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THE PATH PRECOMPENSATION METHOD FOR FLEXIBLE ARM ROBOT 

JIH-HUA CHIN and SHIN-TYI LIN 

Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan, Republic of China 

This paper constructed a closed loop path precompeasation method for a flexible arm robot. A torque computation 
method taking care of the elastic arm deformation was first proposed and discussed. A concept of partial 
deformation compensation was subsequently proposed to improve the torque profiles and the trajectory fidelity. The 
advantage of this concept was first shown by examples of planar trajectory. After the construction of the closed-loop 
path precompensation method for a flexible arm, the torque method and partial deformation compensation were 
incorporated to track the spatial trajectory. Numerical simulations were given to show the usefulness of the proposed 
concept and method. © 1997 Elsevier Science Ltd. 
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1. INTRODUCTION 
Robots are used to perform tasks such as spray 
painting, arc welding, laser cutting and deburring. 
The dynamics of a rigid robot is more predictable, 
but the accuracy depends on a rigid and sometimes 
massive design, which makes it slow and heavy. In 
contrast, a lightweight flexible arm robot may be 
faster and less expensive, but it is more likely to 
deform elastically, which reduces the end point 
accuracy. In order to track the trajectory with 
precision, the effects of elastic deformation will be 
taken into consideration for a flexible arm. 

The dynamic modeling of the flexible arm has been 
investigated by many authors. The two most popular 
methods for flexible arm modeling are (1) the 
Lagrangian assumed modes method, and (2) the 
Lagrangian finite-element method. For example, 
Book ~ presented an efficient formulation based on 
the Lagrangian equation. Usoro et al. 2 presented a 
finite-element/Lagrangian method. A similar ap- 
proach was used by Sunada. 3 King et  al. 4 presented 
a fast and accurate simulation algorithm. Many 
authors presented different methods to control the 
flexible arm. Cannon and Schmitz 5 carried out 
mathematical modeling and the initial experiment 
to explain the end-point feedback control. Book 6 
derived the linear dynamic model for a flexible arm. 
Book et  al. 7 also introduced three control schemes 
based on feedback from the state variables. Ower 8 
used a Lagrangian dynamic method to model the 
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two-link flexible arm, and designed a multivariable 
control system based on classical methods. 

In the above papers, different position control 
methods for the flexible arm are employed in stepwise 
moving from a certain point to a desired point, and 
the features of the trajectory do not enter into 
consideration. Asada et  al. 9 proposed a special 
moving coordinate system and an efficient algorithm 
for computing the actuator torque. Examples of 
tracking trajectory were given. Their algorithm leads 
to undesired vibration due to its full scale deflection 
compensation. However, Asada's open-loop torque 
algorithm (Ref. 9) can be invaluable if incorporated 
in a closed-loop environment. 

In a novel type of trajectory tracking control 1°-13 
the actual position is considered during the genera- 
tion of trajectory command values, and it has been 
shown the trajectory precision is improved. Among 
these works Hasegawa and Mizutani 12 derived an 
approximate trajectory relation to offer a trajectory 
control technique. Sakaue and Sugimoto 13 proposed 
a real-time control algorithm for a straight line path, 
which compensated both the actual errors of position 
and orientation. Chin and Tsai 1° presented a path 
tracking algorithm for robotic continuous path 
machining. Chin and Lin H further proposed a 
cross-coupling precompensation method for contin- 
uous path tracking. Their papers l°Al proposed 
control with the path precompensation method for 
tracking trajectory, but limited to use for the rigid 
robot or machine tool. 

The purpose of this paper is to propose a path 
precompensation method for a flexible arm. A torque 
compensation method comparable to Asada's torque 
algorithm 9 was proposed and incorporated within 
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the proposed dosed loop. A concept of partial 
compensation for elastic deformation was subse- 
quently proposed, and finally the closed-loop path 
precompensation method for a flexible arm was 
established. Planar and spatial trajectories were given 
as examples to show the improvement obtained. 
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2. P A T H  P R E C O M P E N S A T I O N  M E T H O D  
F O R  A P L A N A R  F L E X I B L E  A R M  S Y S T E M  

2.1. Modeling for the flexible arm 
Figure 1 shows a flexible arm system with n flexible 
links operating in the (X, Y) plane. The approach to 
flexible arm modeling is based on the Lagrangian 
assumed mode method} The dynamic model of a 
flexible arm is given (Ref. 9) as follows: 

(a) The joint equation: 

n 
E ( H i y O j  + AiyOj + Gij) = fo,, (i = 1,2,...,n). ( I)  
j=l 

(b) The deflection equation: 

m~--~{H(OjrCOSOij+ 20,qyrSin Off) 
j=l r--I [, ijpr 

-~-[kipra{] - H(O2ij'pr cos  0 t j -  0j sin Oijllqj, } 

ll 
- ~ T/yv@ cos O~ - 00.sin 0/j) 

j=l 

= f q i p ( P  = 1,2, . . . ,mi;i  = 1,2,...,n). 

(2) 

In order to derive the generalized forces, we 
consider the virtual work done by the torques 
shown in Fig. 2: 

~ Wi --~ "c i,i-l ~Oi "~ "[i,i+ l ~ fli • 

The generalized forces are found to be 

T%~._ t / ~ @ l ~ l ~ l ~ ~  - 

° • ,,., 

Fig. 2. Joint torque acting on link i. 

X 

foi ~- '~i,i--I -- '~i+l,i, (i = 1,2, ..., n -- 1) 

fort ~ ~n,n--I 

fqip = dPip' ( Li)'Ci+l,i. 

Asada et al. ° showed that the equations are 
simplified significantly when represented in the 
virtual link coordinate system (VLCS) as shown in 
Fig. 3. 

The relationship between the two joint displace- 
ments 0i and 0i is 

Oi : Oi q- ~Xi, i-l" 

Using the coordinate transformation, the dynamic 
equations can be rewritten as: 

mi 
^ n ^ ^ ¢2 ^ 

E [miprqir + ( kipr - miprO i ) qir] 
r=l 

i 
-- E Tijp(Oj COS 0/j "q- ~2 sin Oij ) 

j=l 

= fqip(p= 1 ,2 , . . . ,m i ; i=  1,2,...,n) 

(3) 

Yt 

0 
Fig. 1. Deformation of link k represented in tangent coordinate. 

0 ~ ~  ~- Ok ,, 

/ / ; .  

o 

Fig. 3. Deformation of link k represented in VLCS. 

~"---X 
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E(HijOj" ^ ~ + AijOĵ  ~. 2 + ~o.b j + Go) = ~ i ( i =  1 ,2 , . . . ,n )  
j=l  

where 

(4) 

fqip = - dPi/ (O )xi, i - ,  + ~ i /  ( Li)zi+ Li 

(p = 1 ,2 , . . . ,m i ; i=  1 , 2 , . . . , n -  1) 

fqnp = -dPnp'(O)~:n,n-1, (P = 1,2, ...ran) 

?Oi ~--  T i , i - I  - -  "fi+l,i, (i = 1,2, ...,n -- 1) 

On ~- "Cn,n-1 

~6 

mi mj 
&. = y :  

p=l r=l 
my 

+ ~_. 7"OpOie sin 0/y 
p=l 
ml 

- ~ T~0jr sin/)0 + X/j cos 0~ 
r= 1 

my 
ao" = E ~/~ijpOip cos  0t~ - E Tjirqjr cos  0t~ -~ Xt~ sin 0 0. 

p=l r=l 

mi mj mj 
B/J : 2 [ E  Z rhiprOipOjrJij - Z J'jirqfr sin 0,Yl 

p=l r=l r=l 

m~ 

r=l 

{ ~ipLj, i > j 
^ ^ ^ 

l"Iijpr = rhipr¢~O', Tijpr = Sip , i = j 
O, i < j  
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Some similar early works could also be sporadically 
identified.12'13 

The concept of the path precompensation method 
of any function path is shown in Fig. 4. The 
trajectory is represented by a spatial curve: 
r(u) = P = x(u)i + y(u)j + z(u)k, u e [a, b]. 

The planned velocity is 

v , =  vbt 

where t is the unit tangent vector on the curve 

t = dr /du r' 
[dr/du] Ir'l 

The position error Er is defined as the shortest 
distance from the actual position P,(xi,yi, zi) of the 
robot arm tip to a point P(x,y,z) on the curve. 

E r ( u ) = P - P i  

= (x(u) - xi)i + (y(u) - yi)j + (z(u) - zi)k 

If  Er is minimum the differentiation of error Er 
must be zero, thus 

( P -  pi) To P/ = O. 

Er can be obtained by solving the above equation. 
The control law for the path precompensation can be 
set as follows: 

V = Vbt + kvEr (5) 

where kv is a gain which depends on, for example, the 
sampling time of the controller, etc. 

In order to reduce the steady-state error, an 
integral component can be added to the control law: 

I t V = Vbt -4- kvEr + ki Er dt  (6) 
o 

where ki is the integral gain. 

2.3. Path precompensation method for  f lexible arm 
The flexible arm differs from the rigid arm by its 

Ili lfo 
Sip = PiAifci~ipdSfi, eip = PiAi~ipdfCi 

o 

l~ipr = rhip(~pr, hipr = ]£ip(~pr 

I l' ^ 2 I t g i l i ( ~  ~ rhip= piAi(¢ip) d2i, fc i .= [ ^ 2 
o Jo \ ) 

Equations (3) and (4) are the dynamic equations 
for a flexible arm in the VLCS. These equations were 
first used by Asada et al. 9 

2.2. Path precompensation method for  rigid arm 
The concept of  path precompensation for a robot 
was systematically proposed by Chin and Tsai. t° 

J 

0 

t racked pa th  

Y 

Fig. 4. Path precompensation method. 
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d i s t u r b a n c e  
(elastic effects ~,,~,,'") 

B l o c k  2 B l o c k  4 ! B l o c k  5 

~ ~ - ~  IFlexlble a rm I , -1 I , , , Inverse  I I d noznie I "r I . . . . .  I ~ I Direct  
y ~ I m U l a t l O l l  • . 

' jr. ' -~- ' 
a~, Block 3 ~,  

R, I 

Fig. 5. Block diagram of path precompensation method for a flexible arm. 

R, 
R, 

elastic effects. This can be clearly seen from the 
following rearranged dynamic equations. 

Moq Moo J 

where q = [qli, ~12, ..., ~lm, ..., ~nm,] r = coordinates for 

elastic behavior, 0 = [01, 02, -.., b~] r = coordinates for 
joints. k J 

Many control ways for the flexible arm moving 
from a certain point to a desired point have been 
given. 7'8'14 We propose to guide the flexible arm 
tracking a desired trajectory in this paper. The 
computation for command value with vibration 
control is a high computational load for the control. 
Baruh and Tadikenda 15 discussed the advantage and 
disadvantage of different ways of treating the elastic 
effects. Since we are interested in the trajectory 
precision, so we concentrate on 0 and treat the elastic 
deformation as a known disturbance, in this way the 
above equation can be rewritten as 

(Moo - MoqMql Moq)'O+(Go - MoqMq 1 Gq) 
(8) 

= F 0 - -  g o q g q l q F q .  

Figure 5 shows the block diagram of the closed- 
loop path precompensation method proposed for the 
system of a flexible arm. In Fig. 5, block 1 executes 
the compensation according to Eqs (5) or (6). The 
driving torques are obtained in block 3. The 

computation algorithm for the driving torques 
taking care of the effects of the elastic deformation 
will be described in the following section. 

2.4. Open-loop torque computation method 
The flexible arm can be driven in an open-loop 
manner as shown in Fig. 6. Block 1 solves inverse 
kinematics to get the joint angles of the associated 
virtual links. Block 4 transforms the joint angles to 
the Cartesian space. Block 2 executes the computa- 
tion algorithm for the actuator torques. The first step 
in block 2 is to plan the joint position, velocity and 
acceleration of the virtual link. Then the deformation 
of the actual link and the driving torques are 
computed. There are three approaches to calculating 
the required open-loop torques • in Fig. 6 depending 
on how the effect of the elastic motion is considered. 

2.4.1. Method 1. Elastic effects are negl~ted and the 
links are taken to be rigid. By planning 0 i arid setting 
~i, equal to zero in Eq. (7), we can derive the 
following equation: 

Moo'O + Go = Fo 

From the above equation, the approximate torques 
z / c a n  be obtained. 

2.4.2. Method 2. Asada 9 proposed an algorithm for 
computing the required torques as follows. The 

R d  

R, 
R,  

disturbance 

(elastic effects q~,q~,... ) 

I I 
B l o c k  1 1 B l o c k  3 ] B l o c k  4 /~, 

I I n v e r s e  [ [F lex ib le  arm[ 7" [ . . . . .  ] [ [ D i r e c t  [ R ,  
. . . .  d..nmio  -  ,mu,nuo. ki.emntio } 
K l n e m n u c  I ~ "  [ e q u a t i o n  I I 

~, X ~ 
~ ,  B l o c k  2 ~ ,  

Fig. 6. Block diagram of an open-loop control for a flexible arm. 



Path precompensation method for flexible arm robot • J.-H. CHIN and S.-T. LIN 

elastic effects are considered in the computation for 
the driving torques to a certain extent. The steps for 
computation algorithm are as follows. 

(1) The approximate actuator torque zi' obtained by 
Method 1 is applied to Eq. (7) to yield the 
generalized force Fq for the deflection system. By 
rearranging Eq. (7) into the following form: 

Mqqi]-q- Gq : Fq - MoqO(p = 1,2,3;i = 1,2) 

the deflection acceleration ~ can be obtained. 

(2) Substituting 0i and ~ip into Eq. (7), the driving 
torques for the flexible arm are found. 

2.4.3. Method 3. Since t) obtained by Asada et al. 9 are 
approximate quantities, we first proposed a way to 
obtain more accurate ~. 

0] : "~1 - -  172 

A 2 : T 2  

thip = piAiLi/2 

l~it, = Eili(p=)4 / L ~ /2 

0, i < j  
^ ( l~p+a 2 T#p= , -  j PiAiLi/Prc, i =  j 

1 - ( -  1)PpiAiLiLj/plr, i > j 

Xn = (PlA1LI/3 + p2A2L2 + mLl + mt.z)L~ 
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(14) 

(15) 

(1) Substituting 0i,0, q into Eq. (8) to get the 
approximate torques z'. 

(2) Substituting the approximate torques z' into Eq. 
(8) to y!eld the deflection acceleration, and 
applying 0 and ~ into Eq. (7) to yield the actuator 
torques. 

However, investigation shows that torques com- 
puted from Asada's method and the proposed 
Method 3 lead to arm oscillations as side effects. 
To suppress the undesired oscillation, we propose a 
concept of partial deformation compensation, that is, 
we modify the deflection acceleration ~ to k ~  and 
kf~, respectively, where ks, k f  are factors smaller 
than 1. 

2.5. Implementation on two-link flexible arm 
In this section, the path precompensation schemes 
are implemented on a two-link planar flexible arm, 
and the torque computation methods are studied. 

2.5.1. Dynamic equations for two-link flexible arm. 
The dynamic equations for a two-link flexible arm 
can be established from Eqs (3) and (4) as follows: 

i 

l~ipqip-~-Cip~ip -F kqip - -  E ~ijrbj C O S  b t j  

(lO) 

=f/p(p : 1 , 2 , 3 ; i :  1,2) 

2 2 m y  

E Xtjbj cos 0/j - E E  7"jir~j rcOs~ij=?O`(i'= 1,2) 
j = l  j = l  r = l  

( l l )  

where 

= 1 p + l  flip - - p T r Z l / L l  + ( - )  pz~z2/LI (12) 

)(22 = (p2A2L2/3 + mz2)L2~ 

XI2 = X21 = (p lA tL t /2  + P2A2L2 + mLt + mL2)LIL2. 

The two-link flexible arm is configured as follows. 
The flexible arm consists of rectangular steel beams 
1 m in length. The thickness of link 1 and link 2 is 
3.1 mm and 2.4 mm, respectively. The width is 
20 mm for both links. The mass density p is 
7 .8xl0-6kg/mm 3, and Young's module E is 
2.1x104 kg/mm 2. The damping coefficients #t and 

#z are both 0.3. 

2.5.2. Open-loop torque computation. In this section, 
open-loop torque computation methods are 
implemented for a two-link flexible arm. Figure 7 
shows a desired trajectory to be tracked by the three 
open-loop torque computation methods. The flexible 
arm is required to move from start point P1(750,750) 
to end point P2(800,800). Figure 8a and b show 
profiles of the actuator torques computed by Asada's 
method for various ka, and Fig. 9 shows the tracking 
error for the respective torques. Figure 10a and b 
show the profiles error for the respective torques. 
Figure 10a and b show profiles of the actuator 

p, 

8oo 

795 i r i ! ~ H  

785 r i ~ [ 
780 I . . . . . .  ~ --" ~ " " ~ r 

. . . . . . . . . .  j ~ . . . .  i 
I ~ j : r 

n o  l , .l i : i 
I I i : ~ , 

! . . . . . . . . . .  ! i , , I 

760 I - T P i ~ '. ' ~  " 

755 - . . X  -~ : J ~ i -- i , : 

750  , . , i  . . . .  i . . . .  i . . .  , . . . .  i . . . .  , . . . . . . . . . . . . . . . .  

750 755 760 765 770 775 780 785 790 795 800 

x(m,.,,) 

f'p = -p~z2/L2 (13) Fig. 7. Desired trajectory. 
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Fig. 10. (a) Computed torque *1 for joint 1 by proposed method. 
(b) Computed torque ¢~ for joint 2 by proposed method. 
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Fig. 8. (a) Computed torque ~1 for joint 1 by Asada's method. 
(b) Computed torque ~ for joint 2 by Asada's method. 

torques compu ted  by the p roposed  method  for  
var ious k f ,  and  Fig. 11 shows the t racking error  for  
the respective torques.  

N o t e  tha t  when ka  and k f  are 0, the computed  
torque  by Asada ' s  and the p roposed  method  are the 
same as the torque  computa t ion  by M e t h o d  1. I t  can 
be seen f rom Figs 8 and 10 that  the torque profiles 
become more  oscil latory for  bigger ka and kf .  This 
means  tha t  the torque  varies more  versatilely to cope 
with the a rm flexure. While k a is 1, the ac tua tor  
torque  is very large at the beginning o f  mot ion,  and 
the elastic mo t ion  grows rapidly. Figures 8-11 
indicate tha t  the p roposed  partial considerat ion ka 
and k f  helps to smoo th  the a rm behavior  wi thout  
decreasing the t rajectory fidelity. 

Fur ther  investigation reveals tha t  the p roposed  
torque computa t ion  me thod  generate ~ which might  
enlarge the torques % While this can be avoided by 
using smaller kf ,  the trajectory error  might  increase 
owing to too  small k f ,  because small Icy means  the 
a rm is treated more  like a rigid arm. The di lemma is 
that,  in pursuing minimal elastic oscillation, the 
posit ion error  gradually grows. Before an op t imu m 
strategy could be found,  we would  say the p roposed  
method  is comparab le  to, no t  better than,  Asada ' s  
method,  and for  the sake o f  compar ison,  Asada ' s  
method  will be used in the following works.  The 
C P U  time o f  a PC  with 486 C P U  is 1.4 msec for  
Me thod  1, 2.1 msec for  M e t h o d  2, 2.9 msec for 
Me thod  3, and sampling time is 4 msec. 
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Fig. 9. Trajectory error for Asada's method with/~=0.3. 
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2.5.3. Closed-loop pa th  precompensa t ion  m e t h o d  f o r  a 

f l ex ib le  arm.  In this section, the flexible arm is guided 
by the path precompensation method to track three 
types of path. 

2.5.4. Track ing  a circular path .  T h e  flexible arm 
moves along a circle centered at (500,500) with radius 
750 mm; the starting point is Pt(1250,500). 

Figure 12a shows the error history for tracking a 
circular path with the closed-loop precompensation 
method with different k~. In the figure shown, bigger 
k~ results in smaller errors. Figure 12b shows the 
comparisons of error history from different methods. 
It is seen that Asada's torque method (ka = 1) is 
entangled with elastic oscillation, while the proposed 
partial deformation compensation (k~=0.5) dimin- 
ishes the elastic oscillation. However, Asada's 
method, either k~=l  or ka=0.5, is subjected to 
divergence due to its open-loop nature. Satisfactory 
results are obtained by the proposed closed-loop path 
precompensation method. 

0.008 
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Fig. 13. Tra jec tory  error  for  a s t ra ight  pa th  (k.  = 150). 
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1.4 1.6 

while the closed-loop path precompensation method 
with ka = 0.5 yields satisfactory results. 

Note that k~ = 1 excites drastic elastic vibrations 
which may jeopardize the stability of the robot. This 
fact speaks for the significance of the proposed k, 
and k./: 

2.5.5. Track ing  a s traight  path .  The flexible arm 
moves along a straight line as shown in Fig. 7 from 
initial point P~(750,750) to end point P2(830,830). 

Figure 13 shows the error history for tracking a 
straight path with precompensation and open-loop 
torque computation. Again Asada's open-loop 
torque computation method leads to divergence, 
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Fig. 12. (a) Tra jec tory  error  for  a circular  pa th  of  radius  750 ram. 
(b) Tra jec tory  error  for  a circular  pa th  o f  rad ius  750 m m  
(k~ = 150). 

2.5.6. Tracking a parabol ic  path .  The flexible arm 
moves along a parabolic path as shown in Fig. 14 
which is represented by 

-1  
y = ~-~-~ (x - 1080) 2 + 828. 

The flexible arm starts at point PI(1160,812). 
Figure 15 shows the error history for tracking the 

parabolic path with closed-loop path precompensa- 
tion method and open-loop torque computation. 
Again the closed-loop precompensation method with 
ka = 0.5 brings the best results. 

From Figs 12, 13 and 15, we see that the proposed 
partial deformation compensation (k,=0.5) im- 
proves the results in all cases. But satisfactory results 
are obtained only by the closed-loop precompensa- 
tion method. 

Note that the path precompensation method 
controls the end point, not the oscillations. The 
elastic effects are treated as a known disturbance. 
Thus, the stability of the flexible arm system depends 
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Fig. 14. Desi red  parabol ic  pa th .  
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0.06 ~ ._ Asada's torque ¢Omlmtatiotl 
F$ I - Audl ' ,  torque ~ml~tatt~a .(k, = 0.5)1 ] 

0 0.5 1 1.5 2 2.5 
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Fig. 15. Trajectory error for a parabolic path (k#it > = 150). 

plane and one rigid link projecting from the plane. 
The equations for the first two flexible links are 
derived in Section 2.3. Note that the two planar 
flexible links have no flexibility in the Z-direction. 
The addition of the third rigid arm will not deflect 
the two flexible links out of their plane. 

The total kinetic energy for the flexible arm is 

T = TI + T2 + T3. (16) 

The total potential energy for the flexible arm is 

U = U1 + U2 + f3. (17) 

The Lagrangian function for a three-link flexible 
arm can be written as: 

on the disturbance (the effects of the elastic 
deformation) and the accuracy of torque computa- 
tion, that is, if the disturbance diverges or torque 
computation leads to gross inaccuracy, the system 
may be unstable. So it is necessary to smooth the 
vibration by the proposed idea, for example, use 
ka=0.5. CPU time for the closed-loop path pre- 
compensation method is 3.0 msec. 

L = LI + L2 + L3 

= - U I )  + (7"2 - u 2 )  + ( r 3  - u 3 )  

= L1 (01,01, qliqli) +L2(01 ,  01, 02, 02, qli, qli, q2i, q2i) 

+ L3(01,02,  03, 01,02, 03). 

(18 )  

By applying the Lagrangian equation, the dynamic 
model of the flexible arm becomes: 

3. PATH PRECOMPENSATION METHOD 
FOR SPATIAL CURVE 

Since the purpose of this study is to propose the path 
precompensation method for a flexible robot arm in 
order that it can track a spatial trajectory, so a three- 
link flexible robot arm will be given in this section. 

3.1. Dynamic modeling for a three-link flexible arm 
In order to stay compatible with the planar model 
in Section 2, a three-link flexible arm shown in Fig. 
16 is considered. The flexible arm consists of two 
flexible links constrained in the horizontal (X,Y) 

(1) The joint (01,02,03) equation 

for 01: 

d[O(L! + L2 + L3)/O01] O(LI + L2 + L3) 
dt 001 

for 02: 

O[O(L2 + L3)/002] O(L2 + L3) 

dt dO2 

(19 )  

(20) 

Z 

X 
J Link  2 

~ X / L i n k  3 

Oe 

Fig. 16. Position of link 3 represented in VLCS. 

Y 
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for 03: 

d[O(L3)/O03] O(L3) 

dt OOt 
- -  = f o s  ( 2 1 )  

(2) The deflection (q]i,q2i) equation 

for q~i: 

d[O(L1 + L2)/O(hi] O(Ll + L2) 
dt Oqli 

for q2i: 

d[O(L1 + L2)/0(]2i] O(L1 + L2) 
dt Oq2i 

- - f l i t  

i=  1,2,...,mi 
(22) 

= f2i, i = 1,2,...,mi. 

(23) 

In Section 2.5.1, we have derived the dynamic 
equations for the two-link flexible arm. So for 
construction of  Lagrangian's equations, we need 

where 

d(OL3/O01) OL3 d(OL3/O02) OL3 
dt ' O01' dt ' 002'  

d(OL3/O03) and OL3 
dt ' 003 

d(OL3/ao1) =2{2/311201 + 1,1202 cos 03 cos(# - 01) 
dt 

- / 1 1 2 / ) 2 0 3  sin 03 cos(# - 01) 

- 111202(02 - bl) cos 03 sin(# - 01) 

+ lt12302 cos 03 sin(# - 0t) 

- 111203(01 - 02) sin 03 cos(# - 01) 

+ 2ldfl30z cos(01 - 02) 

- 2/1/fl302(01 -- 02) sin(01 -- 02)} 

OL3 =2{llblbfl~"- cos 0s sin(# - 01) 
001 

- -  110103l 2 sin 03 COS(fl -- 01) 

- -  21112010213 sin(O2 -- 01)} 

(24) 

(25) 

+ ldZ3bl(bz - 0t) cos 03 sin(# - 0t) 

+/21203 sin 03 + 12l~0302 cos 03 

+ 211121301 cos(0t - 02) 

- 2 / 1 1 2 / 3 / ) 1 ( / ) 1  - 02) sin(01 - 02)} 

(26) 

OL3 
=~{-ll()]t)2t~rn ~ cos 03 sin(# - 01) 

002 

- llOl03l~ sin 03 c o s ( / / -  01) 

- 2/112/)1/)2 sin(02 - 01)} 

(27) 

d(OL3/O03) m f 2  3 "  
dl = ' ~ 1 3 0 3 - - 1 1 1 2 b l  sinO3sin(fl--01) 

- -  lll~OlO3 cos 03 sin(# - 01) 

+I,1230,(02 - 0,) sin 03 sin(fl - 0,)} 

+ 121202 sin 03 

+ 12120302 cos 03 

(28) 

OL3 = m  ( 2 3"2 cos 03 sin 03 
003 2 -'31302 

- -  110102l 2 sin 03 cos(fl - 01) 

- llOlO3l~ cos 03 sin(fl -- 01). 

+12120203 COS 03} 

1 2 { m ,3cos03} 

(29) 

The three driving torques TI, T 2 and z3 are exerted 
in the joints O, Ol and 02. 

We assumed that the longitudinal deformation and 
torsional modes are negligible. 

The generalized forces are found from the total 
virtual work to be 

for joint: 

fot ~ TI -- T2 

d(OL3/O02) 
dt 

m / 2  3.. 3 3" " --~--~ -~1202 COS203 -- -~120203 COS 03 sin 0 

+ 21fl~'02 + lll2"Ol cos 03 cos(# -- 01) 

- -  Ill20101 sin 03 cos(# -- 01) 

f02 ~ T2 

fo~ = T3 

for deformation: 

Jqi = ~lp'(0)Zl - ~lp'/lz2, i = 1,2, ..., ml 
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f2i = C2ff(O)z2, i = 1,2, ..., m2. 

3.2. Planning for spatial curve and path 
precompensation method 
Since the cubic spline is the most common trajectory 
applied by a robot,  this will be proposed for a flexible 
arm under the path preeompensation method in this 
section. A cubic spline segment between two points 
Pk and Pk+l as shown in Fig. 17 is given as: 

4 

R k ( U ) = Z A i k u i - l O < u <  1 , 2 < k < n - 1  (30) 
i=l 

[! 4, o 
1 4 .1 i P2' 

. -  0 1 4 Le.  ' 

[ 3(P3-e,) ] 
- - /3 ( ' , -  [. 

L3(P. - P.-z) J 

(33) 

Therefore, together with boundary conditions the 
slope value can be solved to obtain any position 
vector on the cubic spline curve. Any position vector 
of the segment on the spatial cubic spline is 
represented as 

r(u) = x(u)i + y(u)j + z(u)k, u E [0, 1] (34) 

where 

where u is the parameter along the curve, n is the 
number of  the data point, A~ are the coefficients of  
the polynomial, and Rk(u) is any position on the 
curve between point Pk and Pk+l. 

The position of  the curve segment can be obtained 
as;  

R k ( U )= u3  u 2 u 1]  

- 3  3 - 2  1 Pk+l (31) 

0 0 o / ' ; /  
1 0 0 L Pk+l' J 

where Pk,Pk + 1 is the position vector of  data point, 

Pk', Pk+l' 

are the slopes of  the data points. 
For  the condition of  position, slope and curvature 

continuity at the connected joints, Eq. (31) yields the 
following relationships: 

Pk-l '  + 4Pf f+  ek+l'= 3(Pk+l -- Pk-l),  2 < k < n - 1. 

(32) 

By applying Eq. (32) for all data points, we get the 
matrix equation: 

4 
x(u) : E Aikxui-l' 

i=1 

4 
y(u) = Z Aikyui-l' 

i=1 

4 

z(u) = ~ _ , A ~ j  -1. 
i=1 

The position error is of  the following form: 

Er = (x(u) - xi)i + (y(u) - yj)j + (z(u) - Zk)k. 

The tangential velocity Vb in Eq. (5) or Eq. (6) is 
required constant by conventional CNC machining, 
which is usually performing along a straight line or a 
circular arc. Since robots usually track spatial curves 
of  higher order, the non-constant  variation of  
curvature along the curve will enter into considera- 
tion. 

So we make the following consideration concern- 
ing the velocity/~ and acceleration 

k 

for the tracking trajectory. If  u is a function of  time t, 
the velocity 

/t 

Z 

. /  
X 

Fig. 17. Cubic spline segment. 

Since 
, ,  k 

0 y 

and acceleration 

h 

can be represented as 

OR Ou 
R = -~u O -~  = R' f~ 

= R"(a) 2 + R'ti: 

is usually a constant value c, 

ff 

is zero. The velocity and acceleration become 



Table 1 

Position coordinate 
Point (m) 
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The data points used in forming a cubic spline Table 2 The planned trajectory by cubic spline method for initial 
R'=(-30,10,60) 

1 (0.830,0.031,0.371) 
2 (0.800,0.042,0.430) 
3 (0.700,0.049,0.471) 
4 (0.500,0.032,0.375) 
5 (0.400,0.017,0.293) 
6 (0.300,0.000,0.200) 

/~ = R~u = cR ~ (35) 

/~ = R"(u) 2 = c2R '. (36) 

So the duration of tracking is determined by the 
constant c. 

The path precompensation method for cubic spline 
requires the u value that corresponds to the minimum 
error E,. That is, the roots for 

Erl  .~ 0 

will be found, and the command 
compensated as 

velocity is 

Data points 
(m) Equations of  cubic spline for each segment 

0.830,0.031,0.371 

0.800,0.002,0.430 
0.800,0.042,0.430 

0.700,0.049,0.471 
0.700,0.009,0.471 

0.500,0.032,0.375 
0.500,0.032,0.375 

0.400,0.017,0.293 
0.400,0.017,0.293 

0.300,0.000,0.200 

dr k E (37) V = R + kvEr = C-~u + " r. 

The difference between Eq. (37) and Eq. (5) is that 
Vat remains constant but 

dr 

varies from point to point. Since 

c(= a) 

is the explicit term used in handling the parametric 
form curve, Eq. (37) offers more implementation 

x(u) --- 0 .830-  0.030u + 0.017u 2 -  0.017u 3 
y(u) = 0.031 + 0.010u + 0.001u2 + 0.001u 3 
z(u) = 0.371 + 0.060u- 0.01 lu2 + 0.010u 3 
x(u) = 0 .800-  0 .006u-  0.033u 2 -  0.020U 3 
y(u) = 0.042 + 0.012u + 0.002u 2 -- 0.007u 3 
z(u) = 0.430 + 0.068u + 0.020u 2 -- 0.046u 3 
x(u) ---- 0.700-- 0.173u-- 0.093u 2 + 0.066u 3 
y(u) = 0.049 -- 0.005u-- 0.020u 2 + 0.009u 3 
z(u) = 0.471 -- 0.032u -- 0.119u 2 + 0.055u 3 
x(u) = 0.500 -- 0.160u + 0.105u 2 -- 0.045u 3 
y(u) = 0.032-- 0.018u + 0.007u 2 -  0.003u 3 
z(u) = 0.375-- 0.104u + 0.007u 2 -  0.025u 3 
x(u) = 0.400 -- 0.084u-- 0.030u 2 + 0.015u 3 
y(u) = 0.017-- 0.014u-- 0.002u ~ -  0.000u 3 
z(u) = 0.293 -- 0.085u-- 0.028u 2 + 0.020u 3 

convenience and a way to see the correlation between 
the machining velocity and the curve condition. The 
block diagram for tracking spatial trajectory using 
the path precompensation method is the same as that 
in Fig. 5. 

3.3. Implementation 
The path precompensation method is implemented 
on a three-link flexible arm as shown in Fig. 16. 
Links 1 and 2 are the same as the ones presented in 
Section 2.3. The length/3 of link 3 is 1 m. The mass 
per unit length is 0.00312 kg/mm. We assumed that 
link 3 is rigid. The data points used in forming the 
desired cubic spline trajectory are listed in Table 1. 
Different curve segments can be obtained for 
different boundary conditions. The obtained curve 
segments for an initial R'=(-30,10,60) are listed in 
Table 2. The flexible arm starts from point 
P1(830,31,371) in Fig. 18 to track the desired 

t~ 

460 

440 

~0 

60 

Fi B. 18. Planned trajectory corresponding to Table 2. 
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Fig. 19. Tra jec to ry  e r ror  by  the open- loop  t o rque  c o m p u t a t i o n  
m e t h o d  wi th  c = 2 . 5 .  

trajectory with different time in accordance with 
different c. The simulation is done for two cases: an 
open-loop control (torque computation) and a 
closed-loop control with path precompensation 
method. 

3.3.1. A n  o p e n - l o o p  c o n t r o l  ( t o r q u e  c o m p u t a t i o n ) .  The 
block diagram for the open loop is the same as the 
one in Fig. 6. The actuator torques obtained by 
Asada's method are applied to the respective joints. 
Figure 19 shows the error history of different ka for 
tracking with c=2.5.  Figure 20a and b show the 
torques profiles of  different ka corresponding to Fig. 
19. Note that k .  = 1 corresponds to Asada's method 
and k . = 0 . 5  corresponds to the partial deformation 

(a) 20! i : I i I-k.=0-sl ] . ~  
15 ~ . . . .  i i ~ I t - k . = X - ° l , ~ - t  .... 

" , f/.C~../ E ': 
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P i I 

-20 • ~ . . . . .  ~ . . . . . . . .  i ! 
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time(see) 
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time(see) 

Fig. 20. (a) C o m p u t e d  t o rque  ~1 for j o in t  1 by  the open- loop  to rque  
c o m p u t a t i o n  m e t h o d  w i t h  c = 2.5. (b) C o m p u t e d  to rque  T2 for j o in t  
2 by the open - loop  t o r q u e  c o m p u t a t i o n  m e t h o d  wi th  c = 2 . 5 .  

compensation proposed in this paper. F rom the 
above figures for c = 2.5, it is seen that using torques 
to cope fully, i.e. ka = 1, with the effects of  the elastic 
deformation creates undesired vibration and some- 
what worse trajectory quality. This justifies the use of 
partial deformation compensation. 

3.3.2. P a t h  p r e c o m p e n s a t i o n  m e t h o d .  The block 
diagram is the same as the one in Fig. 5. The 
actuator torques obtained by the path precompensa- 
tion method in Section 2.3 are applied to the 
corresponding actuators. Figures 21 and 22 show 
the error history for c = 2.5 (duration of  tracking: 
2 see) and c = 1 (duration of  tracking: 5 sec) when the 
tracking trajectory is as shown in Fig. 18. 

The following observations can be made from the 
numerical simulation. 

(1) The flexible arm has a better performance with 
the path precompensation method for both long 
and short tracking time. 

(2) The errors are greater at the segments with bigger 
curvature. 

(3) The error for smaller tracking velocity, i.e. 
smaller c, is smaller at the same time point, but 
the overall error is larger than for the one with 
greater velocity. This shows that the errors 
accumulated. The longer the tracking time, the 
greater the errors. 

(4) There is no deceleration scheme toward the end 
point of the trajectory in the examples shown. If  
used, such a deceleration scheme will help reduce 
the accumulated errors toward the end point. 

4 CONCLUSIONS 
The path precompensation method has been e s t ab  
lished for a rigid arm robot  in the pas t  This paper 
addresses the topic of the path precompensation 
method for a flexible arm r o b o t  

Since the elastic deformation of the flexible arm 
constitutes one of the major obstacles in its motion 
cont ro l  a torque computation method taking care of  
the elastic deformation is first proposed and 
compared with the one proposed by A sad a  

1.8 .... Asada's open-loop torque' computation [ 
1.6 i J - - p a t h  precompensation method (k~ = 150) I 

1.2 ! ~ : ~ , / ! i 

1 i . . . . . . .  L ....... i "~ ............ I i / i i 
; : ~ I / j 

O.S ! : i . . . . . . . . . . . . . .  : /  t I . . . . . . . . . . . . .  

0.6 ...... 1 . . . .  [ . . . . .  ] . . . .  [ .... , : ! . . . . .  ! i ./ ~ 

o ~ / ' " ~ ' -  * . ~ . ~ , i  . . . .  i . . . .  I . . . .  I . . . . . . . .  
0.I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

time(see) 

Fig. 21. Tra jec tory  e r ror  for c = 2 . 5  (k~=0 .5 ,  kv = 150). 
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Fig. 22. Trajectory error for c= 1 (ka=0.5 , kv= 150). 

Analysis reveals that the torques computed either 
by Asada's method or by the proposed method could 
induce elastic arm vibrations. Based on such 
observations, a concept of  partial compensation for 
elastic deformation is proposed. It is shown that 
better torque profiles and trajectory fidelity can be 
obtained by partial compensation using a factor/ca 
and kf smaller than one. 

The path precompensation method is finally 
proposed for a flexible arm to enhance the torque 
computation by the advantages of  closed-loop and 
path precompensation. It is shown that the proposed 
closed-loop path precompensation method is efficient 
in improving the behavior of  a flexible arm robot 
tracking a planar or spatial trajectory. Throughout  
the study the two-link flexible arm and the three-link 
flexible arm are given as examples. The proposed 
concepts and methods in this paper help to advance 
the knowledge in creating a better motion guidance 
for flexible arm robot. 
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