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Abstract: The paper introduces a Riccati equation 
approach to synthesise of the full state observers 
and state feedback controllers for uncertain large- 
scale systems. In this approach, if two given alge- 
braic Riccati equations are solved, their solutions 
can be applied to synthesise the stabilising state 
feedback and observer gain matrices. The uncer- 
tainties considered in each subsystem may be 
time-varying and appear in the system matrices 
(matrix Ai), input connection matrices (matrix Bi), 
or/and output matrices (matrix Ci). However the 
values of those uncertainties are constrained to lie 
within some known admissable bounds. Further- 
more, the so-called matching conditions are not 
needed in the paper. 

List of symbols 

W” = real vector space of dimension n 
AT = transpose of matrix A 
Ai(A) = ith eigenvalue of matrix A 
IJA \ I s  = spectral norm of matrix A,  i.e. 

IJA11, = max [AAATA)]”2 
i 

II( .)I1 = Euclidean norm of vector ( .) or matrix (. ), i.e. 

llgll= (‘lIsii2)1/2 IIGII = (ZlGijI.)”’ 

where g = [gl, ..., g,], G = [Gij], i = 1, 2, . .., 
m ; j =  1,2, ..., n 

y e n x m  = real matrix space of dimension n x m 
&(A) = min AAA) = minimal eigenvalue of the matrix A 

A,(A) = max Ai(A) = maximal eigenvalue of the matrix A 
1 

I 

In ( A )  = inertia of a square matrix A = {n(A), v(A), 6 (A)) ,  
where n(A), v(A), 6(A) denote the number of 
eigenvalues of A, computed with their algebraic 
multiplicities, lying the open right half-plane, in 
the open left-plane, and on the imaginary axis, 
respectively. 
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1 Introduction 

In recent years the stabilisation problem of an uncertain 
system has received great attention. Numerous 
researchers have used state feedback stabilising control to 
achieve this task C1-43. However, in practice, the states of 
the system may not be available. Luenberger, in 1966, 
first proposed the concept of the ‘observer’ and intro- 
duced the idea of a ‘reduced-order observer’ to estimate 
those states which are inaccessible for direct measure- 
ment. 

For a system of large dimensions, many researchers 
have devoted themselves to the investigation of observer 
design also [S, 6, 15-17]. However, those papers are only 
concerned with large-scale systems without uncertainties. 

In this paper, the Riccati equation approach of Peter- 
sen [7-91 is extended to an uncertain large-scale system. 
If the proposed two algebraic Riccati equations are 
solved, using their solutions the stabilising feedback con- 
troller and observer of each uncertain subsystem can be 
synthesised simultaneously so that the whole large-scale 
system is robustly stable. 

2 System description and preliminary derivation 

Let S be a large-scale system composed of N ( N  > 1) 
interconnected uncertain subsystems S i ,  i = 1, 2, . . . , N .  
Each Si is described in the following: 

Si: .kit) = [Aio + AAi(ri(t))]xi(t) + [Bi,  + ABi(si(t))] 

x (ufir) + j t i  i H i j x j t ) )  (14 

y i t )  = ( (C,  + ACi(ti(t)))xi(t)) i = 1, 2, . . . , N (lb) 

where Ai, E yeni ni, Bio E 9Tni pi, H i j  E Bpi ’ “ j  and Ci, E 

9’” ni denote the nominal system matrix, input matrix, 
interconnection matrix, and nominal output matrix, 
respectively. rd . ) ,  s i( .)  and t i ( . )  are vectors with uncer- 
tain elements belonging to the following compact sets Xi, 
Qi and 2,, respectively : 

Si = {ti : I ti, I < ii ,  m = 1, 2, . . . , k }  ( 2 4  

Qi = {si : 1 siq I < e,, q = 1, 2, . . . , I }  (2b) 

zi= { t i :  ( t i P J  & p =  1,2,  . . . .)  h} (W 
The uncertainties are assumed to be of the ‘rank 1’ type 
[7], i.e. 
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( 3 4  

Here suppose constant matrices Ai,, Bi, and Cip  can be 
written as 

Ai,  = bi, e:, Bi, = f iq g: and Cip = $, m% (4) 

where bi, , ti, , fi, E W"' and giq E Bpi, hip E W", mip E !Rni. 
Introduce the notations 

' k  k 

= f i  1 bi,biT, ui = ti 1 ei,eiT, 
m = l  m =  1 

k h 

zi = ii $ip  4% x = Ii mip m c  
p =  1 p =  1 

By hypothesis, all pairs (Aio,  E,) and (Aio,  Cia), i = 1, 2, 
. . . , N ,  are controllable and observable, respectively. Now 
suppose the states of the large-scale system (eqn. 1) are all 
inaccessible to be measured. It is required to construct an 
observer dynamic equation for each isolated subsystem 
(VHij = 0) as below [12]: 

;zit) = A ,  jzi(t) + Bi, ui(t) - Mijji(t)  i = 1, 2, . . . , N (6) 

where jji(t) = y i  - Fit), Fit) = Ci,jzit) and ni t )  E R"' is 
the observer state. M i  is the unknown observer gain 
vector and will be found so as to ensure the estimated 
state 3it) -, xi(t)  as t -, CO. From eqns. l a  and 6, we have 
the error equation : 

i i ( t )  = Ai,%it)  + AAix i ( t )  + ABiuXt) 

+ M i  jji(t) + (Eio + ABi) H i j  .At) (7) 
j # i  

where Zi(t) = xi(t)  - ni t )  denotes the error state vector. 
Applying an observed state feedback 

ui t )  = K i  ni(t) i = 1, 2, . . . , N 

to eqns. 1 and 7, the closed-loop subsystem Sf with the 
both state and error equations is written as follows: 

(8) 

Sf: i i t )  = [(Ai,, + AAi) + (Eio + ABi)Ki]xi(t) 

- (Bi, + ABi)KiZi(t) 
N 

+ 1 CBio + ABiIHijxXt) (9) 
j # i  

hit) = [ A A ,  + ABi K i  + M i  ACi]x i  

+ [Ai ,  - ABi Ki + Mi CiJ% 

+ ( B i o + A B i ) ~ H i j ~ j  i =  1,2, ..., N (10) 

Let the large-scale system consistin_g of N (N > 1) closed- 
loop subsystems be denoted by S.  Our objective is to 
design a full state observer (eqn. 6)  and state feedback 
(eqn. 8) so that the given uncertain large-scale system is 
stabilised. For the derivation of the main results we need 
review some useful lemmas : 

j + i  

Lemma I : [ 111 For any matrices or vectors x and 
appropriate dimension, we have 

with 

(1 1) 
1 

2 y  + y% < BrcTrc + - yTy 
B 

for any positive constant p. 
Lemma 2 :  [lo] Let ai' and g be n x n Hermitian 
matrices of the same rank r .  If ai' = .Hg.L* for some 
matrix .H, then In (d) = In (99). 
3 Robustness of a Riccati equation approach 

design 

Let us first consider the stabilisation of S via the stabili- 
sing state feedback eqn. 8 and full state observer eqn. 6. 
The result will be given in terms of the solutions 
(positive-definite symmetric matrices Pic and Pi,) of 
the following two algebraic Riccati equations for i = 
1, ..., N .  

A; Pic + Pi, Ai, - Pi, 

( B ,  R,~B;  - B ~ ,  R;~'L,R;~~B;) 

+ 2Ui + 2 C H: Lj Hji  + Hi 
j 

(12) 
1 

E2i 
+- Y , + ~ l i Q l i = O  

A; Pi, + Pi, Ai, - - [CE(2Rii1 - RiilZi R;il)Cio] 
(&:i 

) 1 

e1i 
- - Pic Bi, RFi1(2Li + Z)RcilB% Pi ,  

+ Pio[T + vi K + &,BE + E ~ ~ Q ~ ~ ] P ~ ~  = 0 (13) 
where vi = ( N  - 1) + (2/cli) and H i  = 2(N - 1) 
lj#.i I(Hjill:Z, both Q l i ,  Qzi and R l i ,  RZi are any given 
positive definite matrices. The cli  and cZi  are positive con- 
stants. The gain matrices K i  and M i  can be synthesised as 
follows : 

(14) 
1 

E l i  
K .  = - - R- l i lB;  Pic 

and 

(15) 
1 

Ezi 
M i  = - - Pi'CL R,' i = 1, 2, . . . , N 

These results will be summarised in the following main 
theorem, for which a proof is given in Appendix 9. 

Theorem I : For the considered uncertain large scale 
system S (made up of Si,  i = 1, 2, ..., N, in eqn. l), if 
there exist positive constants c l i  and cZi such that the fol- 
lowing two conditions hold : 

(a) there exist positive-definite symmetric matrices Pic 
satisfying eqn. 12 

(b)  there exist positive-definite symmetric matrices Pi, 
satisfying eqn. 13. 
Then the resulting closed-loop large-scale system s is 
guaranteed to be asymptotically stabilised by the obser- 
ver eqn. 6 and state feedback eqn. 8 with the gain 
matrices (eqns. 15 and 14) respectively. The proof is given 
in Appendix 9. 
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4 Discussion 

(U) The uncertainties discussed in this theorem need not 
meet the ‘matching conditions’. 

(b) When the system has only one subsystem (i.e. 
N = 1, without the interconnection matrix), the Riccati 
equations (eqns. 12 and 13) will be reduced to those in 
References 7 and 8. And the solving procedure will be 
greatly simplified. 

(c) Since a system with large dimensions is considered, 
the effect of interconnection matrices is such that the 
derived algebraic Riccati equations (eqns. 12 and 13) are 
much more complicated than those of Reference 7, i.e. 
there are some extra terms in eqns. 12, 13 compared with 
eqns. 3.1, 3.2 of Reference 7. We doubt that the algorithm 
mentioned by Petersen [8, 91 can be used to solve our 
eqns. 12 and 13. The study of the algorithm to solve the 
Riccati equation is not the main task of this paper; we 
mainly propose a sufficient condition (theorem 1) under 
which the controller and observer can be synthesised. 

5 Example 

A large-scale system is made up of three uncertain sub- 
systems 

and each 

where 

HI2 z= [O.l 0.11 Hi3 = [O.l 0.11 

H 2 ,  = C0.2 0.11 H23 = C0.15 0.21 

H3, = [O.l 01 and H32 = [0.15 0.11 

The uncertainties satisfy the forms of eqn. 3 for all sub- 
systems: 

AB&) = [:] 
AC2(t2) = [O c’;] (18) 

AA3(r3) = [ AB&,) = [ bg:] (19) 

and 1 uyl 1 < 0.15, I ay2 1 < 0.12, 1 by I < 0.09. Putting the 
problem in the forms of eqns. 2 ,3 ,4  and 5, let 

= A l l r l l  + A12r12 ACdt) = Cll t l l  (20) 
where 

A , ,  = b , , e ~ ,  = P i 1 ~ 0 . 3  01 

Cll  = bllm;, = 0.25C0.2 01 

where 

C2, = 421mT1 = 0.25[0 0.23 

= A31r31 = B31e31 

where 

A31 = b3,eT1 = [005][0.3 0.241 

and 

With ti = 1, Si = 1, ti = 1, select 
subsystem 1: {cll = 0.1, = 0.01, Q l l  = Q Z 1  = 1, 
R,, = 0.1, R,, = l} 
subsystem 2: {clZ = 0.0125, cZ2 = 1, Q12 = Qz2 = I, 
R12 = 1, R,, = O.l} 
subsystem 3: ( ~ 1 3  = 0.5, ~ 2 3  = 1, Q 1 3  = Q 2 3  = I ,  RI3 = 1, 

then the Riccati equations (eqns. 12 and 13) have 
positive-definite solutions as follows: 

R23 = O-l} 

0.239 0.0843 

1 9.1 -7.08 
Plo = -7.08 8.084 

0.300 0.184 
”‘ = [0.184 0.1851 

1 

1 

1.21 -0.727 
-0.727 2.298 p20 = 

p3, = [ 1.41 0.3511 
0.351 0.274 

2.03 -0.731 
p3, = -0.731 2.902 
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From the above expressions, both conditions of theorem 
1 are satisfied. Then, from eqns. 14 and 15, the stabilising 
control laws are uAt) = Kini(t), i = 1,2, 3 with 

K ,  = -[23.85 8.433 

K ,  = -[24.00 14.681 

K ,  = -[3.522 1.251 (24) 

0.6 

0.61 

- 

0 4  0 8  1 2  1 6  2 0  -1 ob 
time, s 

1 0  

0.E 

0 . i  
I X  

0, 
0 
U) 

c 

c 

-0 2 

-0 E 

-1 . c  

1 

0 

0 
m 

I X  

0, 

0 
-. 
c 

ul -0 

-0 

-1 

Fig. 1 

and the observer gain matrices M i  are 

MI = -[30.21 38.83IT 

M ,  = -[13.43 8.61IT 

M ,  = -[5.42 1.37IT 

t ime, s 

0 6  O [  

'.. G22 

-0 61 

0 4  0 8  1 2  1 6  2 0  
time. s 

4 2  

0 4  0 8  1 2  1 6  2 0  
time, s 

Error states 
a Error state PI of subsystem 1 
b Error state Pz of subysystem 2 
c Error state P3 of subsystem 3 
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Fig. 2 Observer states 
a Observer state P, of subsystem 1 
b Observer state Pz of subsystem 2 
c Observer state P3 of subsystem 3 
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Using the above computed control gains and observer 
gains, we plot the trajectories of the error states and 
observer states of the resulted closed-loop system in Figs. 
1 and 2 with initial conditions xi(0) = 0.5 and ?LO) = 0, 
i = 1, 2, 3. The uncertainties in the simulation are given 
as sinusoidal sin ( t )  forms, e.g. a; = 0.15 sin (t) .  

6 Conclusions 

In this paper, we have extended the technique of Refer- 
ence 7 to the uncertain large-scale system. Similarly, two 
algebraic Riccati equations are required to be solved in 
our main results. If these Riccati equations possess 
positive-definite solutions, the observer and the feedback 
control gain can be synthesised by their solutions so that 
the whole uncertain large scale system is stabilised. 
Whether the algebraic Riccati equations are solvable 
possibly depends on the magnitudes of uncertainties and 
norms of interconnection matrices and the number of 
subsystems. Hence determining the conditions of the 
solvability of the Riccati equations (eqns. 12, 13) and 
seeking an algorithm to solve them are two open prob- 
lems for the future. 
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9 Appendix 

Proof of theorem 1 :  By the gain matrices eqns. 14 and 15, 
the state and error equations for the closed-loop uncer- 
tain large-scale system are as follows: 

- (Bio  + 1 Biqsiq)RLilBE P i c l x i  
E e l i  4 

1 

E2 i P 
- - Pi, ’ Ci’, R,’ 1 C ,  l ip ]x i  

1 

E l i  q 
Ai, + - 1 Biqsiq RYi’BE Pic 

1 1 
- - E2i Pi ,  ‘ C z  RTilCio ki 

Define a Lyapunov function V = X i  ui to be 

V = 1 (XTPic xi + y P i 0  Ri) (28) 
1 

where both Pic and Pi ,  are positive-definite matrices 
satisfying Riccati eqns. 12 and 13, respectively. Taking 
the derivative V and substituting eqns. 25 and 26 into V 
yields 

P = [($Pic xi + XTPic ii) 

+ ($Pi, Ri + kTPio ii)] 
{XT(Pic A ,  + A; P,,)X, 

L 

(29) 
= 

I 

+ 2*:pic( m =  1 Aimrim(t))xi(t) 

- - 2 xTPic( BiqSi&))RLi1B:. Pi,  xi 

E l i  q =  1 

+ 2 1 ( B ,  H i j  Xj)TPic xi 
j t i  

xTPic B,, R l i l B ;  Pic x i  
2 

E l i  

-- 

+ E1 i x’Pic[Bio + ( q =  1 Biqs iq( t ) ) ]R; i lBz  Pic Ri 

+ %:[A; Pio + Pi,  Aio]5ii 

+ 1 ?Tpio(T B .  iq s. rq ( t )  ) RLi1BZ Pi ,  Ri 

_ -  RTCz RTil Ci, ki 

E l i  

2 

E2i 
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+ 2RTPi, Bi, 1 Hi j  x j  
j # i  

2 
- - E 2 i  RTC; .Ti1(; Ciptip(t))xi} (30) 

By the inequality 2 I ab 1 < a2 + b2 and eqns. 4 and 5, we 
have 

m =  1 
k k 

< ii 2 (x:pic aim)' + ii 1 (egxi)2 

= XTPic T Pic xi + XTUi xi 
m =  1 m =  1 

(31) 
Further, by lemma 1, the following inequalities hold: 

Similarly, we derive upper bounds of the other terms as 
follows : 

B .  5. (t) Rli'B; Pic x i  - - x ~ l ~ i c (  2 i tq 1q ) 
E l i  q = l  

1 1 
E l i  E l i  

< - X T ~ i c  w. pic x i  + - X T ~ i c  pic x i  

E l i  

1 1 
E l i  E l i  

< - xTPic Bi, BE Pi ,  x i  + - RTPic Bi, RLi'BiT, Pi, Ri 

E l i  .?Pic( q =  i 1 Biqsiq(t))RLi'BZ Pic Ri  

1 1 
E 1  i E l i  

< - xTPiC w. Pic x i  + - %[Pic Bio RlilLi  RLi'B; Pic Ri 

1 1 
E l i  E l i  

< - RTPio w Pi ,  Ri + - RTPic Bi, R,' Li RLilB: Pic Ri 

j # i  

< ( N  - 1) 

2 1 RTPio Bioi H i j x j  

RTPi, w. Pi, Ri + 1 1 xTH: L j  Hji  x i  
I i j  

I j # i  

1 1 
E l i  E l i  

< - RTPio w Pi ,  Ri + - xTPiC Bi, R,' Li RCi'B: Pic xi 

2RTPi0( 1 Aim r i * ( L ) ) x i  < %:Pi, T Pi ,  Ri + XTUi x i  
m 

_ -  2 RTCL Rgi'(; Cip t ip(t))xi  

E2i 

1 1 
E2i E2i 

< - RTC; R ; ~ ~ z ~  R;~'C,,R~ + - x T ~ x ~  

Hence 

A ;  Pic + P ,  Ai, + Pic T Pic + 2 u i  

2 
E l i  

- - Pic Bi, RlilB;Pic 

+ 2 1 H ; L j H j i  j # i  + E2i 

1 

E l i  

1 
E l i  

+ - xTPic Bi, BiT, Pic xi 

+ - R T P ~ ~ B ~ ~ R , ~ ~ R ~ ~ ~ B , T ~ P ~ ~ R ~  

2 
E l i  

A: Pi ,  + Pi, Ai, + - Pi, w Pi, 

2 
E1 i 

2 

E2i 

+ - pic  B ~ ,  R,'L, R,'B; pi, 

- - C,To RYil Cio + ( N  - l)Pio w Pi ,  + Pi, T Pi ,  

1 

E2i  
+ - C; RiilZi RgilCio + Pi ,  B,, B; Pi,]Ri} (33 )  

Using the Riccatic equations described in eqns. 12 and 
13, eqn. 33 yields 

f'= 1 [ - E ~ ~ x T Q ~ ~ x ~  - E ~ ~ R T P ~ ~ Q ~ ~ P ~ ~ R ~ ]  
1 

where 

(35) 

By lemma 2, PioQziPi,  is positive-definite owing to the 
given positive-definite matrices Q2i and Pi,. In addition, 
Qli  is positive-definite matrix and c l i  and are all posi- 
tive constants, then Ri is positive-definite also. Define 
ai = Amin(ni), then for any given admissible uncertainties 
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We conclude that the choice of the gain matrices given by 
eqns. 1! and 15 guarantees the uncertain large-scale 
system S to be stabilised if assumptions (a) and (b) hold. (36) 

i 
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