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ABSTRACT 
In this paper, we present an object-oriented approach to compiler specification. Our method treats 
grammar symbols as templates which instantiate nodes of parse tree for object-oriented semantic analysis. 
To have better classification and inheritance for semantic description, it uses res tr ic ted  CFG to specify 
grammar rules. The semantic specification is done based on a class hierarchy generated from the 
restricted CFG. Besides, that a path expression is booted to describe the possible receivers of a message 
releases the restriction on the specification of message (value) propagations in attribute grammar 
methods. 
Keywords: object-oriented, compiler, specification, context-free grammar, attribute grammar, 

classification, inheritance, Smalltalk-80. 

1. INTRODUCTION 
Although Knuth showed that even the pure ly  synthes ized  A G  has the same power as any other A G  does 
[4], researches on the extension of attribute grammar to simplify the specification of attribution rules 
have never stopped [6, 8, 9]. However, there was little attention based on object-oriented programming 
[7, 10]. 

Consider the productions in a CFG, if a nonterminal symbol X has only the following production 
form X ~ X 1 I X 2 I ... I Xk, X and X~ X 2 ... X~ may be treated as a class hierarchy, where class X is the 

parent class of classes X 1 X 2 ... X k. Therefore, the attributes and attribution rules specified to be associated 

with X can be inherited by X 1 X 2 ... X~, if the nodes of parse tree are treated as objects of these classes. 

The details of applying classification and inheritance on a CFG for compiling are shown in [11]. The 
work in [5] applies similar concepts to code a compiler. 

The value propagations along parse tree follow either implicit orders, based on conventional 
attribute grammars, specified by attributes assignments or global data, or the pre-specified order which is 
defined based on graph. In the latter case, Demers et al., proposed a method which specifies the 
propagation directions according to the tree abstraction of parse tree [2]. It allows the attributes values of 
a node in the parse tree be sent to their parents, preorder predecessors, inorder successors . . . . .  etc., 

directly. However, none of these methods allow the propagation along an arbitrary path which is 
explicitly defined during compiler specification. 

Perhaps the major difficulty to specify the sending of a value through an arbitrary path is that the 
parse tree can not be decided at specification. The language needed to define the paths associated with a 
CFG seems so complicated that there is no good result of research working on it yet. Our experience 
shows that a restricted CFG and the corresponding class hierarchy can ease the specification of paths. 
Here, we present a method to describe path informations based on the class hierarchy and s tructured 

parse tree [11]. The message, defined with a path, is thus sent to the destination node accordingly. 
Besides, perhaps the most interesting thing is that the specification of message paths in our method is 
easy. 

2. THE MODEL 
Let G = (T, N, P, Z) be a CFG, where T is a terminal  symbol set, N a nontermina l  symbol set, P a 
produc t ion  set, and Z a start  symbol. A production in a CFG is a s ingle ton if its right-hand side is a single 
symbol. It is a skele ton in other cases except an empty production. A produc t ion  set  of nonterminal X, 
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denoted as P(X), is a set of all the productions of the form X ---) or, where c~ is a string of symbols from (T 

uN)*. 
Definition 2.1: A nonterminal symbol X in a CFG is: 

1. a classification symbol if 'v'pe P(X) is singleton, 

2. a structure symbol if IP(X)I= 1 and pc  P(X) is skeleton, or 

3. a compound symbol if IP(X)I>I and 3p~ P(X) is skeleton. 
As discussed in [11], classification and structure symbols can be analogized as the classes of a 

class hierarchy with inheritance so that a classification symbol and its righthand side represents a 
specialization/generalization in a (object-oriented) class hierarchy. A structure symbol and its righthand 
side can be considered as a branch of parse tree. Compound symbols are jammed with too much 
information that they may be deleted from the grammar to simplify the structure of the class hierarchy. 
This restriction may lengthen grammar specification, but not the expression power of the grammar. 
Definition 2.2: Let G = (T, N, P, Z) be a CFG. G is a restricted CFG if it contains no compound symbol. 

Ambiguous grammars may make the compiler specification shorter and more natural for a 
language. But, it does little help in the discussion of our model. Neither useless symbols nor e- 
productions do. Therefore, our scope is in restricted CFG without these properties. 

A class hierarchy can be generated based on a restricted CFG, so that the nodes of parse tree are 
treated as the instances of its classes [11]. Node objects pass information to each other for semantic 
analysis, code generation/optimization, ..., etc. Node objects are instantiated during parsing process, and 
their addresses are not known at specification time. However,  the distance between two node objects can 
be specified based on tree abstraction. In order to simplify the specification, we define a regular 
expression, path expression, to describe the paths to receiver nodes of a message from its sender. During 
semantic analysis, a path expression and sender node of a message is interpreted as its receiver nodes so 
that the message can be delivered. 
Definition 2.3: Let r and s be path expressions denoting the languages R and S, respectively. 

1. O is a path expression and denotes the empty set. 

2. a is a path expression and denotes the set {e}. 
3. A symbol index (c, i) is a path expression and denotes the set {(c, i)}, where c is a symbol, i is a 

direction index, 

4. rs is a path expression, which denotes the set RS, i.e. { a t a 2 I aj~ R, a2~ S}, where a I a 2 represents 

the concatenation of strings aj and a 2. 

5. r+s is a path expression, which denotes the set R w S, where '+' called alternative operator. 

6. r* is a path expression, which denotes the closure of R, R*, i.e. set {~} u R u RR u ... u RR...R 

.... where '*' called repetitive operator. 
The alphabet set of path expression is a set of symbol index (c, i). The direction index is an 

integer, which represents traveling direction on a parse tree. The positive direction index i means 
traveling to the ith child which labeled c. The negative index -i means traveling to parent labeled c and 
ensures that the node itself is the ith child of its parent. 

Let's assume that each parent-child relation in the tree is associated with two directed arcs, of 
which each is labeled a symbol index. In a graph, a node v is reachable from u if there is a path from u to 
v. Since a node in parse tree is an instance of a symbol, a path in parse tree can also be deemed as an 
instance of a sequence of symbol indexes. A node v is a reachable end from a node u through s, a 
sequence of symbol indexes, if the path from u to v is s's instance. A node v is a receiving node from a 
sender node u through a path expression e, if there is a sequence of symbol indexes s in the denoting 
language of e, s.t. v is a reachable end from u through s. The receiving nodes from a sender node with a 
path expression will be treated as the receivers. 

Besides, some short-cut notations and frequent expressions are introduced to simplify the 
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specification of path expression. Two characters '+' and '-' are used in direction index to represent positive 
and negative direction index, respectively. A symbol c in G is equivalent to notation (c, +), which means 
any child labeled c. The special symbol any means any symbol. The self symbol, equal to an empty 
string £, means the node itself. The '^' character prefixed a symbol c in G means any symbol but c. 

Figure 2.2 shows a parse tree of a CFG in figure 2.1. For example, a path expression 
" ( < e x p r > , 3 )  ( < i d > , + ) "  associated with node < a s s i g n >  1 is a language L={ ( < e x p r > , 3 )  ( < i d > , l ) ,  

(<expr>,3) (<id>,3)  }. Since, from the <ass ign> 1 node, there exist a path through arcs labeled 

(<expr>, 3) and (<id>, 1) to node <id> 2, and another path through arcs labeled (<expr>,3)  and 

(<id>, 3) to <id> 3, respectively, <id> 2 and <id> 3 are both receiving nodes from <ass ign>l  through 

" ( < e x p r > ,  3) ( < i d > ,  +) ". In other words, the expression " ( < e x p r > ,  3) ( < i d > ,  +) " associated with node 
<ass ign> 1 represents the receiver node set {<id> 2, <id> 3 }. 

< a s s i g n >  : : =  < i d >  :=  < e x p r >  
< e x p r >  : : =  < i d >  + < i d >  

Figure  2.1: A CFG. 
• . - < a s s g n > ~  I<asslgn~,-1)~ I'~ ~ '"/.sassig n>,'3) 

/ .J~d>, liJ ~<e×]b, .~3)~" k 
<id>~ :=__ < e x p r > ~ - ~  

/ (~Y(d"l l~<i°~)/ 
<id>2 + <id>3 

Figure  2.2: Symbol indexes in a parse  tree. 
Definition 2.4: A site definition is a definition r=e, where r is a symbol called pseudo site, and e is a path 
expression. 

The semantics specification in our model contains two parts: site definitions and service 
descriptions. Pseudo sites are defined to represent path expressions. They are used as receivers in the 
service descriptions. The message sent to a pseudo site is applied to each node object in the set, which is 
similar to Set in Smalltalk-80. This message can be thought as an implicit collect message, which is sent 
to each element of the receiver node set. Its return is like a Bag in Smalltalk-80. Messages sent to an 
empty node set will return an empty bag. For example, pseudo site IONodes in class <ass ign> of above 
example represents path expression "(<e×pr>,3)  (<id>,+)" .  It is thought as a set of receivers 
corresponding to the real paths. A message idName sent to site IdNodes is interpreted as "{<id> 2, <iO>3] 

collect: [ :n I n iOName ]". 
Sometimes, a pseudo site is considered as a single node instead of a set, if the path expression 

defined is always bound to a set of single element. The implicit propagation directions, such as parent 
and child, in attribute grammar, are always bound to single element, if the symbol is not start or terminal 

symbol. The pseudo site AssignNode defined as " ( " < a s s i g n > , - )  * ( < a s s i g n > , - )  " on class <io> is a 
language { ( < a s s i g n > , - ) ,  ( < o x p r > , - )  ( < a s s i g n > , - ) ,  ( < i d > , - )  ( < a s s i g n > , - )  . . . .  }. It is always bound 
to the <ass ign> instance (node) which is an ancestor of the <id> instance (node). In these situations, it is 
convenient to use the notation of single node instead of set. 

The semantic definition of a symbol is the description of services (methods) provided by it. The 
notations in the description are similar to those in Smalltalk-80. To simplify specification, a node object 
is assumed to have only those attributes whose value can not be changed after ready. These attributes can 
be specified implicitly, and thus Smalltalk's instance variable is not used. Besides, not all services send 
message(s) to other nodes. For example, a service may return integer zero directly. A service which 
returns the lexical information of a terminal node has its definition done in lexical part (as in Lex). 
Definition 2.5: An object-oriented compiler specification is a 3-tuple, OOCS = (G, .5, E). 

1. G = (T, N, P, Z) is a restricted CFG. 

S(X) is a finite set of service descriptions. 2. S = X e  T u N  
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3. E= U x~ ~N E(X) is a finite set of site definitions (path expressions). 

Here, S(X)  and E(X) are a set of service descriptions and a set of site definitions associated with each 
symbol X in G, respectively. 

3. AN OBJECT-ORIENTED SPECIFICATION METHOD 
In this section, we present a specification method for compilers based on our model. The method contains 
four major steps: 

1. Write a res tr ic ted  CFG for the target language. 
2. Construct the exclus ive  class hierarchy for the restricted CFG. 

Define the services provided by each symbol. 
Define each pseudo site by a path expression. 
The flow chart is shown in figure 3.1. 

Write a 
restricted CFG 

. 

4. 

3.1 The Specification Details 
1. 

Construct the Exclusive 
Class Hierarchy 

1 

. 

Define the services 
provded by each, symbo 

. 

1 
Define each 
pseudo site 

Figure 3.1: The specification flow chart. 

Write a res tr ic ted  CFG for the target language. 
(a) Write a CFG for the target language. 
(b) Rewrite the production rules of compound symbols in the CFG to make an equivalent 

restricted CFG. For each compound symbol, modify its production rules by replacing their 
right-hand sides with new structure symbols. Make a production rule with each new structure 
symbol (left-hand side) and the corresponding right-hand side (see also [11]). Besides, name 
the introduced symbols carefully so that they can express the specializations of the compound 
symbol. 

Construct the exclusive  class hierarchy (ECH) for the restricted CFG. 
(a) Each singleton production X ~ Y claims that Y exc lus ive ly  inherits from X, i.e. an object y of 

Y has the properties defined in X, the service descriptions and site definitions declared in X, if 
y is generated by X ~ Y. 

(b) Each skeleton production X 0 --~ X 1 X 2 ... X k, k_>l, describes that X 0 contains k components, X 1, 

X 2 .... , and X k. An object x i of X i, l<_i.~_k, has the properties of nu l l (L )  and X i, if x i is generated 

by X 0 ~ X 1 X2 ...Xi ... X k. 

Define the services provided by each symbol. 
(a) Identify the services and their message protocols provided by each symbol; leave the symbol 

alone if nothing can be served. 
(b) Organize the services through generalization, i.e. moving common services to superclass(es) 
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in ECH. 
(c) Specify each service with Smalltalk language, where message receivers are represented by 

pseudo sites. 
Define each pseudo site by a path expression. 
(a) Sketch the propagation direction of the path. There are four kinds of paths: to itself, to 

ancestor(s), to offspring(s), or to arbitrary node(s) (offspring(s) of some ancestors). 
(b) Sketch some representative parse trees related to the pseudo site, and outline the shortest 

propagation paths in these parse trees. 

(c) Write down the expression according to these paths. Use the repetition (*) for repeated 
symbols, the alternative (+) for multiple choices, and the concatenation for sequence. 

3.2 An Example 
This subsection shows a specification example for the language ABL which contains assignment 
statements and block structures. The ABL compiler is expected to be capable of detecting naming errors 
or warnings, such as un-declared, re-declared, and un-referenced variables. 
3.2.1 Restricted CFG 
The first step is to write a CFG for ABL language. Figure 3.2 shows a sample which contains three 
compound symbols: < d e c l  l i s t > ,  <stmt l i s t > ,  and <expr>. To make an equivalent restricted CFG, 
the structure symbols <stmt list branch>, <decl list branch>, and <add expr> are introduced. 
The production "<decl list> ::= <decl> <decl list>" is then replaced by "<decl list> ::= <decl 

list branch>" and "<decl list branch> ::= <decl> <decl list>". Similar work is treated on <strut 
l i s t >  and <expr>. Besides, these structure symbols are named to express the specializations of the 
compound symbols. For example, <add expr> means additive expression, and <stmt l i s t  branch> 
means the branch in a statement list. The resulting restricted CFG is shown in figure 3.3. 

< p r o g r a m >  : : =  ~ ID < b l o c k >  

<decl list> ::= <decl> I <decl> <decl list> 

<stmt list> ::= <stmt> I <stmt> <stmt list> 

<decl> : := ID : TYPE 

<stmt> ::= <assign> I <block> 

<assign> ::= <id> := <expr> 

<block> ::= ~ <decl list> <stmt list> ~]~ 

<expr> ::= <expr> + <expr> I <id> 

<id> : := ID 

Figure 3.2: The CFG of ABL language. 
(I) <program> ::= ~ ID <block> 

(2) <decl list> ::= <decl> I <decl list branch> 

(3) <decl list branch> ::= <decl> <decl list> 

(4) <stmt list> ::= <stmt> r <stmt list branch> 

(5) <stmt list branch> ::= <stmt> <stmt list> 

(6) <decl> ::= ID : TYPE 

(7) <stmt> ::= <assign> I <block> 

(8) <assign> ::= <id> := <expr> 

(9) <block> ::= ~ <decl list> <stmt list> ~]~ 

(i0) <expr> ::= <add expr> I <id> 

(ii) <add expr> ::= <expr> + <expr> 

(12) <id> : := ID 

Figure 3.3: The restricted CFG for ABL language. 
3.2.2 The Exclusive Class Hierarchy 
By following step two, an ECH in figure 3.4 can be constructed by hand or by a supporting tool. Each 
grammar symbol has a corresponding class, and the inheritance relations among these classes are derived 
from the productions of classification symbols. The directed arcs in the figure represent the inheritance 
relation based on productions (2), (4), (7), (10) and (12) in figure 3.3. Besides, null inheritance, nothing 
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inherited, is represented by 'J_' at the upper-right of the inheriting class. 
3.2.3 Service Definitions 
The third step is to define the services provided by symbols. Regarding name checking, <decl> (class) 
need have the following services: d e c l a r a t i o n  returns the name and type of an identifier declared, 
isReferenced checks if the identifier is referenced, and isRedeclared checks if the name is duplicated. 
In a:D and TXt, E, idName and typeName provide the name and type of a declared variable accordingly. In 
<assign>, r e f e r e n c e  returns the names referenced, and o u t R e f e r e n c e  returns those referenced but not 
declared locally. Besides, <block> provides the followings: symbol  returns a table of identifiers declared 
in its scope, r e d e c l a r e d  checks if a given idName has other identical entries in the table, and d e c l a r e d  

checks if the i d N a m e  is declared. In <id>, i s D e c l a r e d  checks if the identifier is declared. Other symbols 
are neglected because they provide no service. 

1 <decl list> <stmt lists <expr> 1 
,4',, / \  1 \ 1  

<strut> <strut list branch> <add e×pr> <id> <decl> <decl list branch> / ~  / 

<assign> <block> 1 ib 

Through 

I i I i I I 1 1 

:: : + <program> PROGRAM BEGIN END TYPE 

Figure 3.4: ECH for the restricted CFG of ABL language. 
generalization, the common services of <ass ign> and <b lock> ,  r e f e r e n c e  and 

outReference, are moved to their superclass <stmt>. 

The detailed definition for each service is specified based on pseudo sites and Smalltalk's syntax. 
For example, in <block>, service symbol  returns a collection of declarations in site nec lnodes ,  all 
<decl> nodes in <block>, reference is the union of outReferences in site StmtNodes, all <stmt> 

nodes in <block>, declared recursively sends message to site Scope, the <block> node of the scope, 
and r e d e c l a r e d  and r e f e r e n c e d  send messages symbol  and r e f e r e n c e  to the <block> itself to check 
the circumstance of given idName. To simplify the description, the well known global objects in 
Smalltalk, such as classes of data structures, can also be used directly. For example, class Associat ion and 
method key: value : are used in the definition of declaration, includesKey: and includes : have the 

same meanings as those in Smalhalk's Dict ionary class, of Key: retrieves all the elements matched in a 
collection. The service descriptions are shown in figure 3.6. 
3.2.4 Pseudo Site Definitions 

<block> 

BEGIN <decl list branch> <stmt list branch> END 

<decl> <decl list branch> <assign> <stmt list branch> 

<decl> <~ecl> <assign> <block> 

BEGIN <decl> <assign> END 

Figure 3.5 A structured parse tree of < b l o c k > .  
The last step is to define pseudo site by path expression. For example, the pseudo site Scope used in 
service description of <block> represents the paths to nearest <block> ancestor. By drawing a parse tree 
on <block> as in figure 3.5, one can always find that there is a path from the lower <block> node to its 
nearest <block> ancestor. So, the path expression for scope is " (<b lock> , - )*" ,  any symbols but 
<block>, followed by (^<block>, - ) ,  the destination. 

StmtNoOes represents the paths to <strut> offsprings. From the parse tree in figure 3.5, it is found 
that <strut l i s t  branch> always repeats several times in a <stmt l i s t > ,  concatenating a <stmt>, 
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<assign> or <block>, with a <stmt list>. So, StmtNodes is "<stmt list branch >* <stmt>". 

DeclNodesiS similarto StmtNodes. 
class <decl> "<decl> ::= ID : TYPE " 

Site 

Scope = (^<block>,-)* (<block>,-) 

Protocol 

declaration 
^ Association key: ID idName value: TYPE typeName. 

isReferenced 
^ Scope referenced: ID idName 

isRedeclared 
^ Scope redeclared: ID idName 

class <stmt> "<stmt> ::= <assign> i <block>" 

Site 
DeclNodes = 0; /* re-defined in subclass */ 

Protocol 

outReference 
^ self reference - DeclNodes declaration. 

class <assign> "<assign> ::= <id> := <expr>" 

Site 

IdNodes = any <id>; 

Protocol 

reference 

^ IdNodes idName 

class <block> 

"<block> ::= ~ <decl list> <stmt list> END" 

Site 

StmtNodes = <stmt list branch>* <stmt>; 

DeclNodes = <decl list branch>* <decl>; 

Scope = (^<block>,-)* <block>,-); 

Protocol 

symbol 

^ DeclNodes declaration. 

reference 

^ StmtNodes outReference 

referenced: idName 

^ self reference includes: idName 

redeclared: idName 

^ (self symbol ofKey: idName) size > I. 

declared: idName 

(self symbol includesKey: idName) 

ifTrue: [ ^ true ] 

ifFalse: [ ^ Scope declared: idName ]. 

class <id> "<id> ::= ID" 

Site 

Scope = (^<block>,-)* (<block>,-) ; 

Protocol 

isDeclared 

^ Scope declared: self idName. 

Figure 3.6: The service descriptions and site definitions for ABL. 

4. COMPILING PROCESS FOR A SAMPLE PROGRAM 
The compiling process contains three phases: parsing, semantic analysis, and code generation. The 
parsing process is similar to traditional one except that the tree construction need be modified. A t~e  
construction algorithm cooperating with traditional parsing actions will be presented in [11]. The t~e 
conswucted is a structured parse tree (SPT), in which each node has specific inherited properties. An 

91 



ECH can be simulated by a class hierarchy of single inheritance [11]. Semantic analysis and/or code 
generation can be done by extending topological sorting algorithm [4] on the message dependency graph, 
which represents the sending dependency on the messages of the nodes. 

program OOP 
begin 

i : integer 
j : integer 
i := j + k 
begin 

k : real 
i := j + k 

end 
end 

Figure 4.1: A sample program of ABL. 
Here, we use a sample program of ABL language in figure 4.1, to show the compiling process of 

the model. The parse tree of the program is shown in figure 4.2. The structured parse tree is shown in 
figure 4.3. The dependency subgraphs for <decl>, <assign>,  <block>, and < i d >  are shown in figures 
4.5-4.7, respectively. The ID nodes in figure 4.7 are those which inherit the properties of <id>. 

<program> 

~ /  " ' " " ' ~  bloc k > P R O G R A M  I D  

BEGIN <decl list> 
t I 

<decl list branch> <strut list branch> 

<decl> <decl list> <strut> <stml list> 
/ / k  I I I 

ID : TYPE <decl> <assign> <strut> 
(i) (integer, / /  X / I  \ i °' _.__~ 

ID : TYPE <~d>:-- <expr> t . . . 5 b l  c 
I (i) (integer) liD <add expr>BE(~lN <decl list> <stmtlliSt> END 

(') . / I  \ ' ' / l c <  > I  6 <id> + <id> <strut> 
I I I 

ID ID ID : TYPE <assign> 
ill (k) (k) (reai) / I \ 

<id> : =  <expr> 
I~  <addlexpr> 

(i) <id> ~- <id> 
I I 

ID ID 
(i) (k) 

Figure 4.2: Parse Tree for sample program. 
Some of the nodes are removed from the graph to make the presentation clear. The message 

names used in the graphs are the abbreviations of those in the previous section. We use the names dcX 
(declaration), idn (idName), tpn (typeName), ref? (isReferenced), red? (isRedeclared), oref 

(outReference), ref (reference), sym (symbol), refed (referenced), red (redeclared), dcled 

(declared), and dcl? (isDeelared). 

5. C O M P I L E R  G E N E R A T I O N  
An OOCS can be used to generate the compiler too. Our research on the compiler generation is on going 
now, and several significant results have been achieved. Here, we introduce some of them roughly. The 
details can be found in [11] and [12]. 

The compiler based on OOCS is divided into three parts: parser, class hierarchy, and message 
evaluator. The restricted CFG of an OOCS is used to generate a parser and an ECH. The generation of 
parser is similar to that of traditional parser generator, e.g. YACC based on LALR(1), except that the 
parsing kernel is modified to construct an SPT. ECH can be simulated by a class hierarchy of an object- 
oriented programming language, or by a set of user defined types [ 11 ]. 
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<program> 

P R O G R A M  ID ~b fock>  

B E G I N  <decl list branch> E N D  <stmt list branch> 
. / \  / 

<decl> <docl> <assign> 
/ 1 \  / I  \ / [  \ 

ID : TYPEIB : TYPE IO :=<add expr> 
(i) (integer) (j) (integer) (i) / I "\ 

ID + ID 
(i) (k} 

..j•block> 
B E G I N  <decl> <assign> END 

/ / \  / I  \ 
ID : TYPE ID:= <add e×pr> 
(k) (real) (i) / I \ 

ID + ID 
(j) (k) 

Figure 4.3: Structured Parse Tree for sample program. 
<program> 

red <block> ref 

< d e c q ~ l ~ s t  b r a . ~ c h ~ / < s t m t  list branch> 

~/? decl ~/r. r e ~  re~ ? decl dcl r~ ~ red<bl°ck>ref red? dcl ref? red? d ret? 

• ted'? <°ecl>dc] ref? 
(i) (integer) (j) Idn (integer) ~ ID/,~n ~'-  - '--~p'"/ ' l '~-n 

(k) (real) 
Figure 4.4: Dependency Subgraph of <d.ecl>.  

<program> 

<block> 

<stmt list branch> 

o r e f ~ r e f  <block> 

(J) (k) ID id n . (j) (k) I n 

Figure 4.5: Dependency Subgraph of <assign>. 
<program> 

red S~  <block> dc,t~d r e ~ r e f e d ~  

< e >dcJ <dec dcl <assgn oref red ~,~<bl°ck>jcfed on'el ref refed 

Figure 4.6: Dependency Subgraph of <bXock>. 
The semantic analyzer and code generator are generated according to the service descriptions. 

Let's assume that the semantic analysis is a topological evaluation. A semantic analyzer generator need 
test whether a dependency graph could be circular or not first. By decorating each symbol with a set of 
dependency graphs and a set of DFA's states, it is shown that the OOCS contains circular dependency if 
and only if one such state patterns causes the graph to be circular. The process always terminate since the 
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patterns are finite. Thus, the circularity testing is decidable [12]. 
<program> 

<block> dcled 

<strut list brahe// 
<assign> ~ ? /  <block>dcled 

,°,o,.jz// 
">,.'n 1 __ j /  \ 

• I D d c l ?  I D d c l ?  I.Ddol? / \ 

! 
(J) idn (k)idn 

Figure 4.'7: Dependency Subgraph of <:i.a>. 
6. CONCLUSION 
We have presented an object-oriented approach to compiler specification. Our method treats grammar 
symbols as templates which instantiate nodes of parse tree for object-oriented semantics analysis. It uses 
restricted CFG to specify grammar rules for better classification and inheritance on semantics description. 
Based on a class hierarchy from the restricted CFG, an object-oriented analysis is specified by using path 
expression to describe possible receivers of messages. The use of path expression removes the restriction 
on the specification of message (value) propagations in attribute grammar methods. 

Other interesting topics include 1) translating path expressions into node addresses of parse trees, 
2) constructing a compiler generator based on the specification, and 3) applying this approach to 
language-based environment. 
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