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Abstract: The authors propose a controller design 
method for linear multivariable systems with 
periodic inputs. The periodic inputs may have dif- 
ferent periods in different input channels. The 
plant is assumed to be minimum phase but may 
be unstable. In addition to achieving closed-loop 
stability and input-output decoupling, the design 
is to satisfy prespecified bounds on relative steady- 
state tracking error and sensitivity function. The 
paper shows that, for minimum phase plants, it is 
possible to achieve arbitrarily small sensitivity 
over large bandwidth and arbitrarily small 
(integral square) tracking error for piecewise con- 
tinuous periodic inputs in each channel. The 
paper proposes a design algorithm and gives an 
illustrative example. 

1 introduction 

Periodic reference input signals are common in many 
practical servo control systems. For example, in robot 
control systems, it is typical for robot manipulation tasks 
to be repetitive. For a single input, single output feedback 
system to be able to track an arbitrary T-periodic 
command signal, the (forward) loop transfer function 
must contain infinitely many frequency modes (poles) at 
+j(27ck/T), k = 0, 1, ... [3]. One way to generate these 
infinitely many frequency modes proposed by Hara et al. 
[S ,  61 is to use a time-delay eCTs in a positive unity- 
feedback configuration. Controller design using such a 
mode-generating block is also proposed and the resulting 
controller is called repetitive controller [7]. 

In practice, repetitive controllers may be unnecessary 
and undesirable for the following reasons : 

(i) Repetitive controllers usually result in very narrow 
closed-loop bandwidth due to the large phase shift in the 
mode-generating block. This means that the system has 
sluggish transient response and poor performance in 
attenuating external disturbances, although it tracks per- 
fectly the periodic input at steady state. 

(ii) Most periodic command signals encountered in 
practice have power concentrated in the first few har- 
monics, hence a finite number of frequency modes in the 
loop is usually adequate. For example, if the periodic 
signal is continuous, its Fourier coefficients converge 
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quadratically to zero, hence the power contained in the 
high-order harmonics diminishes rapidly. 

(iii) The application of repetitive controller requires 
that the plant be proper rather than strictly proper, 
which is unrealistic [7]. 

(iv) Implementation of a repetitive controller is im- 
practical since it contains a perfect time delay. 

A practical controller for periodic input tracking should 
result in large enough closed-loop bandwidth so that the 
transient response and disturbance attenuation are satis- 
factory. It should contain enough (yet finite) frequency 
modes so that the steady-state tracking error is accept- 
able. Davison and Pate1 [2] propose a controller design 
method, based on the parameter optimisation, for 
MIMO open-loop stable systems with periodic inputs 
and disturbances which has a finite number of harmonic 
components. Their design objective is to obtain 'good 
asymptotic input tracking and disturbance regulation 
subject to the controller gain and closed-loop gain 
margin tolerance requirements. 

We propose, in this paper, a controller design method 
for linear multivariable systems with periodic inputs. The 
periodic inputs may have different periods in different 
input channels. The plant is assumed to be minimum 
phase, but may be unstable. In addition to achieving 
closed-loop stability and input-output decoupling, the 
design is to satisfy prespecified bounds on relative steady- 
state tracking error and sensitivity function. We show 
that, for minimum phase plants, it is possible to achieve 
arbitrarily small sensitivity over large bandwidth and 
arbitrarily small (integral square) tracking error for 
piecewise continuous periodic inputs in each channel. 

1 . 1  Abbreviations 
Throughout this paper, we use the following notations: 
a := b means a denotes b 
N :=the set of all nonnegative integers 
R :=the set of all real numbers 
C := the set of all complex numbers 
C, := {s E CI Re (s) 2 0} 
C- := {s E CI Re (s) < 0} 
R[s](R(s), Rp(s), R,, o(s), resp.) := the set of polynomials 
(rational functions, proper rational functions, strictly 
proper rational functions, resp.) in s with real coefficients 
S := {H E R,(s) I all the poles of H lie in C-} 
S" "(R,(s)" ", 88,. o(s)m ", resp.) := The m x n matrix with 
elements in qWAs), Rp, ,,(s), resp.). 

For h E R(s), the relative degree of h is defined as the 
degree of its numerator polynomial minus the degree of 
its denominator polynomial. For A E C" ", 11 All denotes 
the largest singular value of A. For c E C, c* denotes the 
complex conjugate of c. 
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2 Stability and sensitivity bound 

Consider the unity-feedback system S(P, C) shown in Fig. 
1, where P(s) E Rq, &)" x n  is the plant, C(s) E Rp(s)" is 
the controller. It is assumed that the dynamical system 
described by P(s) and C(s) contains no unstable hidden 
modes. The closed-loop transfer matrix H(s) E Rp(s)2n 2 n  

from [rT u q T  to [eT uTIT is given by 

H = [$: :I] 
1 ( I  + Pc) - '  -P(I + U)-' 

( I  + U-'  =[ C(I + PO-' 

Y + 

Fig. 1 Unity-feedback system S(P, C)  

The system S(P, C)  is said to be (interally) stable if and 
only if H E Szn Zn. 

In design, in addition to closed-loop stability, it is of 
interest to make the sensitivity function 11 Her(jw)II small 
over a certain frequency bandwidth, so that the closed- 
loop system has good transient response and has good 
disturbance attenuation. For example, it may be desirable 
to choose C(s) to make IIH&o)ll < E for o E [ - w B ,  OB], 
where E > 0 is a small number and oB is the frequency 
bandwidth of interest. It is well known [4] that the right- 
half-plane transmission zeros of the plant limit the 
achievable lower bound of the sensitivity function. Zames 
and Bensoussan [ l l ]  show that, if the plant is minimum 
phase, the sensitivity function can be made arbitrarily 
small over any specified bandwidth while satisfying a pre- 
scribed bound at all other frequencies by a controller of 
the following form: 

where y > 0, m > 0, 1 > 0, k E N, and V(s) is in the form 
of a modified plant inverse. In the following, we give cri- 
teria for constructing V(s) and selecting y, m, 1, and k. 

Given that P(s) E 88,. &)" x n  is nonsingular and 
minimum phase, write 

where N(s) E R[s]" and a(s) is the monic least common 
denominator of the entries of P(s), a+(s) and a-(s) are 
monic and only have zeros in C+ and C -  , respectively. 
Assume that pl, . . . , pk are the zeros of a+($ and let b E N 
be the smallest integer such that 

b > m a x { l p l I , . . . ?  lpkl} (4) 
and let V(s)-' := N(s)/(a+(s + b)a-(s)). It is easy to see 
that V(s)-' has no pole in C+ . Since 

( 5 )  V(S)  = U+(S  + b)a-(s)N(s)-' 

we have 

Consider the controller C(s) defined by 

C(s) = V(s)D(s) = V(s) diag [dl(s) . * * d,(s)] (7) 

where V(s) is given by eqn. 5 and 

di = y i( A)( s + m i  Ly s + l i  

yi > 0, mi > 0, li > 0, i = 1, 2, .. ., n, and k is the largest 
relative degree of entries of V(s). Note that the controller 
C(s) defined in eqn. 7 is strictly proper and that the 1/0 
map H,, = PC(1 + PC)-' is diagonal. 

The following theorem gives conditions on m i ,  yi ,  and 
l i ,  i = 1, 2, ..., n, so that the closed-loop system S(P,  C) 
is stable and satisfies prespecified sensitivity bound in 
each channel. 
Theorem I 
Suppose P(s) E Rp, o(s)" is nonsingular and minimum 
phase. Let b satisfy eqn. 4 and let V(s) and g(s) be as 
defined in eqns. 3, 5, and 6. Suppose, for i = 1, 2, . .. , n, 
0 < < 1, Mi > 1, oBi > 0, and 0 < hi < (1  - M ; ' )  are 
given. Under these conditions, if, for i = 1,2, . . . , n, 

( M l )  mi max {wBi, b} and satisfies 

sup lg(mie-@) - 11 < 1 - hi 
101 C n / 2  

and 

sup Ig(jo) - 1 I < 1 - M;' - ai 
lolami 

(M2) yi > 0 and satisfies 

where 

and 

(9) 

there exists I i  > 0 large enough, i = 1, 2, ..., n, such that 
with the controller C(s) defined by eqns. 7 and 8: 

(i) the system S(P, C) is stable; 
(ii) the sensitivity matrix ( I  + PC)-' is diagonal; and 

(iii) for i = 1,2, . . . , n, 

Comments : 
(i) Since limR+m suplsl I g(s) - 1 I = 0, the mis in ( M l )  

exist. 
(ii) Since g(s) has no zeros in C+ , lli > 0, 52i > 0, and 

thus y i  exists, for i = 1,2 , .  . . , n. 
(iii) In general, mi and y i  increase with decreasing 

values of M i  and respectively. 
(iv) It follows from the theorem that the design for 

each channel can be carried out separately. 
In design, mi,  yi and li are tuned sequentially to achieve 
the prespecified sensitivity bound in each channel. 

Proof: See Appendix 10. 
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Consider the unity-feedback system S(P, C) shown in Fig. 
1, where the external signal r(t) = [rl(t), ..., r i t ) ,  ..., 

Decoupling design for periodic inputs 
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r,,(t)lT is piecewise continuous and for i = 1, 2, . . . , n, ri(t)  
is &-periodic with Fourier series expansion : 

where cik E C and > 0. It is well known [9] that is r i t )  
and its first 1 - 1 derivatives are continuous, then 
I c i k  I -+ 0 as k --t CO at least as rapidly as h/k'+', where h is 
a constant independent of k.  Suppose that the ith channel 
input ri(t) has most its power concentrated in its first qi 
harmonics, then, in design, it may be sufficient to track 
these qi harmonics at steady-state while keeping the 
amplification at the frequencies beyond 2nqi/T, within a 
prespecified bound. 

In order for the unity-feedback system S(P, C) to track 
q-periodic input, i = 1, 2, ..., n, with small tracking 
error, let considers the controller 

C(S) = V(S)D(S)F(S)  (14) 
where V(s)D(s) is defined in eqn. 7, oi = 2471, i  = 1, 2, 
. . , , n, and 

F(s) = diag Cfl(4 . . . fh)l 
s + 1 41  (s + k w J 2  

= diag [T n 
k = l  S 2  + k2W: 

Note that the only difference between the controller 
defined in eqn. 14 and that defined in eqn. 7 is the diag- 
onal F(s) which is added to provide tracking of the first qi 
harmonics of the T-periodic input in the ith channel. In 
design, the number qi will be determined by the steady- 
state tracking error requirement. The following corollary, 
which follows directly from theorem 1, gives conditions 
on D(s) so that the controller C(s) yields the stable closed- 
loop system S(P,  C )  with decoupled sensitivity matrix and 
achieves prespecified bounds on the sensitivity function. 

Corollary I 
Suppose P(s)  E R,, &)" '" is nonsingular and minimum 
phase. Let b satisfy eqn. 4 and let V(s)  and g(s) be as 
defined in eqns. 3, 5, and 6. Suppose, for i = 1, 2, ..., n, 
0 < < 1, M i  > 1, oBi > 0, and 0 < di < (1 - M i ' )  are 
given. Let J@), i  = 1, 2, . . . , n, be as defined in eqn. 15. 
Under these conditions, if, for i = 1,2, . . . , n, 

mi 2 max {oBi, qi ai ,  b}  and satisfies' (ml) 

lei Q 4 2  
sup I d.(mieje)  - 1 I < 1 - di 

and 

sup Ig f , ( jo )  - 11 < 1 - M;' - di 
lwlbmi 

(G2) y i  > 0 and satisfies 

where 

Use sfls) to denote g(s)f,(s) for simplicity. 
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there exists li  > 0 large enough, i = 1, 2, . . . , n, such that 
with the controller C(s) defined by eqns. 14 and 15: 

(i) the system S(P ,  C )  is stable 
(ii) the sensitivity matrix ( I  + PC)- ' is diagonal and 

(iii) for i = 1, 2, . . . , n, 

and 

(b) ( I  + PC); ' ( j k q )  = 0 

k = 0, f 1, k 2 ,  ..., kqi (20) 

Comments: 
(i) Note that, since ( I  + PC),;'(jkoi)  = 0, k = 0, f 1, 

f 2, . . . , f q i ,  the system tracks any q-periodic input 
which contains only the first qi harmonics (in addition to 
the DC component) in the ith channel. 

(ii) The parameters m i ,  y i  , and I i  can be tuned indepen- 
dently for each channel to achieve prespecified sensitivity 
bound. 

(iii) In design, the number qi is determined by a pre- 
scribed relative steady-state tracking error. 

4 Time-domain steady-state error analysis 

We analyse the time-domain steady-state performance of 
the system S(P,  C )  with the controller C(s) prescribed in 
corollary 1. Assuming that the input r(t) is known, we 
will derive an upper bound on relative steady-state 
tracking error in each channel. Since the system S(P, C) is 
decoupled, it suffices to analyse just one channel. To sim- 
plify notations, we assume in this section that the signals 
e(t), y(t), u(t), r(t)  in Fig. 1 are all scalar functions and 
hence the plant and the controller are SISO. Let y,(t) be 
the steady-state output function due to the T-periodic 
input r(t)  with u(t) = 0 (see Fig. 1)'. Let ess(t):= r(t)  
- y,,(t). Note that ess(t) is the steady-state tracking error. 

Since S(P, C) is linear time-invariant and stable, e,,(t) is 
also periodic. 

Define the relative steady-state tracking error of the 
system S(P,  C) 

where 
f T  f T  

d = e,2,(t) dt and 9 = J r2(t)  dt  
0 0 

Let r( t )  = CF= - 
sentation of r(t). Define 

ck ej21rnfiT be the Fourier series repre- 

N 
rN( t )  = ~ ~ e j ~ ~ ~ ~ ' ~  

k =  - N  

and 

.!?N = s:(.(l) - rN(t)}2 dt 

Note that rN(t)  is the sum of the first N + 1 harmonics 
contained in r(t). With these definitions, we are ready to 
state the following theorem which gives an upper bound 
on %. 

We note that, although the input U has the interpretation of plant 
input disturbance, the inclusion of U in Fig. 1 is mainly to allow the 
determination of closed-loop internal stability [lo] through the stability 
of transfer matrix H in eqn. 1. 
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Theorem 2 
Consider the stable system S(P, C )  with T-periodic input 
r(t) and u(t) = 0. Assume the sensitivity function satisfies 

and 

(1 + PC)- ' ( jkw0)  = 0 k = 0, +1, f 2 ,  ..., + q  (25) 
where wo = 2 n / T .  Let Q E N be such that Q < oB/o0 < 
Q + 1. Let '93 be as defined in eqn. 21. Under these condi- 
tions, 

(26) 

(27) 

9 
9 

(ii) '% d E' $ + (M' - E')  

(i) ' % < M 2 9 i f Q d q  

9 9 
9 if Q > q 

The following lemma, which is used in the proof of 
theorem 2, follows directly from Parseval's theorem [SI.  

Lemma I 
For 9, defined in eqn. 23, we have 

m 

and 
N 

P N = 9 -  T 1 IckI2 
k =  -N 

(29) 

Proof of theorem 2 
Let 4(s) := (1 + P C ) -  '(s). The steady-state tracking error 

m 

e,,(t) = 2 (1 + PC(jkwo))-lckejk"O' 
k = - m  

m 
= 4(jkWo)ckejkoot 

k = - m  

Since 

4(jkw,) = O  k =0, f l ,  f 2 ,  ..., f q  

thus 
W 

e,,(t) = C (4(jkoo)ck ejkuot + 4( -jkoo)c? e- jkwoz)  

(4( j&oo)ck ejkwot + @(jkw,)*c: e-jkoot) 

k = q + l  

m 
= 

k = q +  1 

From the orthonormal property, 

8 = [e:&) dt 

= 6' { k$+ l(ck 4(jko0Pk"O' 

+ c: 4(jko0)*e-jk"Ot) 

it follows from eqn. 30 that 
m 

d < 2TM2 1 1ck12 
k = q + l  

Thus, from eqn. 28, we obtain 

d M 2 P q  

and eqn. 26 follows. 
(ii) If Q > q, then 

it follows from eqn. 30 that 
Q 
1 Id(jkwO)1'1ck1' 

k - q + l  

0 6) 

Thus, from eqn. 28, we obtain 

E < E'[B, - PQ] + ~ ~ 8 ,  = E'P, + (M' - e 2 ) P Q  

and eqn. 27 follows. 
Based on corollary 1 and theorem 2, we give an algo- 

rithm for the design of decoupling controllers for linear 
multivariable system with periodic inputs to satisfy pre- 
specified bounds on relative steady-state tracking error 
and sensitivity function. 

5 Design algorithm 

Consider again the system S(P,  C )  with u(t) = 0, and 
suppose the T-periodic input r i t ) ,  i = 1, 2, ..., n, are 
given. Assume that P(s) E Rp, ,,(s)" " is nonsingular and 
minimum phase, and that the numbers vi > 0,O < ci d 1, 
M i  > 1, and wBi > 0 are given. Our goal is to find the 
controller C(s)  defined in eqn. 14 such that 

(i) S(P, C )  is stable 
(ii) ( I  + P C )  - is diagonal 
(iii) the sensitivity function satisfies 

(iv) the relative steady-state tracking error specification 
satisfies 

i =  1,2, ..., n 

We propose, in the following, a design algorithm to 
achieve this goal. 

Algorithm 1 
Data: 0 < ei d 1, M i  > 1, oBi > 0, v i  > 0, mi = 2 n / T ,  and 
0 < a i  < (1 - M;'),for i = 1, 2, ..., n. 

Step 0: Set i = 1. 
Step 1: Determine the harmonic number qi such that 

1 Find Qi E N such that Qi d wBi/wi < Qi + 1. 
2 Compute the Fourier coefficients cik of ri(t). 
3 Compute PQi from eqn. 29 and use eqn. 26 or 27 to 

Step 2: Determine V(s),f;.(s), g(s), and k. 

'93i  d vi. 

determine qi such that !Xi < v i .  
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1 From eqns. 5 and 15, determine V(s) andfi(s) respec- 

2 Obtain k and g(s) from V(s)  snd P(s). 
tively. 

Step  3: Determine mi.  

10 

O I I  - -10-  m 

-81 I I I I I I I 1 

0 1 2 3 4 5 6 7 8  
time,s 

Fig. 4 Plot of tracking error e l ( [ )  

1 Let m,,  = max {aBi, q i o i ,  b). 
2 Choose m2i so that I E l f @ ~ ~ ~ d ~ )  - 1 I d 1 - ai for 

3 Choose m3, so that 1 Elf{jo) - 1 I < 1 - M ;  - ai for 

4 Let mi = max { m , , ,  m 2 i ,  mji}. 
Step 4 :  Determine y i  . Compute 

tii = inf I Elftk4I 

8 E CO, 421. 

E [mji, 00)- 

0 E 10, mil 

and 

12i = inf Isf,(mieje)I 
e E 10, ~ 2 1  
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and let 

Step 5: Determine I , .  Choose l i  > m,/(2'Ik - 1)  such 
that the poles of (1 + g d , f i ) - ' ( s )  E C -  , which then guar- 
antee that (1  + gd,f,)-' E S a n d  

1(1 + g d i f i ) - ' ( j o ) l  < E ,  V l o l  d osi (3 1) 

0.015 

-00151 I 

0 1 2 3 4 5 6 7 8  
time, s 

Fig. 5 Plot oftracking error e,(t) 

If 

I (1 + g d i f i ) - ' ( j o ) I  d M i  V l o l  > o s i  (32) 

then go to step 6; else increase li  until eqn. 32 holds. 
Step 6 :  If i = n, then stop; else i = i + 1, go to step 1 

Comments : 
(i) The controller is given by C(s) = V(s)D(s)F(s). 
(iij In genera1,i mi and y i  increase with decreasing values 

M i  and c i ,  respectively. 
(iii) li  determination plays an important role in this 

algorithm to satisfy eqn. 31 and 32. Also, from the proof 
of theorem 1 (see Appendix lo), I i  must be greater than 
m,/(2'Ik - 1) at least. 

(iv) In practical design, m2i ,  m3 i ,  t l i ,  and 52i can be 
determined by a few magnitude plot of the respective 
functions. For example, to determine t l i  and 5 2 i ,  we only 
have to plot the magnitude I d ( j o )  I for 0 < o d mi and 
the magnitude I gf(mi e'e) I for 0 < 8 d 7c/2 respectively. 

6 Illustrative example 

The plant is 

P(s) = s(s + 4)(s - 3) ["i sY36] 

The periodic inputs are 

t - 2t2 0 d t d 1 / 2  
2t2 - 5t + 5 1/2 < t < 1 i rAt) = 

and 

O d t G l  

t 2 - 3 t + 2  l d t d 2  
r2M = 

5 



In addition to achieving closed-loop stability, the design 
is required to satisfy the following specifications3 

(i) ( I  + PC)-' is diagonal 

(ii) 'illl < 0.05% and 'ill, 6 O.OOOl% (33) 
(iii) 20 log,, I ( I  + PC);,'(jw) I 

(34) 
-20dB 6 25 '{ 8 d B  ' d ) o l > 2 5  

and 

(iv) 20 loglo I ( I  + pC);,'(jo) I 

(35) 

= 25, o1 = 2n, v1 = 5 x 10-4, = 0.1, M ,  = 

-20dB V ' ) w l  6 4 5  4 10dB Vlwl>45 
The following values are given: 

2.5, and 6, = &,(l - M ;  I)  = 0.006. 
(b) oB2 = 45, 02 = 71, 112 = ~2 = 0.1, M2 = 3.16, 

and 6, = &(l - M y  ') = 0.0067. 
By computations, q1 = 1, q ,  = 3, Q1 = 3, and Q 2  = 14 
satisfy eqn. 33. Let b = 4, 

(a) 

V(s)  = (s+  1Xs+4)'[++6 3 ] and k = 2  
( s+2Ns+ 3) -4 s -  1 

Since the plant already has a pole at s = 0, choose 

where 

and 

(s + .)2 (s + 2742 (s + 37c)2 
f2 (s )  = ~ - ~ 

s2 + 72 s2 + 472 s2 + 971, 
By steps 3 and 4, it is determined that m ,  = 28, m2 = 50, 
tI1 = 1.2, 5,' = 1.15, y ,  = 20, t I2  = 1.1, 522  = 1, and 
y 2  = 20. By step 5, I ,  = 650 and l 2  = 1100 satisfy eqns. 34 
and 35, respectively. The controller is given by 
C(s) = V(s)D(s)F(s), where 

28 650' 
D(s) = diag 20 - [ s + 28 (s + 650)' 

20 - 
s + 50 50 (s + 11002 1100)2 1 

It is easy to check that ( I  + PC)-'  is diagonal. The plots 
of the sensitivity function 1 ( I  + PC);'(jw) I and the track- 
ing error ei(t), i = 1, 2, are given from Figs. 2 to 5. For 
comparison, the sensitivity function and tracking error 
corresponding to the controller C(s) = V(s)D(s)  without 
frequency modes are also plotted. By computation, 'ill, = 
4.8 x I O p 4  and 'ill2 = 9.3 x I O p 7 .  Thus eqn. 33 is satis- 
fied. It can be seen from Figs. 2 and 3 that sensitivity 
functions satisfy eqns. 34 and 35, respectively. Note that 
the upper bounds are almost reached at w z 500 rad/s 
and w % 800 rad/s, respectively. Figs. 4 and 5 show that 
the tracking errors decrease considerably by the intro- 
duction of frequency modes F(s). 

7 Conclusion 

We propose an algorithm for the design of controller for 
linear multivariable minimum phase plants with periodic 

Specifications on disturbance attenuation and transient response are 
reflected in the bounds of the sensitivity functions. 

inputs. The periodic inputs may have different periods in 
different input channels. The controller designed yields 
stable closed-loop system and decoupled sensitivity trans- 
fer matrix. Other design specifications include an upper 
bound on the relative steady-state tracking error and an 
prescribed bound on the sensitivity function in each 
channel. The design method is a practical alternative to 
the so-called repetitive controller. Interesting topics for 
further study include the extension of this result to non- 
minimum phase plants and the effect of robustness 
requirement on the achievable time-domain and 
frequency-domain specifications. 
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10 Appendix 

Proof of theorem 1 
We define R[p, r):= {s E ClRe(s) > 0, p 6 1st < I } ;  O[p, 
r ]  := The boundary of R(p, r). Let 

i = 1, 2, ..., n Gi  = (1 + gdi)- '  
we have 

( I  + PC)-'  = diag [(l + gdJ'  ... (1 + gd,,)-'] 

= diag [$1 . . . $,,I 
We shall prove 

I $ i j o ) I  6 Ei ,v lwl  6 osi;  
(a) for i = 1, 2, . . . , n, $is) is bounded in Q [ O ,  OBi] and 

(b) for i = 1,2, . . . , n, Icli(s) is bounded in R(oBi,  00) and 
I $Lie) I < Mi, v 1 0  I > OB,; and 

To prove (a), note that if 

(e )  H(s)  E S2" 2n. 

then 
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then 
1 

3 1 + -  
Ei 

(37) 

I $ i (@)  I < Ei v I I < o~i  

Thus (a) holds if eqns. 36 and 37 are true. We now show 
that eqns. 36 and 37 are true, provided that I i  is large 
enough. Since I mJ(mi + j o )  I 2 1/J(2), V I  w I < mi and 
I zi/(li + jw)  If 2 1/J(2), v I O  I < liJ(2'Ik - 1) if Ii 2 
mJ/(2'Ik - l), then 

Similarly, since I mi/(s + mi) I >, mJ( I s I + mi) 2 1/2, Vs E 

QCo, mil and I lJ(s + Zi) Ik 2 I!/( I s I + l i r  2 1/2, Vs E n[O, 
Ii(2'Ik - l)] if li > mi/(2'Ik - l), then 

(39) 

Thus, if Zi 2 mJ(21'k - l), then eqns. 38 and 39 hold. 

modulus principle [ 13 Vs E Q[O,  mi], 
Since g(s)-' is analytic in C+ , thus by the maximum 

lg(s)lr1 = lg(s)-ll < sup lg(s)-ll 
s E W O ,  mi] 

1 

s E W O ,  mi] 

It follows from eqn. 40 that Vs E nC0, mi}, 

I d s ) I  2 inf Ig(s)l =min {tli? tz i}  (41) 
s E e[o ,  mi] 

where tli and tZi are defined in eqn. 11. 
Note that rli  > 0 and tZi > 0, since all the zeros of 

g(s) E C- . Since 2tLi1(1 + (1/q)) 2 45,' and y i  satisfies 
eqn. 10, thus 

and V o  E [ -mi ,  mi], 

1 
2 1 + -  

Ei  

Since mi 2 os. thus eqns. 36 and 37 are true, provided 
that I i  2 mi/(2*Ik - 1). To prove (b), let J J s )  := nJ(s + ni), 
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dis )  = yi - - = yiJmi(s)J;(s) 
s + m ,  mi ( S + I i  Ii >' (43) 

From eqn. 44, if 

SUP I Ai(s) I = p i  < 1 (45) 
s E n(mi ,  m) 

then 

I$i(s)I<I1 +Ai(s)I- '<( l -pi)- '  V S E R ( ~ , ~ )  
Similarly, if 

(46) 
1 

sup lAi(jo)l < 1 -- 
101 >mi Mi 

then 

I$i(jw)l < I1 + Ai(jo)I- '  < M i  V l o l  > mi 

We show that eqns. 45 and 46 are true, provided I i  is 
Thus (b) holds if eqns. 45 and 46 are true. 

large enough. Now, 



Since g(s) is proper and mi 2 b, I g(s)I is bounded in 
n(q, 00). Also, 

I J ~ ~ ( ~ ~ +  ')(s) I I J:,i(s) - 1 I + 0 uniformly in n(q , 00) 

as loi + 01) (48) 

where loi belongs to positive integers; thus, given any 
cOi > 0, there exists li 2 loi > 0 such that 

I Ais) I I ds) - 1 I + coi VS E n(q, 00) (49) 

I g(s) - 1 I < 1 - ai vs E n(q, CO) 

I g ( j o )  - 1 I < 1 - M i '  - Ji 

Since mi satisfies eqn. 9, we get 

and 

V I  0 1  > mi 

8 

Therefore, if we choose cOi = ai ,  then there exists li 3 
IOi 2 ~ n i / ( 2 ' / ~  - 1) large enough such that eqns. 45 and 46 
are true. 

Finally, we show that H(s)  belong to Sz" " '". 
Since P(s) and C(s) are strictly proper, thus H(s)  

belongs to Rp(s)ZnX2n. We have shown that 
(I + PC)-' E S""", By assumption, P(s)-' is analytic in 
C,; By construction, C(s)-' is analytic in C, . Thus 

P(I + U)-' =(I -(I + Pc)-')c-' E P X "  

( I  + cq-1 = P-'P(I  + cP)- '  E S""" 

and 

C(I + Pc)-' = ( I  - ( I  + cP)- ')P-'  E S""" 

IEE PROCEEDINGS-D, Vol. 139, No.  I ,  J A N U A R Y  1992 


