
An Object-Oriented Specification for Compiler
Pei-Chi Wu Feng-Jian Wang

Institute of Computer Science and Information Engineering
National Chiao Tung University

1001 Ta Hsueh Road, Hsinchu, Taiwan, R.O.C.
FJWANG@TWNCTU01.BITNET

ABSTRACT
In this paper, we present an object-oriented approach to compiler specification. Our method treats
grammar symbols as templates which instantiate nodes of parse tree for object-oriented semantic analysis.
To have better classification and inheritance for semantic description, it uses res tr ic ted CFG to specify
grammar rules. The semantic specification is done based on a class hierarchy generated from the
restricted CFG. Besides, that a path expression is booted to describe the possible receivers of a message
releases the restriction on the specification of message (value) propagations in attribute grammar
methods.
Keywords: object-oriented, compiler, specification, context-free grammar, attribute grammar,

classification, inheritance, Smalltalk-80.

1. INTRODUCTION
Although Knuth showed that even the pure ly synthes ized A G has the same power as any other A G does
[4], researches on the extension of attribute grammar to simplify the specification of attribution rules
have never stopped [6, 8, 9]. However, there was little attention based on object-oriented programming
[7, 10].

Consider the productions in a CFG, if a nonterminal symbol X has only the following production
form X ~ X 1 I X 2 I ... I Xk, X and X~ X 2 ... X~ may be treated as a class hierarchy, where class X is the

parent class of classes X 1 X 2 ... X k. Therefore, the attributes and attribution rules specified to be associated

with X can be inherited by X 1 X 2 ... X~, if the nodes of parse tree are treated as objects of these classes.

The details of applying classification and inheritance on a CFG for compiling are shown in [11]. The
work in [5] applies similar concepts to code a compiler.

The value propagations along parse tree follow either implicit orders, based on conventional
attribute grammars, specified by attributes assignments or global data, or the pre-specified order which is
defined based on graph. In the latter case, Demers et al., proposed a method which specifies the
propagation directions according to the tree abstraction of parse tree [2]. It allows the attributes values of
a node in the parse tree be sent to their parents, preorder predecessors, inorder successors etc.,

directly. However, none of these methods allow the propagation along an arbitrary path which is
explicitly defined during compiler specification.

Perhaps the major difficulty to specify the sending of a value through an arbitrary path is that the
parse tree can not be decided at specification. The language needed to define the paths associated with a
CFG seems so complicated that there is no good result of research working on it yet. Our experience
shows that a restricted CFG and the corresponding class hierarchy can ease the specification of paths.
Here, we present a method to describe path informations based on the class hierarchy and s tructured

parse tree [11]. The message, defined with a path, is thus sent to the destination node accordingly.
Besides, perhaps the most interesting thing is that the specification of message paths in our method is
easy.

2. THE MODEL
Let G = (T, N, P, Z) be a CFG, where T is a terminal symbol set, N a nontermina l symbol set, P a
produc t ion set, and Z a start symbol. A production in a CFG is a s ingle ton if its right-hand side is a single
symbol. It is a skele ton in other cases except an empty production. A produc t ion set of nonterminal X,

85 ACM SIGPLAN Notices, Volume 27, No. 1, January 1992

denoted as P(X), is a set of all the productions of the form X ---) or, where c~ is a string of symbols from (T

uN)*.
Definition 2.1: A nonterminal symbol X in a CFG is:

1. a classification symbol if 'v'pe P(X) is singleton,

2. a structure symbol if IP(X)I= 1 and pc P(X) is skeleton, or

3. a compound symbol if IP(X)I>I and 3p~ P(X) is skeleton.
As discussed in [11], classification and structure symbols can be analogized as the classes of a

class hierarchy with inheritance so that a classification symbol and its righthand side represents a
specialization/generalization in a (object-oriented) class hierarchy. A structure symbol and its righthand
side can be considered as a branch of parse tree. Compound symbols are jammed with too much
information that they may be deleted from the grammar to simplify the structure of the class hierarchy.
This restriction may lengthen grammar specification, but not the expression power of the grammar.
Definition 2.2: Let G = (T, N, P, Z) be a CFG. G is a restricted CFG if it contains no compound symbol.

Ambiguous grammars may make the compiler specification shorter and more natural for a
language. But, it does little help in the discussion of our model. Neither useless symbols nor e-
productions do. Therefore, our scope is in restricted CFG without these properties.

A class hierarchy can be generated based on a restricted CFG, so that the nodes of parse tree are
treated as the instances of its classes [11]. Node objects pass information to each other for semantic
analysis, code generation/optimization, ..., etc. Node objects are instantiated during parsing process, and
their addresses are not known at specification time. However, the distance between two node objects can
be specified based on tree abstraction. In order to simplify the specification, we define a regular
expression, path expression, to describe the paths to receiver nodes of a message from its sender. During
semantic analysis, a path expression and sender node of a message is interpreted as its receiver nodes so
that the message can be delivered.
Definition 2.3: Let r and s be path expressions denoting the languages R and S, respectively.

1. O is a path expression and denotes the empty set.

2. a is a path expression and denotes the set {e}.
3. A symbol index (c, i) is a path expression and denotes the set {(c, i)}, where c is a symbol, i is a

direction index,

4. rs is a path expression, which denotes the set RS, i.e. { a t a 2 I aj~ R, a2~ S}, where a I a 2 represents

the concatenation of strings aj and a 2.

5. r+s is a path expression, which denotes the set R w S, where '+' called alternative operator.

6. r* is a path expression, which denotes the closure of R, R*, i.e. set {~} u R u RR u ... u RR...R

.... where '*' called repetitive operator.
The alphabet set of path expression is a set of symbol index (c, i). The direction index is an

integer, which represents traveling direction on a parse tree. The positive direction index i means
traveling to the ith child which labeled c. The negative index -i means traveling to parent labeled c and
ensures that the node itself is the ith child of its parent.

Let's assume that each parent-child relation in the tree is associated with two directed arcs, of
which each is labeled a symbol index. In a graph, a node v is reachable from u if there is a path from u to
v. Since a node in parse tree is an instance of a symbol, a path in parse tree can also be deemed as an
instance of a sequence of symbol indexes. A node v is a reachable end from a node u through s, a
sequence of symbol indexes, if the path from u to v is s's instance. A node v is a receiving node from a
sender node u through a path expression e, if there is a sequence of symbol indexes s in the denoting
language of e, s.t. v is a reachable end from u through s. The receiving nodes from a sender node with a
path expression will be treated as the receivers.

Besides, some short-cut notations and frequent expressions are introduced to simplify the

86

specification of path expression. Two characters '+' and '-' are used in direction index to represent positive
and negative direction index, respectively. A symbol c in G is equivalent to notation (c, +), which means
any child labeled c. The special symbol any means any symbol. The self symbol, equal to an empty
string £, means the node itself. The '^' character prefixed a symbol c in G means any symbol but c.

Figure 2.2 shows a parse tree of a CFG in figure 2.1. For example, a path expression
" (< e x p r > , 3) (< i d > , +) " associated with node < a s s i g n > 1 is a language L={ (< e x p r > , 3) (< i d > , l) ,

(<expr>,3) (<id>,3) }. Since, from the <ass ign> 1 node, there exist a path through arcs labeled

(<expr>, 3) and (<id>, 1) to node <id> 2, and another path through arcs labeled (<expr>,3) and

(<id>, 3) to <id> 3, respectively, <id> 2 and <id> 3 are both receiving nodes from <ass ign>l through

" (< e x p r > , 3) (< i d > , +) ". In other words, the expression " (< e x p r > , 3) (< i d > , +) " associated with node
<ass ign> 1 represents the receiver node set {<id> 2, <id> 3 }.

< a s s i g n > : : = < i d > := < e x p r >
< e x p r > : : = < i d > + < i d >

Figure 2.1: A CFG.
• . - < a s s g n > ~ I<asslgn~,-1)~ I'~ ~ '"/.sassig n>,'3)

/ .J~d>, liJ ~<e×]b, .~3)~" k
<id>~ :=__ < e x p r > ~ - ~

/ (~Y(d"l l~<i°~)/
<id>2 + <id>3

Figure 2.2: Symbol indexes in a parse tree.
Definition 2.4: A site definition is a definition r=e, where r is a symbol called pseudo site, and e is a path
expression.

The semantics specification in our model contains two parts: site definitions and service
descriptions. Pseudo sites are defined to represent path expressions. They are used as receivers in the
service descriptions. The message sent to a pseudo site is applied to each node object in the set, which is
similar to Set in Smalltalk-80. This message can be thought as an implicit collect message, which is sent
to each element of the receiver node set. Its return is like a Bag in Smalltalk-80. Messages sent to an
empty node set will return an empty bag. For example, pseudo site IONodes in class <ass ign> of above
example represents path expression "(<e×pr>,3) (<id>,+)" . It is thought as a set of receivers
corresponding to the real paths. A message idName sent to site IdNodes is interpreted as "{<id> 2, <iO>3]

collect: [:n I n iOName]".
Sometimes, a pseudo site is considered as a single node instead of a set, if the path expression

defined is always bound to a set of single element. The implicit propagation directions, such as parent
and child, in attribute grammar, are always bound to single element, if the symbol is not start or terminal

symbol. The pseudo site AssignNode defined as " (" < a s s i g n > , -) * (< a s s i g n > , -) " on class <io> is a
language { (< a s s i g n > , -) , (< o x p r > , -) (< a s s i g n > , -) , (< i d > , -) (< a s s i g n > , -) }. It is always bound
to the <ass ign> instance (node) which is an ancestor of the <id> instance (node). In these situations, it is
convenient to use the notation of single node instead of set.

The semantic definition of a symbol is the description of services (methods) provided by it. The
notations in the description are similar to those in Smalltalk-80. To simplify specification, a node object
is assumed to have only those attributes whose value can not be changed after ready. These attributes can
be specified implicitly, and thus Smalltalk's instance variable is not used. Besides, not all services send
message(s) to other nodes. For example, a service may return integer zero directly. A service which
returns the lexical information of a terminal node has its definition done in lexical part (as in Lex).
Definition 2.5: An object-oriented compiler specification is a 3-tuple, OOCS = (G, .5, E).

1. G = (T, N, P, Z) is a restricted CFG.

S(X) is a finite set of service descriptions. 2. S = X e T u N

87

3. E= U x~ ~N E(X) is a finite set of site definitions (path expressions).

Here, S(X) and E(X) are a set of service descriptions and a set of site definitions associated with each
symbol X in G, respectively.

3. AN OBJECT-ORIENTED SPECIFICATION METHOD
In this section, we present a specification method for compilers based on our model. The method contains
four major steps:

1. Write a res tr ic ted CFG for the target language.
2. Construct the exclus ive class hierarchy for the restricted CFG.

Define the services provided by each symbol.
Define each pseudo site by a path expression.
The flow chart is shown in figure 3.1.

Write a
restricted CFG

.

4.

3.1 The Specification Details
1.

Construct the Exclusive
Class Hierarchy

1

.

Define the services
provded by each, symbo

.

1
Define each
pseudo site

Figure 3.1: The specification flow chart.

Write a res tr ic ted CFG for the target language.
(a) Write a CFG for the target language.
(b) Rewrite the production rules of compound symbols in the CFG to make an equivalent

restricted CFG. For each compound symbol, modify its production rules by replacing their
right-hand sides with new structure symbols. Make a production rule with each new structure
symbol (left-hand side) and the corresponding right-hand side (see also [11]). Besides, name
the introduced symbols carefully so that they can express the specializations of the compound
symbol.

Construct the exclusive class hierarchy (ECH) for the restricted CFG.
(a) Each singleton production X ~ Y claims that Y exc lus ive ly inherits from X, i.e. an object y of

Y has the properties defined in X, the service descriptions and site definitions declared in X, if
y is generated by X ~ Y.

(b) Each skeleton production X 0 --~ X 1 X 2 ... X k, k_>l, describes that X 0 contains k components, X 1,

X 2 , and X k. An object x i of X i, l<_i.~_k, has the properties of nu l l (L) and X i, if x i is generated

by X 0 ~ X 1 X2 ...Xi ... X k.

Define the services provided by each symbol.
(a) Identify the services and their message protocols provided by each symbol; leave the symbol

alone if nothing can be served.
(b) Organize the services through generalization, i.e. moving common services to superclass(es)

8 8

.

in ECH.
(c) Specify each service with Smalltalk language, where message receivers are represented by

pseudo sites.
Define each pseudo site by a path expression.
(a) Sketch the propagation direction of the path. There are four kinds of paths: to itself, to

ancestor(s), to offspring(s), or to arbitrary node(s) (offspring(s) of some ancestors).
(b) Sketch some representative parse trees related to the pseudo site, and outline the shortest

propagation paths in these parse trees.

(c) Write down the expression according to these paths. Use the repetition (*) for repeated
symbols, the alternative (+) for multiple choices, and the concatenation for sequence.

3.2 An Example
This subsection shows a specification example for the language ABL which contains assignment
statements and block structures. The ABL compiler is expected to be capable of detecting naming errors
or warnings, such as un-declared, re-declared, and un-referenced variables.
3.2.1 Restricted CFG
The first step is to write a CFG for ABL language. Figure 3.2 shows a sample which contains three
compound symbols: < d e c l l i s t > , <stmt l i s t > , and <expr>. To make an equivalent restricted CFG,
the structure symbols <stmt list branch>, <decl list branch>, and <add expr> are introduced.
The production "<decl list> ::= <decl> <decl list>" is then replaced by "<decl list> ::= <decl

list branch>" and "<decl list branch> ::= <decl> <decl list>". Similar work is treated on <strut
l i s t > and <expr>. Besides, these structure symbols are named to express the specializations of the
compound symbols. For example, <add expr> means additive expression, and <stmt l i s t branch>
means the branch in a statement list. The resulting restricted CFG is shown in figure 3.3.

< p r o g r a m > : : = ~ ID < b l o c k >

<decl list> ::= <decl> I <decl> <decl list>

<stmt list> ::= <stmt> I <stmt> <stmt list>

<decl> : := ID : TYPE

<stmt> ::= <assign> I <block>

<assign> ::= <id> := <expr>

<block> ::= ~ <decl list> <stmt list> ~]~

<expr> ::= <expr> + <expr> I <id>

<id> : := ID

Figure 3.2: The CFG of ABL language.
(I) <program> ::= ~ ID <block>

(2) <decl list> ::= <decl> I <decl list branch>

(3) <decl list branch> ::= <decl> <decl list>

(4) <stmt list> ::= <stmt> r <stmt list branch>

(5) <stmt list branch> ::= <stmt> <stmt list>

(6) <decl> ::= ID : TYPE

(7) <stmt> ::= <assign> I <block>

(8) <assign> ::= <id> := <expr>

(9) <block> ::= ~ <decl list> <stmt list> ~]~

(i0) <expr> ::= <add expr> I <id>

(ii) <add expr> ::= <expr> + <expr>

(12) <id> : := ID

Figure 3.3: The restricted CFG for ABL language.
3.2.2 The Exclusive Class Hierarchy
By following step two, an ECH in figure 3.4 can be constructed by hand or by a supporting tool. Each
grammar symbol has a corresponding class, and the inheritance relations among these classes are derived
from the productions of classification symbols. The directed arcs in the figure represent the inheritance
relation based on productions (2), (4), (7), (10) and (12) in figure 3.3. Besides, null inheritance, nothing

89

inherited, is represented by 'J_' at the upper-right of the inheriting class.
3.2.3 Service Definitions
The third step is to define the services provided by symbols. Regarding name checking, <decl> (class)
need have the following services: d e c l a r a t i o n returns the name and type of an identifier declared,
isReferenced checks if the identifier is referenced, and isRedeclared checks if the name is duplicated.
In a:D and TXt, E, idName and typeName provide the name and type of a declared variable accordingly. In
<assign>, r e f e r e n c e returns the names referenced, and o u t R e f e r e n c e returns those referenced but not
declared locally. Besides, <block> provides the followings: symbol returns a table of identifiers declared
in its scope, r e d e c l a r e d checks if a given idName has other identical entries in the table, and d e c l a r e d

checks if the i d N a m e is declared. In <id>, i s D e c l a r e d checks if the identifier is declared. Other symbols
are neglected because they provide no service.

1 <decl list> <stmt lists <expr> 1
,4',, / \ 1 \ 1

<strut> <strut list branch> <add e×pr> <id> <decl> <decl list branch> / ~ /

<assign> <block> 1 ib

Through

I i I i I I 1 1

:: : + <program> PROGRAM BEGIN END TYPE

Figure 3.4: ECH for the restricted CFG of ABL language.
generalization, the common services of <ass ign> and <b lock> , r e f e r e n c e and

outReference, are moved to their superclass <stmt>.

The detailed definition for each service is specified based on pseudo sites and Smalltalk's syntax.
For example, in <block>, service symbol returns a collection of declarations in site nec lnodes , all
<decl> nodes in <block>, reference is the union of outReferences in site StmtNodes, all <stmt>

nodes in <block>, declared recursively sends message to site Scope, the <block> node of the scope,
and r e d e c l a r e d and r e f e r e n c e d send messages symbol and r e f e r e n c e to the <block> itself to check
the circumstance of given idName. To simplify the description, the well known global objects in
Smalltalk, such as classes of data structures, can also be used directly. For example, class Associat ion and
method key: value : are used in the definition of declaration, includesKey: and includes : have the

same meanings as those in Smalhalk's Dict ionary class, of Key: retrieves all the elements matched in a
collection. The service descriptions are shown in figure 3.6.
3.2.4 Pseudo Site Definitions

<block>

BEGIN <decl list branch> <stmt list branch> END

<decl> <decl list branch> <assign> <stmt list branch>

<decl> <~ecl> <assign> <block>

BEGIN <decl> <assign> END

Figure 3.5 A structured parse tree of < b l o c k > .
The last step is to define pseudo site by path expression. For example, the pseudo site Scope used in
service description of <block> represents the paths to nearest <block> ancestor. By drawing a parse tree
on <block> as in figure 3.5, one can always find that there is a path from the lower <block> node to its
nearest <block> ancestor. So, the path expression for scope is " (<b lock> , -)*" , any symbols but
<block>, followed by (^<block>, -) , the destination.

StmtNoOes represents the paths to <strut> offsprings. From the parse tree in figure 3.5, it is found
that <strut l i s t branch> always repeats several times in a <stmt l i s t > , concatenating a <stmt>,

90

<assign> or <block>, with a <stmt list>. So, StmtNodes is "<stmt list branch >* <stmt>".

DeclNodesiS similarto StmtNodes.
class <decl> "<decl> ::= ID : TYPE "

Site

Scope = (^<block>,-)* (<block>,-)

Protocol

declaration
^ Association key: ID idName value: TYPE typeName.

isReferenced
^ Scope referenced: ID idName

isRedeclared
^ Scope redeclared: ID idName

class <stmt> "<stmt> ::= <assign> i <block>"

Site
DeclNodes = 0; /* re-defined in subclass */

Protocol

outReference
^ self reference - DeclNodes declaration.

class <assign> "<assign> ::= <id> := <expr>"

Site

IdNodes = any <id>;

Protocol

reference

^ IdNodes idName

class <block>

"<block> ::= ~ <decl list> <stmt list> END"

Site

StmtNodes = <stmt list branch>* <stmt>;

DeclNodes = <decl list branch>* <decl>;

Scope = (^<block>,-)* <block>,-);

Protocol

symbol

^ DeclNodes declaration.

reference

^ StmtNodes outReference

referenced: idName

^ self reference includes: idName

redeclared: idName

^ (self symbol ofKey: idName) size > I.

declared: idName

(self symbol includesKey: idName)

ifTrue: [^ true]

ifFalse: [^ Scope declared: idName].

class <id> "<id> ::= ID"

Site

Scope = (^<block>,-)* (<block>,-) ;

Protocol

isDeclared

^ Scope declared: self idName.

Figure 3.6: The service descriptions and site definitions for ABL.

4. COMPILING PROCESS FOR A SAMPLE PROGRAM
The compiling process contains three phases: parsing, semantic analysis, and code generation. The
parsing process is similar to traditional one except that the tree construction need be modified. A t~e
construction algorithm cooperating with traditional parsing actions will be presented in [11]. The t~e
conswucted is a structured parse tree (SPT), in which each node has specific inherited properties. An

91

ECH can be simulated by a class hierarchy of single inheritance [11]. Semantic analysis and/or code
generation can be done by extending topological sorting algorithm [4] on the message dependency graph,
which represents the sending dependency on the messages of the nodes.

program OOP
begin

i : integer
j : integer
i := j + k
begin

k : real
i := j + k

end
end

Figure 4.1: A sample program of ABL.
Here, we use a sample program of ABL language in figure 4.1, to show the compiling process of

the model. The parse tree of the program is shown in figure 4.2. The structured parse tree is shown in
figure 4.3. The dependency subgraphs for <decl>, <assign>, <block>, and < i d > are shown in figures
4.5-4.7, respectively. The ID nodes in figure 4.7 are those which inherit the properties of <id>.

<program>

~ / " ' " " ' ~ bloc k > P R O G R A M I D

BEGIN <decl list>
t I

<decl list branch> <strut list branch>

<decl> <decl list> <strut> <stml list>
/ / k I I I

ID : TYPE <decl> <assign> <strut>
(i) (integer, / / X / I \ i °' _.__~

ID : TYPE <~d>:-- <expr> t . . . 5 b l c
I (i) (integer) liD <add expr>BE(~lN <decl list> <stmtlliSt> END

(') . / I \ ' ' / l c < > I 6 <id> + <id> <strut>
I I I

ID ID ID : TYPE <assign>
ill (k) (k) (reai) / I \

<id> : = <expr>
I~ <addlexpr>

(i) <id> ~- <id>
I I

ID ID
(i) (k)

Figure 4.2: Parse Tree for sample program.
Some of the nodes are removed from the graph to make the presentation clear. The message

names used in the graphs are the abbreviations of those in the previous section. We use the names dcX
(declaration), idn (idName), tpn (typeName), ref? (isReferenced), red? (isRedeclared), oref

(outReference), ref (reference), sym (symbol), refed (referenced), red (redeclared), dcled

(declared), and dcl? (isDeelared).

5. C O M P I L E R G E N E R A T I O N
An OOCS can be used to generate the compiler too. Our research on the compiler generation is on going
now, and several significant results have been achieved. Here, we introduce some of them roughly. The
details can be found in [11] and [12].

The compiler based on OOCS is divided into three parts: parser, class hierarchy, and message
evaluator. The restricted CFG of an OOCS is used to generate a parser and an ECH. The generation of
parser is similar to that of traditional parser generator, e.g. YACC based on LALR(1), except that the
parsing kernel is modified to construct an SPT. ECH can be simulated by a class hierarchy of an object-
oriented programming language, or by a set of user defined types [11].

9 2

<program>

P R O G R A M ID ~b fock>

B E G I N <decl list branch> E N D <stmt list branch>
. / \ /

<decl> <docl> <assign>
/ 1 \ / I \ / [\

ID : TYPEIB : TYPE IO :=<add expr>
(i) (integer) (j) (integer) (i) / I "\

ID + ID
(i) (k}

..j•block>
B E G I N <decl> <assign> END

/ / \ / I \
ID : TYPE ID:= <add e×pr>
(k) (real) (i) / I \

ID + ID
(j) (k)

Figure 4.3: Structured Parse Tree for sample program.
<program>

red <block> ref

< d e c q ~ l ~ s t b r a . ~ c h ~ / < s t m t list branch>

~/? decl ~/r. r e ~ re~ ? decl dcl r~ ~ red<bl°ck>ref red? dcl ref? red? d ret?

• ted'? <°ecl>dc] ref?
(i) (integer) (j) Idn (integer) ~ ID/,~n ~'- - '--~p'"/ ' l '~-n

(k) (real)
Figure 4.4: Dependency Subgraph of <d.ecl>.

<program>

<block>

<stmt list branch>

o r e f ~ r e f <block>

(J) (k) ID id n . (j) (k) I n

Figure 4.5: Dependency Subgraph of <assign>.
<program>

red S~ <block> dc,t~d r e ~ r e f e d ~

< e >dcJ <dec dcl <assgn oref red ~,~<bl°ck>jcfed on'el ref refed

Figure 4.6: Dependency Subgraph of <bXock>.
The semantic analyzer and code generator are generated according to the service descriptions.

Let's assume that the semantic analysis is a topological evaluation. A semantic analyzer generator need
test whether a dependency graph could be circular or not first. By decorating each symbol with a set of
dependency graphs and a set of DFA's states, it is shown that the OOCS contains circular dependency if
and only if one such state patterns causes the graph to be circular. The process always terminate since the

93

patterns are finite. Thus, the circularity testing is decidable [12].
<program>

<block> dcled

<strut list brahe//
<assign> ~ ? / <block>dcled

,°,o,.jz//
">,.'n 1 __ j / \

• I D d c l ? I D d c l ? I.Ddol? / \

!
(J) idn (k)idn

Figure 4.'7: Dependency Subgraph of <:i.a>.
6. CONCLUSION
We have presented an object-oriented approach to compiler specification. Our method treats grammar
symbols as templates which instantiate nodes of parse tree for object-oriented semantics analysis. It uses
restricted CFG to specify grammar rules for better classification and inheritance on semantics description.
Based on a class hierarchy from the restricted CFG, an object-oriented analysis is specified by using path
expression to describe possible receivers of messages. The use of path expression removes the restriction
on the specification of message (value) propagations in attribute grammar methods.

Other interesting topics include 1) translating path expressions into node addresses of parse trees,
2) constructing a compiler generator based on the specification, and 3) applying this approach to
language-based environment.

REFERENCES
1. Aho, A. V., Sethi, R., and Ullman, J. D., Compilers - Principles, Techniques, and Tools, Addison-

Wesley, 1986.
2. Demers, A., Rogers, A., and Zadeck, F. K., "Attribute Propagation by Message Passing," In Proc. of

the 1985 Syrup. on Language Issues in Programming Environments, June 1985, pp. 43-59.
3. Hopcroft, J. E. and Ullman, J. D., Introduction to Automata Theory, Languages, and Computation,

Addison-Wesley, 1979.
4. Knuth, D. E., "Semantics of Context-Free Languages," Mathematical Systems Theory, Vol. 2, No. 2,

1968, pp. 127-145.
5. Koskimies, K., "Software Engineering Aspects in Language Implementation," In Proc. of the 2nd

Compiler Compilers and High Speed Compilation Workshop, LNCS Vol. 371, Spring-Verlag, 1989,
pp. 39-51.

6. Nord, R. L. and Pfenning, F., "The Ergo Attribute System," In Proc. of the ACM SIGSOFT'88 3rd
Symp. on Software Development Environments, 1988, pp. 110-120.

7. ParcPlace Systems, Inc., Smalltalk-80 Version 2.50bjectworks, 1989.
8. Vorthmann, S. and Leblanc, R. J., "A Naming Specification Language for Syntax-Directed Editors,"

In Proc. 1988 Conf. on Computer Languages, Oct. 1988, pp. 250-257.
9. Watt, D. A., "Extended Attribute Grammars," The Computer Journal, Vol. 26, No. 2, 1983, pp. 142-

153.
10. Wegner, P., "Dimensions of Object-Based Language Design," ACM OOPSLA'87, 1987, pp. 168-

182.
11. Wu, P. -C. and Wang, F. -J., "Applying Classification and Inheritance to Compiling," submitted to

ACM OOPS Messenger.
12. Wu, P. -C. and Wang, F. -J., "Message Passings on a Parse Tree," submitted to 19th Symp. on

Principles of Programming Languages.

94

