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In this paper we study the singular behavior as at K, about the solution v(x; a) 
of the initial value problem v”(x) + x sin v(x) =O, v’(0) =O, v(0) = a. We also 
illustrate its application to the large deformation of a heavy cantilever by its own 
weight. 0 1992 Academic Press, Inc. 

1. INTRODUCTION 

In this paper we are concerned with the singular behavior of the 
solutions of the following initial value problem: 

u”(x) + x sin u(x) = 0, 

u’(0) = 0, ma 

u(0) = a, aE[W. 

We denote the solution of (I), by u(x; a). The qualitative behavior of the 
solutions u(x; a) is important to the studies of the following mathematical 
model (1.1) which describes the large deformations of a heavy cantilever by 
its own weight (see [ 1 ] or [2]): 

u”(x) + x sin u(x) = 0, 

u’(0) = 0, u(K)=n-a,O<cr<7c. 
(1.1) 
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In [2] the authors studied the two-point boundary value problem (1.1) by 
using the shooting method. From the uniqueness of the solution of the 
initial value problem (I),, it follows that 

u(x; x)-71, 4x; -n)r -71, tqx; 0) s 0; 

u(x;2n+a)=27T+u(X;a), (I.21 

V(X;27r-a)=2n--v(x;a), 

and it suffices to consider the problem (I), only for the case 0 <a < 71. We 
note that from L23 for all 0 < a < 71, u(x; a) is oscillatory over 10, cc,) and 
- 7t < o(x; a) c x for all x 3 0. We introduce 

A(x;o)=$p;a), qqx) = A(x; 0). 

Then differentiating (I), with respect to a yields 

A”(x) -I- x(cos u(x; a)) A(x) =o, 

A’(O)=O, 

A(O)= 1. 

Setting a = 0 in (1.3) yields 

(1.3) 

f(x) + xqqx) = 0, 4’(O) = 0% fp(0) = 1. (1.4) 

Let y,(a), z,(a) be the nth zeros of u(x; a) and u’(x; a), respectively, for 
n = 1, 2, . ..) with O=z,<y,<zz< ... <yn<zn+,<yn+,< ..-and A,, 7” 
be nth zero of $(x) and 4’(x), respectively, for n = 1,2, . . . . Then in [2] we 
have shown the following result. 

THEOREM 1 .I. Let 0 < u -c ?I ; then A(x; a) has an infinite number qf 
isolated zeros r,(a) and A’(x; a) satisfies the following: 

(i) If O<a < n/2, then A’fx; a) has an infinite number of isolated 
zeros p,,(u), O=p,<fi,< ... -c/3,< .... Furthermore, fi,=zI=O<y,< 
a,=c~~~~~<y~~a~-c ... iy,,<a,<z,+,<Bn+I<yn+,< .... 

(ii) if n/2 <a < x then A/(x; a) has an infinite number of isolated 
zeros P,,(a), 0 = &, < /?, < p2 -c ’ . . -c p,, < . . . Furthermore, /I0 = z I = 
O-c/?,<y,<al<z,<pZ<y2< ... <yn<a,<z,+,<Bn+,~yn+,< .... 

(iii) lim a+O+ y”(a)=&, lim,,,+ z,(u)=y,, and iim,.,.- y,(a)= x, 
for n = 1, 2, . . . . moreover, 

dy L>O, 
da 

!I&) 
da 

, for n=l,2 ,.... 
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We introduce the following Liapunov function: 

1 (v/(x; a))’ 
V(x)=(1-coso(x;a))+~ x * 

It is easy to verify that 

1 u’(x;a) * 
V(x)= --j [ 1 ___ GO, for all x > 0. 

X 

(1.5) 

Then we have 

l-cosu(o)>l-cosu(zl)>l-cosu(z*)> . ..) (1.7) 

and it follows that 10(x; a)1 <a for all x20. That is, (Iu(z,(a); a)(} is a 
monotone decreasing sequence; moreover from [3] we have 

TIIEOREM 1.2. Given a E (0, K), we huue 

(i) u(zJa); a) monotonically increases to zero as n + 03 ; 

(ii) u(z2n + 1 (a); a) monotonically decreases to zero as n -+ co. 

Consequently Theorem 1.2 says that for any given a, 0~ a < TC, the 
solution u(x; a) satisfies lim, _ oo u(x; a) = 0. 

2. MAIN RESULTS 

In this section we illustrate the singular behavior of the solution u(x; a) 
as a-+71-. 

LEMMA 2.1. Let h(a)= u2(z,(a); p). Then h(a) is strictly increasing on 
(0, n). 

Proof: We have 

h’(a) = 2u(z,(a); a) 
[ 

u’(z,(a); a) 2 + d(z,(a); a)] 

= 2u(z,(a); a) d(z,(a); a). 

From Theorem 1.1, it is easy to verify h’(u) > 0 for any 0 <a < A. 

In the following, we state and prove our main result. 

THEOREM 2.2. For each n = 1,2, . . . . we have 

lim u(z,(a); a) = ( - l)‘+ ‘7r, for all n = 1, 2, 3, . . . . 
a-II 
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Proof: Let E = rc -a, denote u(x; E) to be the solution of the initial value 
problem 

u”(x) + x sin u = 0 

u’(0) = 0 (2.1) 

U(O)=X-& O<E<?C, 

and let Y,(E), Z,(E) be the nth zero of u(x; E) and u’(x; E), respectively, for 
n = 1, 2, 3, . . . . It is equivalent to show lim,,,u(z,(s);e)=( -l)“+‘x, and 
we prove it by mathematical induction. We have u(z, (a) ; a) = a, and 
Theorem 2.2 holds trivially for n = 1. 

Step 1. For n=2 we prove lim,,, u(z~(E); E)= -x or lim,,. u(z~(u); u) 
= - rc. Multiplying by u’(x) on both sides of (2.1) and integrating the 
resulting identity from a to b yields 

; (u’(b; E))‘-; (~‘(a; E))2 = b cos v(b; E) - a cos ~(a; E) - I* cos u(x; E) d.x. 
0 

(2.2 

For any 6 > 0 and sufficiently small E > 0 with 6 > E > 0, we define y(~, 6 ) 
and y*(s, 6) to be the first real numbers satisfying U(Y(E, 6); E) = rc - 6 and 
u(y*(&, 6); E) = ?r - 6/2, respectively. Obvious y*(&, 6) < y(&, 6). Since 
u(x; &)I E=O 5 71 for all x B 0, and from the continuous dependence on initial 
data, we have 

lim y*(s; 6) = +co. 
F’O 

(2.3 1 

Setting a = 0, b = y(s ; 6) in (2.2) yields 

; [u’(Y(E; 6); &)I2 = Y(E, b) cos u(y(~; 6); E)- j”‘-“cos u(x; E) dx 
0 

s 

J’(E;6) 

= [COS u(y(&; 6); F) - cos U(X; E)] dx 
0 

s 

.v’(tz;6) 
> [cos(n - 6) - cos u(x; E)] dx 

0 

2 y*(&; 6)[cos(Tc- 6) - cos(n - h/2)]. 

We have [cos(rc-6)-cos(rc-d/2)] >O and from (2.3) 

lim u’(~(E; 6); E) = -cc. 
E’O (2.4) 
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Consequently that u”(x) = -x sin v < 0 on (0, ~~(a)) implies that 

lim v’(JJ,(E); a) = -co. 
E--r0 (2.5) 

from the identity 

YI(&) 

s , 
y(e,a) u’(x; E) dx = - (n - 6), 

and the concavity of u on (y(.s; 6), Ye), we have 

6-z 
<Y,(4-.Y(~;6)< 

b--71 
U’(YI(&); 6) u’b(E; 6); El’ (2.6) 

Then from (2.4), (2.5), and (2.6) it follows that 

lim ~~(8) -)I(&; 6) = 0. 
E--r0 (2.7) 

In the following, we establish that 

lim CU’cYl(&); &)I2 = 4 
E’O Y,(E) . 

Setting a=O, ~=Y,(E) in (2.2) yields 

(2.8) 

=yl(E) - jyc”i”’ 
Yl(&) 

cos v(x; E) dx - 
0 5 

cos v(x; E) dx. 
Y(&id) 

It is easy to verify that 

YI(E) -y(&; 6) cos(x - 6) - [b;:l’d’, cos u(x; E) dx 

d; (U’(YI(E); &)I2 

d Y,(E) -y(E, 6) cos(7c- E) - i""' cos u(x; E) dx. 
Y(&id) 

From (2.7) and let E -+ 0 in the above inequality, we have 

1 - cos(n - 6) < lim (u’bJ1k); &I)* < 1 + l = 2, 
E-0 2Y,(&) ’ 

(2.9) 
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Since 6 > 0 is arbitrary, (2.8) follows directly from (2.9). We note that from 
(1.5) and (1.6), we have 

W) > UL’(&i 6)) > W,(E)) 

or 

1 1 - 
cos(n 

- 
F) > 

[ 1 - cos(71- S)l 
-l-j 

(u’(y(E; 6); &I)* 
y(e; 6) 

3 (U’(YI(E); a)* 
2y,(e) 

From (2.8), (2.10) we obtain 

lim CU’(Y(E; 6); &)I2 =2(1 +cos(n:-6)). 
E-0 A&; 6) 

(2.10) 

(2.11) 

Then from (2.7), (2.8), and (2.9) we have 

(U’(YI(E); &)I2 
!% (d(y(&I; 6); g))2 = lim 

(U’(YI(E)i 4)*/Ylw L.I(E) 
c-0 (U’(y(E; 6); &))*/y(E; 6) y(&; 6) 

2 
=l-cos(Ic-&’ 

Hence there exists a constant C, = C,(S) > 0, such that for E > 0 sufficiently 
small 

IU’(Y,(E); &)I < c, IU’(.v,(E; 6); &)I. 
From (2.6) and (2.12), we have 

(2.12) 

Q7T - 6) C 

oqyi(E)--Y(E;6)< Iu’(y,(&); &)I = IU’(yI(&); &)I’ 
(2.13) 

where C = C(6) = C,(z - 6) > 0 independent of E. 
Now we are in a position to show that lim, +. v(z*(E); E) = --7~. Suppose 

this does not hold, then there exists 6* > 0 such that u(z~(E); E) > - rr+ 26* 
for all E >O. Let U(X; E) = u(x +~,(a); E) and w(x; E) = - u(Y,(F) - x; E), 
then U(X; E) and w(x; E) satisfy the following: 

u”(x) +yI(E) sin u = - x sin U, 

u(O;E)=O, u’(0; E) = u’(y,(&); E), for all 
(2.14)* 

x 3 0, 
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and 

w”(x) + y,(E) sin w =x sin w, 

w(O;e)=O, w’(O; E) = U’(Y,(E); E), for all x 3 0. 
(2.15)* 

Let q = xA(s), where A(E) = - u’(Y~(E); E), u(x) = ~(q/A(s)) = d(q) and 
w(x) = w(q/A(s)) = e(q). Then d(q) and $(q) satisfy the following: 

&‘(‘I) +.YI(&) A(E)- *sinb= -q4(s)-3sind, ~20, 

4(0;&)=0, f(O;E)= -1. 

(2.14) 

and 

+“(‘I) +YI(&) A(E)- *sin$= -+4(s)-3sin$, ~20, 

440; 8) = 0, lp(O; E) = -1. 
(2.15) 

If we choose 6 = 6* > 0, then from (2.13) there exists a constant C = C(6*) 
independent of E, such that 0 < Ye -JJ(E; 6*) < CA(s))‘, provided E > 0 
is sufhciently small. Choose M> C; from (2.5), (2.8), and the continuous 
dependence on parameter E, it follows that for all E > 0 sufficiently small 

In particular, let q = (Ye -y(s, 6*)) A(E); then 

w(Yl(&)--(E;6*))+6*/4>u(y’(E)--(E;~*))> -X+26* 

or 
-(7c-8*)+6*/4> -7c+26*. 

This is a desired contradiction and we complete the proof for the case 
n = 2. 

Step 2. We now assume inductively that 

lim v(z~(E); E) = ( - 1)” + ‘7~ 
c-0 (2.16) 

and 
lim (WJk- l(E); E)j2 = 4 
s-0 Y,-,(E) ’ 

(2.17) 

for all k=3, 4, 5, . . . . n- 1. We show that (2.16), (2.17) hold for k=n. For 
simplicity, we may assume that n is an odd number. We have that (2.16) 
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holds for k = 2, 3,4, . . . . n - 1. Given any 6 > 0, there exists y;(s; 6), ~;(a; 6) 
and yi(.s, S), satisfying 

0 < Yrl(Ei 6) < Y,(E), with u(~,(E;~);E)=x-6; 

Yk I(E) -=I Yk 6) < Y’k(Ei 6) < Y/A&), 

with u(YZ(E;~);E)=U(Y’~(E;~);E)=(-~)~+’(~C--) 

for k = 2, 3, . . . . n - 1, provided E is sufficiently small, (see Fig. 1). 
We claim that 

lim Y;(E; 6)-y,... ,(c)=O, 0 t + 

lim yk(s) = 0, 
E’O 

--y;(s; 6) 

for k=2, 3, . . . . n- 1, (2.18) 

k = 1, 2, 3, . . . . n - 1. (2.19) 

Let V(X) = (1 - cos 4x; E)) + (u’(x; E))~/~x. Then from the fact that 
V’(x) < 0, we have V(yk- ,(E)) > V(y!J&; 6)) > V(Z~(E)), for k = 2, 3, . . . . 
n - 1. Consequently from (2.16), (2.17), we have lim,,,, V(J$(E; 6)) = 2, or 

lim (U’(YZ(G 6); &)I2 =2(1 +cos(d-z)). i - 0 Ykc&; 6) 
(2.20) 

FIG. 1. The graph for the solution u(x, c) of (2.1). 
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From (2.20) we obtain 

lim Iu’(yk(~; 6); &)I = a3. 
&A0 

(2.21) 

Consider the following identity: 

5 
Y:(E; 6) 

V’(X;&)dx=(-l)k+‘(7c-q. 
Yk I(E) 

Then we have 

U’(Yk-l(4)(Yk 6)-Yk-1(&))<6-x<u’(Y:(&;6))(y:(&;6)-Yk~1(&)) 
when k is even 

or 

u’(~~(E~B))(~:(E~~)-~k-,(E))<~--Su’(~k-,(~))(~~(~;~)-~k~,(~)) 

when k is odd. 

In both cases we have 

o<y:(E; 6, -yk- I(&) < 
l-c--~ 

IU’(Y!& @)I’ 
(2.22) 

Hence (2.18) follows directly from (2.21), (2.22). Similarly if we prove 

then (2.19) holds. 

lim Iu’( y;(e; 6); E)J = co, 
E-0 

(2.23) 

Setting a = y:(&; 6), b = yi(&; 6) in (2.2) yields 

; (uYYV;(E; 6); &H2--f (uYY:(E; 6); &)I2 

= (y;(&; 6) - y;(&; 6)) cos(7r - 6) - jYiCEiS) cos 0(x; E) dx 
Y:w) 

2 0. 

That is, 

Iu’(Y;(E; 6); &)I 2 lu’(yk 6); 611. 

Then (2.23) follows directly from (2.21). 
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We are now in a position to show that (2.17) holds for k = n. We set 
a = 0, h = y,, ~ ,(F) in (2.2) to obtain 

; (u’b,, - I(E); E))2 = yn- ,(E) - Jy’) cos u(x; E) d.x 

cos u(x; E) d.x 

1 

.v,- l(C) 

cos u(x; E) dx - cos ZI(X;E)& 
>;- ,(&i(i) 

It is easy to verify the following inequality 

1 -YXG 6) -cos (n-S)- 
COS(7c-~)n--’ 

Yn- l(E) 
yn-,(E) k~20.w)-Y:w)) 

-&-);5; (Yk 6)-YL 1(&i 6’1~-& (Y,- It&)-Y;- 1(&i 6)) 
n 

,yu’(Y.-l(4;4Y 
‘2 Yn- I(E) 

Since lim, _ 0 y,- i(c) = cc and 6 >O is arbitrary, (2.18) and (2.19) imply 

lim (O’(Yn- l(4)* = 4 
&+O Yn- l(E) . 

Hence we establish (2.17) for k = n. 
Using the same argument as we did in Step 1 yields 

C 
O<Yn-*(E)-Y,-l(E;b)< ,u,(Y,-I(E)), 

(2.24) 

(2.25) 

for some C = C(6) > 0 and for all E > 0 sufficiently small. Since n is odd, we 
show that 

lim u(z,(E); E) = 7~. (2.26) 
E-0 

4,9:163’1-3 
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Suppose (2.26) does not hold. Then there exists a S* > 0, such that 

u(Z,(E); E) <7-c - 26* for all 6 > 0. (2.27) 

Let u(x;E)=u(x+~,_~(E);E), w(x;E)= -u(~,~,(F)-XX;&). From (2.24), 
(2.17) and the arguments for the case n = 2, we obtain 

~-26*>u(y,-,(&)-y~~,(&;6*);&) 

>w(y,~,(&)--y~~,(E;6*);&)--*/4 

= -(-?r++*)-s*/4 

=TT-556*/4. 

This is a desired contradiction. Thus we complete the proof of Theorem 2.2. 

3. THE APPLICATION 

In [l, 21 the authors discussed a mathematical model describing the 
deformation of a cantilever by its own weight. It is assumed that a canti- 
lever of uniform cross-section, uniform density p, and total length L is held 
fixed at an angle tl at one end, say the origin, and is free at the other end. 
Let s’ be the arc length from the origin, and 0 = e(s’) be the local angle of 
inclination. Then we have the governing equation 

EI$=y(L-s’)sin8, 

e(0) = c?, $ (L)=O, 

(3.1) 

where EI is the flexural rigidity of the material. Let s=s’/L, then the 
governing equation becomes 

d28 
z=K3(1 -s)sin II/, O<sdl, K>O, 

09, 
W(l)=O, e(0) = u, -7c<a<n, 

where K= (PL~/EI)“~ represents the importance of density and length 
relative to that of flexural rigidity. Let s = x, D(X) = 0( 1 - x/K) - rcn; then we 
reformulate our equation as the following: 

u”(x) + x sin u(x) = 0, ’ = d/dx, 

u’(0) = 0, u(K)=cr-n. 
(3.2) 

The vertical case CI = rc was completely analyzed in [2]. 



SINGULAR SOLUTIONS 31 

We note that from (1.2) we have v(K; a) = 7c - 2 if and only if 
u(K; -a) = LY - TL For simplicity, instead of (3.2), we study the multi- 
plicities of the solutions of the following boundary value problem: 

u”(x) + x sin u = 0 

u’(0) = 0, u(K)=n-2, for O<r<71. 
(3.3) 

To solve (3.3) by the shooting method, we consider the following initial 
value problem: 

v”(x) + x sin v = 0, 

u’(0) = 0, o(O)=a, for --7c<a<71. 
(3.4) 

THEOREM 3.1. Given x E (0, n), 

(i) For each n = 0, 1, 2, . . . . there exists a unique aZn+, = a,, + ,(r), 
a2n+ L E (n-a, n), satisfying ubZn+ ,(a,,+ I); a*“+, - n -CC; moreover, u, = )- 
r-fxcraa,<a,< ... <a,,+,< . . . <7z, andlim,,, a2,,+,=o. 

o- oxis 

FIG. 2. The graph of the functions Y;,+,(a) and Yin* , (u) for fixed 0 <a < K, n = 0, I, 2, ,.. 
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(ii) Given any n > 1, for each a E (a2nP 1, a,,+ ,), the equation 
v(x;a)=n--, has exactly 2n- 1 isolated zeros {y’;, yi,,,+,, y;Im+l}k:‘,, 
where .G’=yXa;a), Y~+~=YL+, (a; a), JCL+, = yY,+ ,(a; Co, satisfying 
O=zI(a)<yP<y\<z3(a)<y;< ... <y:,~,<z,,_,(a)<yR~,; moreover, 
for a=a,,-,, wehavey~,-,(a2,~,,a)=y,“,-,(a2,-,,a)=z2,~,(a2,~,). 

(iii) For each n= 1, 2, . . . . as a function of a, y&+ I(a) attains 
global minimum at a point q2”+, E (71 - CC, XC), a,, + 1 < q2,,+, , satisfying 
y&+I(~2n+l) = aZn(qZn+ 1), where aZn(a) is the 2nth zero of d(x; a), and 
lim, _ 71- ~:,,+~(a) = +oo. On the other hand, ~$,+~(a) is strictly increasing 
on [a2n+l, n) and lima,,- yb, l(a) = +co. (See Fig. 2.) 

For analogous results, we have 

(i)* For each n = 1, 2, . . . . there exists a unique aZn = a,,(a), 
a2,, E (-71, - TC + a), satisfying v(zZn(aZn); a,,) = TC- a. Moreover, 0 > a2 > 
a4 > ... >a2n> ... > -71, and lim,,, a,,,= --n. 

(ii)* Given any n > 1, for each aE (a2,,, a,,,,), the equation v(x; a) = 
TC - a has exactly 2n isolated zeros {y\,, y&,}z=, , where y:, = ~\,(a; a), 

a-axis 

FIG. 3. The graph of the functions Y&(a) and Y&(a) for fixed 0 <a < R, n = 1,2, 
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u;, = y’;,(a; a), satisfying y; < z*(u) < y; < “. < y:, < z,,(a) < y;,,, 
moreover, for a = aln, we have y\,(uZn, a) = yy,l(u2n, cx) = zZn(uZn). 

(iii)* For each n = 1, 2, . . . . y&(a), defined on (-71, u2,,], attains II 
global minimum at a point q2,,~ ( --IT, a-n) with a,, > qZnr satisfying 
~):,,(q2n)=a2n~,(~2n), where al”- I(u) is the (2n- 1)th zero of A (x; a) and 
lim,, K- y:,,(a) = tco. On the other hand, yb(a) is strictly increasing on 
( - 7c, uZ,,] and lim, _+ j ~;~(a)= +a. (See Fig. 3.) 

Proqf From Lemma 2.1 and Theorem 2.2, it is easy to show that there 
exists a unique u>~+, , depending on a, aI,,+, E (rt - a, n), satisfying 
v(- a2 +,)=71-x, and a,=n-accuu,<u5< ... <a,,,+,<n. ,-,2.:;;l$.g 1. 7;u 

*,,+, = 7t. If not, then lim,, _ r uz,,+ , = n - 6, for some 
6,) > 0. Choose a = 7c - 6,/2. Then from Lemma 3.2 for any n = 1, 2, . . . . 
4-2n + 1 (~)~~)~v(~2,,+l(~2,+l);~2,,+l ) = 7c- X. This is a desired contra- 
diction to Lemma 3.1. Thus we complete the proof for part (i). Part (ii) 
follows directly from Lemma 3.2 and the oscillatory behavior of the 
solution v(x; a) and (3.3). We have the relation 

u(y\,l+ ,(a; a); a) = 77 -a. (3.5) 

Differentiating (3.5) with respect to a yields 

dy:,, + I (0; a)= -4vlz,+ ,(a; 2); a) 
da v’(.A,+ ,(a; 2); a) 

(3.6) 

Since Y:,,, l(~2n+ ,, a) = z2,,+ ,(a,,+ ,), we have 

&in+ ,(a; a) = --a. 
da (I=<,:,-, 

However, Ye,, 6 .I&,+ ,(a, a) and lim,,, y,,(a) = +co; this shows 
lim, + n Y:, + r(a) = +oo and the existence of a global minimum q2,? + , of 
.I$,, + ,(a, a). From (3.6) we have 

O=dY:~+1(V2n+l;Co= _~(Y:,+I(‘I~,,+~;~);~~~+,) 
da u’(A+ I(V~~+,; a); q2n+ ,)’ (3.7) 

and Y&+ ,hzn+ Ii a) = aZn(q2n+ ,) follows directly from (3.7). On the other 
hand, we have 

d’yZn+ 1 (a; a) -db;l,+,(a; a); a) 
da = v’(y’;,+ ,(a; a); a) 

From the relation a2,,(u) <zZn+ ,(a) < yy,, ,(a) < y2,t + ,(a), n = 1, 2, .._, it 
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follows that dy,“,, I /da>0 for all a~(~,,+r, 7~). The analogous results for 
(i)*, (ii)*, and (iii)* can be proved similarly. 

Remark 1. For each n = 2, 3, . . . . if every extremum of the function 
yL(a; CC) is a local minimum, then ye, is the unique local minimum and 
yi(a; CC) is strictly increasing (decreasing) for aaq, (a< q,) provide n is 
odd (even). Differentiating the identity 

u(y!Ja; a); a) = 71 -a, 

twice with respect to a and setting dyL/da = 0 yields 

d*y!h, a) = - (Wda)(y!da, a); a) 
da2 u’(y’(4 a); a) ’ 

(3.8) 

From Theorem 3.1 (iii) and (iii)*, if dyL/da = 0 then yX(a, c() = ~1,~ l(a), and 
(3.8) becomes 

d*yk a) = -(Wda)(~,~-,(a), a) 
da2 U’(% ,(a)9 a) . 

(3.9) 

Since d(cr,_ l(a), a) = 0 for all a E (0, rc), it follows that 

(3.10) 

From (3.9), (3.10), and Theorem 2.1(i), (ii), d2yL(a, cc)/da* > 0 provide 
da,- ,/da > 0, for all a E (0, n), n = 2,3, . . . . Let w(x; a) = (dA/da)(x; a), then 
w(x; a) satisfies 

w”(x) + xw cos v = xA2 sin u, w(0) = 0, w’(0) = 0. (3.11) 

We recall that 

u”(x) + x sin v = 0, u(0) = a, v’(0) = 0. (3.12) 

A”(x) +x A cos u = 0, A(0) = 1, A’(0) = 0. (3.13) 

We conjecture that the following hold: 

(i) For 0 <a< rr, w(x; a) and w’(x; a) are oscillatory over [0, n) 
with zeros pII = p,(a), qn = q,(a), respectively, for n = 1, 2, . . . . where 
pl=ql=o. 

(ii) For 0 < a < n/2, we have 

O=P,=q,=z,=~,<y,~q,~a,~z,~P,<~,~y,~q,~ ... 

-c .‘. <Yn<qn+,<Cln<Zn+,<P”+1<a,+,<Y,+,< ..-. (3.14) 
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For 7~12 <a < IT, we have 

O=P,=q,=z,=Po<B,<Y,<qZ<M,<;*<Pz<Bz<Llz<q3< “’ 

< “’ <S(,l<Yn+,<~,I<z,,+,<P,,+,<B,l+,<?~,l-ll< ..‘. (3.15) 

From (3.10) (3.14) and (3.15) it is easy to verify that r,(a) is strictly 
increasing on (0, rr). In Fig. 4 we plot a graph for the functions K = ?:(a; ct) 
and K = yk(a; a) for 0 < a < 7~. From the figure there follow the bifurcation 
phenomena of problem (P),, 0 < CI < rr, or (4.2) as the parameter’ K varies. 
It is interesting to note that when z = 0 the problem ( P)O has a unique 
solution [2] for any K while our results show that given any a, 0 < x < n, 
and any positive integer n, there exists K such that (P), has n distinct 
solutions. 

Remark 2. We note that for any n = 1, 2, . . . . 

lim a,,(z) = ( - 1 )” + ’ 71. 
Z-r0 

(3.16) 

It follows directly from n - CI = U,(X) < a,( c() < . < az,, + ,(r) < < rr, 
and -n + x > ~~(a) > Us > . . . > u~,JcL) > > --Ic. (3.16) indicates that 
the bifurcation phenomena will disappear as cx = 0. 

a - axis 

FIG. 4. The graph of the functions K= Yz(a; z) and K= YL(a; 2) for 0 <a < K, which are 
the bifurcation pictures for the boundary value problem (3.2). 
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Remark 3. As CI + rc we have 

0) lima,. a,(@) = 0, for all n = 1, 2, . . . . 
(ii) lim,,, y’,(a,(a); Co=lim.+. y,“(a,(a); a)=~,,. 
(iii) For arbitrary p > 0, we have 

lim yk(a; c() = y,- l(a) uniformly for all a E [p, n) if n is odd. 
I’* 

lim y,U(a; U) = y,,(a) uniformly for all a E [p, n) if n is odd. 
a-a 

lim &a; tl) = yn- r(a) uniformly for all a E ( -7c, -p] if n is even. 
a-+x 

lim yz(a ; a) = y,(a) uniformly for all a E ( - 7c, -p J if n is even. 
a-a 

To prove (i) we shall only consider the case n is odd; the argument is 
similar for the case n is even. We have the relation 

u(z,(a,(a)); a,(a)) = n-a. (3.17) 

Differentiating (3.17) with respect to c1 yields 

4 da,(a) 
v’(z,;u,(a));i;;dcl+d(z,;u,(a))do(= . dun(a) -1 

From Theorem 1.1 d(z,; u,(a)) is positive for odd n and u’(z,; a,(a)) = 0, 
then we have du,(a)/dcr < 0. If lim, _ n U,(U) # 0, say A = lim, _ K a,(a) > 0, 
by Lemma 2.1, we have 

0 < u*(z,(A); A) < u’(z,(a,(a)); a,(a)) = (71 -a)‘. (3.18) 

Let CI + R in (3.18), then this leads to a contradiction, u(z,(A);A) =O. 
Part (ii) follows directly from Theorem 1.1 (iii) and Theorem 3.1 (ii), (ii)*. 
For part (iii), we consider only the first case, n an odd number. Given 
p > 0, from (i) there exists 6, = S,(p) > 0, such that u,(a) <p < 7t, provided 
1~ - CI( < 5,. Hence yt(a; a) is well-defined for a E [p, n) and 17~ -aI < 6,. 
Consider the identity 

s u;(v) 
u’(x;a)dx=z-aa. 

.“.-!(a) 

We have 

u’(yt(a; a), a)(yt(a; a) -y,- ,(a)) < 7t - a 
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or 

(3.19) 

From (2.21) we have 

lim u’(yk(a; a), a) = Sil;. 
0 - A 

Then 

1 
M= max 

at bnJ Iu’(y$2; 51) a)1 < a, 

Hence given p > 0 for any E > 0, choose 6 = min (E/M, 6, ) ; then 

II?!@; a)-Y,, I(U)I <E, for all UE [p, 71), 

provided 17~ -a/ < 6. Hence the first case of part (iii) holds. By similar 
arguments it is easy to verify the other cases of part (iii). (See Fig. 4.) 
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