input sequence (orsynchronization sequence) [17], [18] for a
sequential circuit without reset states. The main difference is
that the latter will stop when a specified state appears, but our
method continues to simulate until no new state appears.

Fig. 3 shows the complete algorithm of Algorithm 1, and
Fig. 4 shows the process of Algorithm 1 for finding the invalid
states of the circuit in Fig. 1, where the states are supposed to
have been encoded in a proper way for initializability [15].
This circuit has four states, and is implemented by using
two flip-flops with one input. The simulation starts from an
unknown initial state, i.e., all of the states as shown in the
first node, with the single input assigned 0 or 1. For applying
with 0, the next state of the circuit is still unknown, and
therefore it is not necessary for it to be simulated anymore.
For applying with 1, the next state will be the combination
of and , which represents a new state. This state is
recorded and the simulation is continued from this state. This
process is continued until no new state appears, as shown in the
figure. The states that have ever appeared are , and .
Therefore, is the invalid state of this circuit. In addition,
this circuit is initializable because it has at least one input
sequence to drive the circuit to a valid state. This algorithm,
though, is simple yet very efficient when the number of invalid
states of the circuit is much larger than the number of valid
states since it only simulates valid states.

B. Algorithm 2 for Complete Set of Invalid States

The second algorithm makes use of the following facts.

1) For an initializable sequential circuit havingflip-flops,
its state transition diagram is not disjointed in which the

LIANG et al.: IDENTIFYING INVALID STATES 1027

Fig. 4. The process of Algorithm 1 for finding the invalid states of the circuit
of Fig. 1.

valid states are those states that all of thestates can
reach.

2) After it is applied with some initialization input se-
quence, the circuit will go to one of the valid states
from the unknown initial condition.

3) Every valid state can reach all of the valid states, but
cannot reach the invalid states; and every invalid state
can reach all of the valid states, but may or may not
reach the other invalid states.

Let be the number of flip-flops, and let be the set of
total states of a sequential circuit. The size of the set, i.e.,

, is equal to . Also, let and be the sets of valid
and invalid states, respectively. Obviously,
and . For a state , let be its
reachablestate set, i.e., the set of states thatcan reach. We
will have the following theorems.

Lemma 1: If a sequential circuit is initializable, under three-
value logic simulation from the initial unknown condition, its
state transition diagram is not disjointed, and its valid states
can be reached from all of the states, including valid and
invalid states.

Proof: From the previous definition, a sequential circuit
is called initializable if the circuit can go to a unique state from
the unknown initial condition after it is applied with some
input sequence. This means that no matter what the initial
state is, the circuit can go to a valid state after being applied
with some input sequence. If the circuit has a disjointed state
diagram, like that in Fig. 5(a), in which the states in can
never reach those in and vice versa, we cannot find an input
sequence that can promise to bring the circuit to a unique final
state. Therefore, the circuit is not initializable. In addition, if
the state diagram is connected, it may contain valid states that
cannot be reached by some states, which also contradicts the

(a) (b)

Fig. 5. Two examples of state transition diagram for uninitializable sequen-
tial circuits. (a) The circuit has two disjointed connected graphs. (b) Two
groups of states cannot reach each other.

definition of initializable circuit. Therefore, for an initializable
circuit, all of the states, whether valid or invalid, are able
to reach the valid states of the circuit. Fig. 5(b) is used to
explain the second case. It shows a state diagram that is not
disjointed, but the circuit is still uninitializable. Obviously,
neither the states in nor those in can be valid states
because they cannot be reached by some states. So if a circuit’s
state diagram contains the graphs in Fig. 5 or can be reduced
to such types, it can be directly referred to as uninitializable.

Theorem 1: For an initializable sequential circuit having
flip-flops, valid states are the states that can reach themselves
and have the fewest reachable states, i.e.,

can reach every

including itself

.
Proof: Since the circuit is initializable, there exists at

least one input sequence that can initialize the circuit to one
definite state, which is a valid state. From this valid state, the
circuit can go through all valid states if applied with some
input sequence. All of the valid states thus form a connected
graph, say , in which each node, i.e., each state, has at least
one directed path to any node in the graph, including itself.
Assume, for one state not in , that there exists one
directed path from one node in to . This implies that
the circuit can go to state after being initialized and applied
with some input sequence. Therefore, is also a valid state,
which contradicts the fact that contains all of the valid
states. This means that there are no directed paths from any
node in to those nodes outside . Since the circuit is
initializable from any state and its state transition diagram is
not disjointed, each state outside must have at least one
directed path to the nodes inside . The states outside
consequently are inclined to have more reachable states than
those inside , except for one special case when the state
has a directed branch to one node in but has no self-
loop to itself. From this, we conclude that, in an initializable
sequential circuit, the valid states are those states that can reach
themselves and have the least number of reachable states.

In Fig. 1, is equal to . The reachable state
sets for states are the same, i.e., , but that
one of state is . From the reachable
state sets, each state of , and can reach itself and the

1028 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 9, SEPTEMBER 1997

Fig. 6. Algorithm 2 for finding complete set of invalid states.

other two states. Simultaneously, they have the least number
of reachable states. Therefore, they are the valid states and
state is the invalid state of the circuit.

The above theorems are used to judge initializability and
identify valid and invalid states in an initializable sequential
circuit. It is implemented according to the following. For each
state in , the algorithm simulates the
circuit from with all possible input combinations in one
time frame to obtain the initial reachable state set . If
any state in is invalid, is invalid because invalid
states can only be reached by invalid states. Otherwise, it
simulates the reachable state set in one time frame for

and adds the states in to . Finally, it obtains the
reachable state sets for those states not yet judged to be valid
or invalid. For these states, if one cannot reach itself, it is
invalid. The is constructed from the states that pass the
previous rules. The reachable state set having the least number
of states is also obtained. If contains no states, the circuit
is uninitializable. For the two cases in Fig. 5, will include
the states both in and , i.e., ,
but . Therefore, it is easy to

determine if the circuit is uninitializable or not by checking if
. Having passed all of the rules, the circuit is

initializable, and its valid and invalid state lists are therefore
generated. The complete algorithm for Algorithm 2 is shown
in Fig. 6.

C. Experimental Results for Algorithms 1 and 2

Algorithms 1 and 2 were applied to some of ISCAS bench-
mark circuits [14] to extract the complete set of invalid
states. The results are shown in Table I, where the machine
used was a SUN Sparc10 workstation with 192M memory.
Two algorithms gave the same set of invalid states for a
sequential circuit. The obtained invalid states are compressed
into a “cube” form. For example, for27, which has three
flip-flops, its invalid states set will be
compressed into the set - where “-” means
don’t care. The numbers of total states, invalid states, and
compressed invalid cubes are given in the table. It can be seen
that the two algorithms identified invalid states in reasonable
time for these circuits. For the circuits which have more
invalid states, Algorithm 1 usually used less time than did

LIANG et al.: IDENTIFYING INVALID STATES 1029

TABLE I
EXPERIMENTAL RESULTS FORALGORITHMS 1 AND 2; THE MACHINE USED WAS A SUN SPARC10

Algorithm 2. The limitation on these two algorithms is that
the memory used increases exponentially with the number of
treated flip-flops. For a 192 M memory machine, it can handle
at most up to 16 flip-flops in our experiment. Hence, only the
benchmark circuits up to1494 were applied with the two
algorithms.

III. I DENTIFICATION OF INVALID STATES

REQUIRED FOR TEST GENERATION

In justifying line values during backward justification in se-
quential test pattern generation, it rarely needs the information
on complete invalid states because circuit lines usually depend
on only a partial set of flip-flops. Therefore, it is sufficient
enough to find on which flip-flops a circuit line depends,
and then to find the required partial set of invalid states to
assist the test generation. In order to find on which flip-flops
a line depends, adependence graphof flip-flops of a circuit
is constructed.

A. Dependence Graph

For a sequential circuit, thedependence graphof flip-flops
is a graph that describes the relationship of flip-flops when
flip-flops are to be justified. To explain this graph, a circuit,
400 [14], is used as an example. Circuit400 has 21 flip-

flops, and its dependence graph is shown in Fig. 7, where
one node represents one or a group of flip-flops having the
same dependence source and destination of flip-flops, and the
numbers in each node are the flip-flop’s number. In the graph,
one directed branch represents the dependence between two
nodes, and the values of the source node determine those of
the destination node. One node with a self-loop or a group of
nodes with directed branches to each other is, in fact, a cyclic
graph connecting a group of flip-flops. For example, in the
graph, the node containing flip-flop 20 has a branch directed
to itself, which means that the flip-flop’s value is determined
by itself. For the node containing flip-flops 5, 6, and 8, the
value of each flip-flop is determined by the values of flip-
flops 1, 2, 3, 4, 21, 7, 5, 6, and 8. Apparently, the nodes on
this graph can be levelized. In the graph, the nodes on the top
have the lowest level, i.e., level 1, and the nodes at the bottom

Fig. 7. Dependence graph of the circuits400.

of the graph have the highest level. With this graph, when the
invalid combinations of the values, i.e., the invalid states, on
the flip-flops of the source nodes of a flip-flop are known, it
is not necessary to try these values (i.e., states) when it is to
justify this flip-flop. This saves much effort and computation
time.

B. Algorithm 3 for Required Set of Invalid States

Algorithm 3, as shown in Fig. 8, is proposed to find the
partial but required invalid states for test generation. The
algorithm first constructs thedependence setfor each flip-
flop. The dependence set of a flip-flop is the set of flip-flops
that can affect the value of the flip-flop. Then the flip-
flops appearing simultaneously in the dependence sets are
grouped into one node. In this way, the dependence graph
is constructed. After constructing the dependence graph, the
algorithm determines the level and thecombination setfor
each node. Thecombination setof a node is a set of nodes
which have directed branches to that node. For the example

1030 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 9, SEPTEMBER 1997

Fig. 8. Algorithm 3 for finding required set of invalid states.

of Fig. 7, for the node of flip-flops (5, 6, 8), the combination
set is the set of nodes(1, 2, 3, 4), (21), (7), (5, 6, 8) in
the graph. This is the set of flip-flops whose values have to
be simulated to determine if there are any invalid states which
can be ignored during justifying the values for flip-flops (5,
6, 8). In simulating the values of the combination set(1, 2,
3, 4), (21), (7), (5, 6, 8), Algorithm 1 or 2 can be used.
It is mentioned that only the partitioned circuit containing
the combination set needs to be simulated. Although the
obtained invalid states are therefore only a partial set of total
invalid states, they are complete for the partitioned circuit
part.

In the graph, if there exist nodes which contain too many,
for example, more than 16 flip-flops, the memory needed to
simulate the states of these flip-flops will be too large (larger
than 192M). A workstation of an ordinary size of memory
cannot handle this simulation. For this case, the following
approach can be adopted. First, the method of symbolic
simulation in [13] to identify untestable faults can be first
applied to the circuit to identify the flip-flops which cannot be
set to 1 and/or 0. If a flip-flop has been found to be unable to be
set to 1 and/or 0, it need not be considered in the dependence
graph, and can be eliminated. This reduces the size of the
associated node in the dependence graph. Second, if there still
exist nodes whose sizes exceed 16 after the above treatment, in
the graph, the followingcycle-breakingmethod can be used
to break these large nodes:

The method selects the flip-flops one after another to be
assumed fully controllable, and reconstructs the dependence

graph until the graph has no large node. It can apply the
strategies of selecting flip-flops to break cyclic structures
[19]–[23], but here it permits the new nodes to still be in
cyclic with fewer than ten flip-flops. For each large node,
assume one of the flip-flops, for example, flip-flop, to
be fully controllable, i.e., treat it as a primary input. This
essentially breaks the cyclic structure of flip-flops of the node.
For all other flip-flops of this node, a subdependence graph
can be constructed. For this newly constructed subdependence
graph, if there is no node which has a size greater than
ten, the flip-flops of this subgraph are simulated by using
Algorithm 1 or 2 to find invalid states of these flip-flops.
If there are still nodes whose sizes are larger than ten, the
above cycle-breaking procedure is applied again. After those
invalid states associated with all the remaining flip-flops are
obtained, the information will be used to simulate for flip-
flop to see if there is any invalid state associated with
flip-flop . If there is none, the invalid states obtained are
true invalid states. If there are invalid states, for example,

, existing for flip-flop , flip-flop will be set to 0
and Algorithm 1 or 2 is used again to simulate all remaining
flip-flops to find the true invalid states. The invalid states
obtained are true invalid states. Obviously, there may be
some or many invalid states not found after assuming some
flip-flops fully controllable, but the obtained invalid states
are still very useful to improve test generation, as shown
later.

The complete algorithm is described in the following by
using the example of Fig. 7. For400, Algorithm 3 traverses
the circuit structure and obtains the following dependence sets
for all flip-flops, where means that the
value on flip-flop 1 depends on those of flip-flops 1, 2, 3, and
4:

The algorithm groups the flip-flops that simultaneously
appear in the dependence sets, e.g., 1, 2, 3, and 4, into a
group to be a node. For400, it obtains eight nodes from
the dependence sets, i.e., (1, 2, 3, 4), (7), (5, 6, 8), (9,
10, 11), (12), (13), (20), and (21). The remaining flip-flops
which are not present in dependence sets are also collected
if they have the same dependence set; in this case, 15 and
16 are grouped together. Finally 12 nodes are obtained. Their
respective dependence groups, which are calledcombination

LIANG et al.: IDENTIFYING INVALID STATES 1031

sets, are also shown as follows.

Nodes Combination Sets
Level 1:

Level 2:

Level 3:

Level 4:

Level 5:

Since no nodes have flip-flops more than 16 for this circuit,
no symbolic simulation and cycle-breaking method need to be
applied.

In finding the necessary combination sets to find required
invalid states, we find that some combination sets include
others, e.g., and

. This means that the invalid states found by simulating
the partial circuit composed by flip-flops 5, 6, and 8 must
include those found by simulating the partial circuit composed
by flip-flops 1, 2, 3, 4 and the partial circuit composed by
21. Therefore, we only need to find the largest ’s which
include all of the other smaller ’s. For 400, the two largest
combination sets are obtained, i.e.,(1, 2, 3, 4), (5, 6, 8), (7),
(9, 10, 11), (12), (21) and (7), (9, 10, 11), (12), (13), (20).
The invalid states found for these two sets of flip-flops are
sufficient for justifying the values on all flip-flops. It is seen
that flip-flops 14, 15, 16, 17, 18, and 19 are not present in these
two sets since they do not determine any flip-flop’s value.
They can be grouped into a set for searching more invalid
states. These three sets are the necessary combination sets of
the circuit. They have level 3, 4, and 5, respectively, and will
be simulated one by one according to the order of levels. We
need to follow the order of levels since, usually, the obtained
invalid states for the combination sets at a lower level are to
be used to find the invalid states for those at a higher level.
The simulation is performed on the partial circuits composed
of each set of flip-flops by using Algorithm 1 or 2. For400,
it took 412 s to simulate the first combination set, but took
only 8 and less than 1 s to simulate the second and the third
combination sets, respectively, to obtain 23 invalid cubes. In
addition, to improve the speed of simulation, there are two
strategies: 1) event-driven simulation and 2) Gray-code-type
input patterns are adopted, which are used in order to reduce
events in the primary inputs. Experimental results show that

TABLE II
EXPERIMENTAL RESULTS ON DETERMINING COMBINATION SETS

AND REQUIRED INVALID STATES; THE TIME IS IN SECONDS

these two strategies can accelerate the simulation three–ten
times.

C. Experimental Results of Algorithm 3

Table II shows some results on ISCAS’89 benchmark cir-
cuits run by this algorithm on a Sun Sparc 10. For each circuit,
the graph depth is the number of levels of its dependence
graph. It is seen that the time spent on finding the necessary
combination sets was negligible. In addition to giving the
number of invalid cubes for each circuit, Table II also provides
the percentage of the found invalid states to the totalstates.
It can be seen that the found invalid states occupy a large
percentage of the total states for most circuits. The last column,
which is the time spent on finding these required invalid states
for test generation in seconds, shows that this algorithm took
moderate time in finding these states.

In the results, circuits 1423, 5378, 9234, 13207, and
15850 were found containing nodes larger than 16 in the ini-

tially generated dependence graphs. The symbolic simulation
and the cycle-breaking methods were applied to these circuits.
Table III shows the results after applying the above methods.
In the table, the levels of the graph depth and the numbers of
large nodes in the original dependence graphs are given for
comparison. The invalid cubes, time spent, and the number of
remaining large nodes after symbolic simulation are included.
It can be seen that many more invalid cubes were obtained
after the symbolic simulation, and the time spent was minimal.
For circuits 9234 and 13207, no node had a size larger than
16 after the symbolic simulation, i.e., for these two circuits, the
cycle-breaking method needed not to be applied. For circuits
1423, 5378, and 15850, the cycle-breaking method was

1032 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 9, SEPTEMBER 1997

TABLE III
RESULTS FORRECONSTRUCTINGDEPENDENCEGRAPHS BY USING SYMBOLIC SIMULATION

AND ASSUMING SOME FLIP-FLOPS IN LARGE NODES TO BE FULLY CONTROLLABLE

TABLE IV
COMPARISON OF APPLYING AND NOT APPLYING INVALID STATES INFORMATION TO TEST GENERATION PROCESS

applied and the numbers of the flip-flops were assumed to
be fully controllable; the final depth after appling this cycle
breaking and the time spent for this method are shown in the
table. It can be seen that for15850, as many as 48 flip-flops
were assumed, and the time spent was still small. The final
depth of the dependence graph was usually much longer than
that of the initial dependence graph for these circuits.

D. Application to Test Generation

The obtained invalid states were applied to a test generator
which was implemented in the BACK [7]-like algorithm. It
can also dynamically find some invalid states during searching
test patterns. Table IV gives the results of test generation using
and without using the information of obtained invalid states.
The generator efficiency is defined as (#detectable faults
#untestable faults)/#total faults 100. It is seen that the test
generation with the information of invalid states achieved
higher fault coverages and efficiencies than that without using
the information. For most circuits, especially for larger circuits,

the time used, including that for finding required invalid states,
was still less than that without using the information. In total,
the used time is reduced by 40%, but the fault coverage and
efficiency are improved by 34 and 168%, respectively, for
these circuits. The results for some circuits like13207 and
15850 are even better than those of STG3 [9]. Due to the

limitation of the system required for our implemented test
generation program, the results for large circuits, such as
35932 and 38584, were not available, and are needed to

be solved in the future.

IV. CONCLUSION

In this paper, algorithms to search invalid states for sequen-
tial circuits have been proposed. The first algorithm explores
all of the valid states, and the second one searches the
reachable states to obtain the complete set of invalid states.
Since the test generation usually does not need the complete
set of invalid states, the third algorithm is proposed to find the
partial invalid states required for test generation. It analyzes

LIANG et al.: IDENTIFYING INVALID STATES 1033

the circuit structure to obtain the dependence graph among
flip-flops, and extracts the necessary combination sets for
simulation by applying the first two algorithms. Experimental
results show that the algorithm can find the required invalid
states for test generation in moderate time as compared to
the test generation time. When the obtained invalid states
are applied to test generation, the test generation time, the
fault coverage, and test efficiency are improved, especially
for large circuits. In addition to improving test generation,
the information on the obtained invalid states can be useful
in resynthesizing circuits or for partial scan to make circuits
more testable.

REFERENCES

[1] H.-K. T. Ma, S. Devadas, A. R. Newton, and A. Sangiovanni-
Vincentelli, “Test generation for sequential circuits,”IEEE Trans.
Computer-Aided Design, vol. 7, pp. 1081–1093, Oct. 1988.

[2] A. Ghosh, S. Devadas, and A. R. Newton, “Test generation for highly
sequential circuits,” inProc. Int. Conf. Computer-Aided Design, Nov.
1989, pp. 362–365.

[3] D. H. Lee and S. M. Reddy, “A new test generation method for
sequential circuits,” inProc. Int. Conf. Computer-Aided Design, Nov.
1991, pp. 446–449.

[4] T. Niermann and J. H. Patel, “HITEC: A test generation package for
sequential circuits,” inProc. European Design Automation Conf., Feb.
1991, pp. 214–218.

[5] R. Marlett, “EBT: A comprehensive test generation technique for highly
sequential circuits,” inProc. 15th Design Automation Conf., June 1978,
pp. 332–339.

[6] , “An efficient test generation system for sequential circuits,” in
Proc. 23rd Design Automation Conf., June 1986, pp. 250–256.

[7] W.-T. Cheng, “The BACK algorithm for sequential test generation,” in
Proc. Int. Conf. Computer Design, Aug. 1988, pp. 66–69.

[8] W.-T. Cheng and T. J. Chakraborty, “GENTEST: An automatic test
generation system for sequential circuits,”IEEE Computer, vol. 38, pp.
43–49, Apr. 1989.

[9] W.-T. Cheng and S. Davidson, “Sequential circuit test generator (STG)
benchmark results,” inProc. Int. Symp. Circuits Syst., June 1989, pp.
1939–1941.

[10] E. Auth and M. H. Schulz, “A test-pattern-generation algorithm for
sequential circuits,”IEEE Design Test Comput., vol. 8, pp. 72–86, June
1991.

[11] X. Chen and M. L. Bushnell, “Sequential circuit test generation using
dynamic justification equivalence,”J. Electron. Testing: Theory Appl.,
vol. 1, pp. 9–33, Feb. 1996.

[12] D. E. Long, M. A. Iyer, and M. Abramovici, “Identifying sequentially
untestable faults using illegal states,” inProc. 13th VLSI Test Symp.,
1995, pp. 4–11.

[13] H.-C. Liang, C. L. Lee, and J. E. Jwu, “Identifying untestable faults
in sequential circuits,”IEEE Design Test Comput., vol. 12, no. 3, pp.
14–23, 1995.

[14] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential Benchmark circuits,” inProc. Int. Symp. Circuits Syst., June
1989, pp. 1929–1934.

[15] K.-T. Cheng and V. D. Agrawal, “Initializability consideration in
sequential machine synthesis,”IEEE Trans. Comput., vol. 41, pp.
374–379, Mar. 1992.

[16] S. Devadas, H.-K. T. Ma, A. R. Newton, and A. Sangiovanni-
Vincentelli, “Irredundant sequential machines via optimal logic
synthesis,” IEEE Trans. Computer-Aided Design, vol. 9, pp. 8–18,
Jan. 1990.

[17] J. A. Wehbeh and D. G. Saab, “On the initialization of sequential
circuits,” in Proc. Int. Test Conf., Sept. 1994, pp. 233–239.

[18] A. Lioy and M. Poncino, “On the resetability of synchronous sequential
circuits,” in Proc. Int. Symp. Circuits Syst., June 1993, pp. 1507–1510.

[19] K.-T. Cheng and V. D. Agrawal, “An economical scan design for
sequential logic test generation,” inDig. Papers, 19th Fault-Tolerant
Computing Symp., Aug. 1989, pp. 28–35.

[20] D. H. Lee and S. M. Reddy, “On determining scan flip-flops in partial-
scan designs,” inProc. Int. Conf. Computer-Aided Design, Nov. 1990,
pp. 322–325.

[21] G. W. Smith and R. B. Walford, “The identification of minimal feedback
vertex set of a directed graph,”IEEE Trans. Circuits Syst., vol. CAS-22,
pp. 9–15, Jan. 1975.

[22] S. Park and S. B. Akers, “A graph theoretic approach to partial scan
design byK-cycle elimination,” inProc. Int. Test Conf., Sept. 1992,
pp. 303–311.

[23] P. Ashar and S. Malik, “Implicit computation of minimum-cost
feedback-vertex sets for partial scan and other applications,” inProc.
31st Design Automation Conf., June 1994, pp. 77–80.

Hsing-Chung Liang was born in Tao-Yuan, Tai-
wan, R.O.C., in 1967. He received the B.S., M.S.,
and Ph.D. degrees in electronics engineering from
National Chiao Tung University, Hsin-Chu, Taiwan,
R.O.C., in 1989, 1991, and 1997, respectively.

He has been Assistant Professor in the Depart-
ment of Electronics Engineering, Van Nung Institute
of Technology and Commerce, Chung-Li, Taiwan,
since August 1997. His research interests include
VLSI testing and design for testability.

Chung Len Lee (S’70–M’75–SM’92) received
the B.S. degree from National Taiwan University,
Taipei, Taiwan, R.O.C., in 1968 and the M.S. and
Ph.D. degrees from Carnegie Mellon University,
Pittsburgh, PA, in 1971 and 1975, respectively, all
in electrical engineering.

He has been with Department of Electronics
Engineering, National Chiao Tung University, Hsin-
Chu, Taiwan, since 1975, engaging in teaching and
research in the fields of semiconductor devices,
integrated circuits, VLSI, computer-aided design,

and testing. He has supervised over 100 M.S. and Ph.D. students to complete
their theses and has published over 200 papers in the above areas. He has
been involved in various technical activities in the above areas in Taiwan as
well as in Asia. He is on the Editorial Board of JETTA.

Jwu E. Chen (S’88–M’92) received the B.S., M.S.,
and Ph.D. degrees in electronics engineering from
National Chiao Tung University, Hsin-Chu, Taiwan,
R.O.C.

He has been Associate Professor in the Depart-
ment of Electrical Engineering, Chung Hua Univer-
sity, Hsin-Chu, Taiwan, since 1990. His research
interests include multiple-valued logic, VLSI test-
ing, synthesis for testability, reliable computing,
yield analysis, and test management.

He is a member of the IEEE Computer Society,
AAAS, and NYAS.

