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Abstract. Monte Carlo calculations to study the influence of solid-state,
polarization, exchange and relativistic effects on the angular distribution and the
reflection coefficient for electrons elastically reflected from gold surfaces have been
performed. Elastic differential cross sections were determined using relativistic
Dirac equations with a solid-atom potential including the polarization and exchange
effects. Inelastic differential inverse mean free paths were computed using the
extended Drude dielectric function for volume and surface excitations. These
showed that the polarization effect made a contribution to elastic differential cross
sections at small scattering angles, whereas, the exchange and relativistic effects
contributed to these cross sections at large scattering angles. These effects are
important to the angular distribution and the elastic reflection coefficient for electron
energies below 400 eV. Monte Carlo results calculated in this work are in very
good agreement with experimental data.

1. Introduction

Many applications in modern surface physics require one
to study the interaction of electrons with solids. Among
these applications, elastic scattering of electrons plays an
important role in the interpretation of experimental data
[1–8] measured by scanning electron microscopy (SEM),
electron probe microanalysis (EPMA), Auger electron
spectroscopy (AES) and so on. Furthermore, much
attention has been paid to elastically reflected electrons
because these have a number of advantages over inelastic
ones [9–17]. First of all, the contrast in SEM images is
larger for elastically reflected electrons, by more than an
order of magnitude, than it is for inelastically reflected
electrons [18]. Moreover, better resolution and smaller
depth profiles can be obtained in SEM images for elastically
reflected electrons. Another important advantage is that the
greater dependence of elastically reflected electrons on the
atomic number may be used to study the surface of alloys
[19].

Monte Carlo (MC) simulations have frequently been
applied to study the transport of electrons in solids. In
recent years, such simulations have been performed to
determine the angular distribution of elastically reflected
electrons [20–23]. Free-atom scattering potentials such
as the Thomas–Fermi–Dirac (TFD) potential [24] and

the Hartree–Fock (HF) potential were employed in
the calculation of elastic differential cross sections.
Polarization and exchange effects were both neglected in
the derivation of these cross sections. Since atoms in
solids are bound to the media, elastic differential cross
sections should be computed using the Hartree–Fock–
Wigner–Seitz (HFWS) solid-atom potential [25]. In this
potential, the polyhedral cell surrounding the atom is
replaced by a Wigner–Seitz sphere within which the nuclear
field is completely screened. Thus, elastic differential
cross sections at small scattering angles are reduced by
the solid-state effect. Furthermore, it has been found
that the exchange effect was quite important for elastic
scattering of electrons, especially those of low energies,
in solids. The polarization effect also played a role for
low-energy electrons at small scattering angles. The solid-
state, polarization and exchange effects are all included in
the present work.

Previously, we have employed elastic differential cross
sections calculated using the non-relativistic model to
study the characteristics of electrons elastically reflected
from solids with low and intermediate atomic numbers.
For solids of high atomic numbers, these cross sections
are less accurate than those derived using the relativistic
model. In this work, we determined elastic differential
cross sections by solving relativistic Dirac equations for
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a potential considering the polarization and the exchange
effects. This potential was constructed by calculating
a HFWS electron density distribution for solid atoms
with the ionic polarizability obtained from optical data.
Electron inelastic mean free paths (IMFP) for volume and
surface excitations were determined by the dielectric theory
using an extended Drude function [26–28]. Applying the
above cross section data to MC simulations showed that
the angular distribution and the reflection coefficient of
electrons elastically backscattered from gold surfaces were
in good agreement with experimental data. These results
showed also that the exchange effect was significant for
electron energies below about 400 eV.

2. Theory

2.1. Elastic scattering

Dirac equations describing elastic scattering of an electron
with total energy,W , from a spherically symmetrical
potential,V (r), are expressed by [29]

dP±l (r)
dr

+ κ±P
±
l (r)

r
+ (W − V (r)+ c

2)

c
Q±l (r) = 0 (1)

dQ±l (r)
dr

+ κ±Q
±
l (r)

r
− (W − V (r)− c

2)

c
P±l (r) = 0 (2)

where
κ+ = −l − 1 for l = 0, 1, 2 . . . (3)

κ− = l for l = 1, 2, 3 . . . (4)

and P±l andQ±l are the radial parts of the partial-wave-
expanded Dirac equations. The plus and minus signs
correspond to spin up and spin down respectively. Note
that atomic units (au) are used throughout this work unless
otherwise specified. By eliminatingQ±l (r) and substituting

P±l (r) = η1/2G±l (r) (5)

in equations (1) and (2), where

η = (W − V + c2)/c (6)

one transforms the radial Dirac equations into the
Schr̈odinger-like wave equations

d2G±l (r)
dr2

+
(
K2− U±(r)− l(l + 1)

r2

)
G±l (r) = 0 (7)

where

U±(r) = 2WV − V 2

c2
− κ±
rη

dη

dr
+ 3

4

(
1

η

dη

dr

)2

− 1

2η

d2η

dr2
(8)

andK = (W 2−c4)1/2/c is the wavenumber of the electron.
Equation (7) may be solved under the initial condition

G±l (r)−→
r→0

rl+1 (9)

and the asymptotic condition

G±l (r)−→
r→∞ r[jl(Kr)∓ tanδ±l nl(Kr)] (10)

wherejl andnl are spherical Bessel functions andδ±l are
the lth scattering phase shifts.

To account for the polarization and the exchange
effects, we let the scattering potential be a sum of several
terms,

V (r) = VS(r)+ Ve(r)+ Vp(r) (11)

whereVS(r) is the static potential,Ve(r) is the exchange
potential andVp(r) is the polarization potential. The static
scattering potential is given by

VS(r) =



−Z
r
+ 1

r

∫ r

0
4πr ′2ρ(r ′) dr

+
∫ RWS

r

4πr ′ρ(r ′) dr ′ for r ≤ RWS

0 for r > RWS
(12)

whereZ is the atomic number,ρ(r) is the HFWS electron
density distribution andRWS is the Wigner–Seitz radius, all
associated with the solid atom. The exchange effect may be
dealt with by the Mittleman–Watson (MW) potential [30].
In this case, the wavenumber,K, of the electron is replaced
by the local momentum,KL(r), as suggested by Riley and
Truhlar [31]:

Ve(r) = − 1

πKL(r)

(
KL(r)P (r)− 1

2
(K2

L(r)− P 2(r))

× ln

∣∣∣∣KL(r)+ P(r)KL(r)− P(r)
∣∣∣∣). (13)

In equation (13) the local Fermi momentum,P(r), is related
to the electron density,ρ(r), of an unperturbed atom in the
following manner:

P(r) = (3π2ρ(r))1/3 (14)

and
KL(r) = (K2+ P 2(r))1/2. (15)

Considering the polarization of an atom in the field
of a scattered electron, we apply the Buckingham-type
polarization potential [32–35]

Vp(r) = − αionr
2

2(r2+ r2
c )

3
(16)

where αion is the ionic polarizability of the unperturbed
atom andrc is the cut-off parameter related to the size of the
atom. Previously, we have derived the ionic polarizability
for a free atom without considering the solid-state effect.
Here we adopt a procedure proposed by Rehret al [36] to
extract this ionic polarizability from experimental optical
data containing the solid-state effect. The cut-off parameter
in equation (16) is set toRWS as suggested by Joshipura
and Mohanan [34].

For calculations of the phase shifts, we may divider
into two regions separated byr0 whereV (r0) is negligible
in comparison withK2. The solution of equation (7) in the
region r > r0 is given by equation (10), whereas we use
the finite-difference method to solve this equation in the

37



C M Kwei et al

region r ≤ r0. Derivatives of the radial wavefunction are
given by

d2G±l
dr2

∣∣∣∣
r=ri
= 2

ri+1− ri−1

(
G±l (ri+1)−G±l (ri)

ri+1− ri
−G

±
l (ri)−G±l (ri−1)

ri − ri−1

)
(17)

wherei = 1, 2, 3, . . . is the interval number of radius,r, in
the finite-difference method. On substituting equation (17)
into equation (7), we obtain

G±l (ri+1) = G±l (ri)+ (ri+1− ri)
[
G±l (ri)−G±l (ri−1)

ri − ri−1

− ri+1− ri−1

2

(
(K2− U±(ri))− l(l + 1)

r2
i

)
G±l (ri)

]
.

(18)

An iteration may be applied to equation (18) from a point
near the nucleus up tor0. The phase shifts,δ±l , may be
obtained by applying the boundary condition that dG±l /dr
are continuous atr = r0.

The elastic scattering cross section of an unpolarized
electron in the solid is given by [37]

dσ

d�
= |f (θ)|2+ |g(θ)|2 (19)

where

f (θ) = 1

2iK

∞∑
l=0

{(l + 1)[exp(2iδ+l )− 1]

+l[exp(2iδ−l )− 1]}Pl(cosθ) (20)

g(θ) = 1

2iK

∞∑
l=1

[exp(2iδ−l )− exp(2iδ+l )]P
1
l (cosθ) (21)

θ is the polar scattering angle andPl(cosθ) andP 1
l (cosθ)

are the Legendre and the associated first-order Legendre
polynomials respectively.

2.2. Inelastic interaction

Inelastic interactions between an incident electron and the
solid consist mainly of volume and surface excitations.
Volume excitations, contributed by electrons deep inside
the solid, may be described by the IMFP, whereas surface
excitations, arising from electrons near the surface, may be
characterized by the surface excitation probability (SEP).

According to the dielectric theory, the IMFP,λi , for an
electron of energyE in a homogeneous and isotropic solid
is given by [38, 39]

λ−1
i (E) =

1

πE

∫ E

0
dω
∫ q+

q−

dq

q
Im

(
− 1

ε(q, ω)

)
(22)

whereε(q, ω) is the complex dielectric function in terms
of the momentum transfer,q, and the energy transfer,ω,
Im( ) is the imaginary part of the negative inverse dielectric
function andq± = (2E)1/2±[2(E−ω)]1/2 are derived from
the conservation of energy and momentum.

Similarly, the SEP, representing the mean number of
surface excitations by an electron across a solid surface, can
also be treated by the dielectric theory. Under the condition

of a negligible recoil effect, Ritchie [40] and Raether
[26] have, respectively, derived the SEP for normally and
obliquely incident electrons. Considering the recoil effect,
we have derived the SEP for an electron of energyE with
incident angleα with respect to the surface normal. The
SEP is given by [41]

PS(α,E) = PS+(α,E)+ PS−(α,E) (23)

where

PS±(α,E) = 2

πE(cosα)

×
∫ E

0
dω
∫ q+

q−
dq
|q ′s |
q3

Im

(
(ε − 1)2

ε(ε + 1)

)
(24)

q ′s =
[
q2−

(
ω + (q2/2)

(2E)1/2

)2
]1/2

cosα

±
(
ω + (q2/2)

(2E)1/2

)
sinα. (25)

Since q ′s is different for positive and negative signs in
equation (25), there is an asymmetrical effect in the SEP
with respect to scattering angle orientations. This effect has
been confirmed experimentally [42–44]. The probability
of n surface excitations by an electron crossing the solid
surface obeys Poisson statistics [39, 45–48], namely

Pn = 1

n!
[Ps(α,E)]

n exp[−Ps(α,E)]. (26)

Therefore, the probability of an electron crossing the
solid surface without exciting any surface plasmon is
proportional to exp[−Ps(α,E)].

The model dielectric function used in this work is
identical to that used previously. Here we present a brief
synopsis. The real and imaginary parts of the dielectric
function are given by [26, 28]

ε1(q, ω) = εb −
∑
i

Ai [ω2− (ωi + q2/2)2]

[ω2− (ωi + q2/2)2]2+ (ωγi)2 (27)

ε2(q, ω) =
∑
i

Aiγiω

[ω2− (ωi + q2/2)2]2+ (ωγi)2 (28)

whereAi , γi andωi are, respectively, the oscillator strength,
damping coefficient and critical-point energy associated
with the ith interband transition. Note that we include
in equation (27) a background dielectric constant,εb, due
to the influence of polarizable ion cores [49]. Values of
parameters in equations (27) and (28) may be determined
by fitting equation (28), in the limitq → 0, to experimental
optical data. To ensure the accuracy of fitted parameters, we
require that the corresponding dielectric function satisfies
two sum rules,∫ ∞

0
ωε2(0, ω)dω = π

2

∑
i

Ai = π

2
ω2
p (29)

∫ ∞
0
ω Im

( −1

ε(0, ω)

)
dω = πω2

p

2ε2
b

(30)

whereωp would be the plasma energy of valence electrons
if they were free.
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2.3. Monte Carlo simulation

Elastic scatterings are simulated in the MC method by
tracing electron trajectories. Data on electron path lengths
between successive elastic collisions as well as polar
and azimuthal scattering angles are recorded. The polar
scattering angle,θ , after each collision is determined by
the probability density function given by

P(θ) = 2π sinθ

σt

dσ

d�
(31)

where

σt =
∫

dσ

d�
d� (32)

is the total elastic cross section. Assuming a Poisson
distribution for elastic scattering events, the path length
between two successive elastic collisions,s, is determined
by [50]

P(s) = 1

λe
exp

(
− s
λe

)
. (33)

Here the elastic mean free path of electrons is given by [51]

λe = (Nσt )−1 (34)

whereN is the atomic density of the solid. The azimuthal
scattering angle is determined by a uniform distribution due
to the cylindrical symmetry of the scattering problem.

Simulations are repeated until either the electron leaves
the sample or its total path length in the solid becomes so
large that its contribution to the elastically backscattered
intensity is negligible. The contribution from thej th
electron to the elastically reflected current can be calculated
from

1Ij = exp[−Ps(αIj , E)] exp[−Ps(αRj , E)] exp(−sj /λi)
(35)

if the electron leaves the solid by an escape angle within
the acceptance values and1Ij = 0 otherwise, wheresj is
the electron path length andαIj andαRj are, respectively,
angles between the incident and reflected electron velocities
and the surface normal. The factors exp[−Ps(αIj , E)]
and exp[−Ps(αRj , E)] in equation (35) relate to the
probabilities of incident and reflected electrons crossing the
surface without surface excitations. The factor exp(−sj /λi)
represents the probability of an electron traversing the path
length, sj , in the solid without volume excitations. The
elastic reflection coefficient can be calculated from

ηe = 1

m

m∑
j=1

1Ij (36)

wherem is the total number of generated trajectories.

3. Results and discussion

Figure 1 shows a plot of the static potential,Vs(r), the
exchange potential,Ve(r), and the polarization potential,
Vp(r), for elastic scatterings of electrons as functions of the
electron–atom distance in gold. Both the static potential
and the exchange potential drop to zero at the Wigner–
Seitz radius due to the vanishing electron density there.

Figure 1. A plot of elastic scattering potentials as functions
of the electron–atom distance in gold. Here Vs , Ve and Vp
are, respectively, the static, exchange and polarization
potentials. The exchange potential depends on the energy
of electrons.

Figure 2. A comparison of elastic differential cross
sections calculated using the S, SP and SPX scattering
potentials as functions of the scattering angle, θ , for 100
and 400 eV electrons in gold.

The polarization potential, on the other hand, extends to a
large distance, corresponding to a small scattering angle.
Thus, the polarization potential is responsible for elastic
scattering with small scattering angles. At small distances
corresponding to large scattering angles, the exchange
effect is more important than the polarization effect. The
increase of exchange potential with decreasing electron
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Figure 3. A comparison of elastic differential cross
sections calculated using the relativistic and non-relativistic
models as functions of the scattering angle, θ , for 400 eV
electrons in gold.

Figure 4. A comparison of elastic total cross sections
calculated using the S, SP and SPX scattering potentials
as functions of the electron energy in gold.

energy reveals that the exchange effect is significant for
lower energy electrons.

Figure 2 shows a comparison of elastic differential
cross sections calculated using the static (S), static and
polarization (SP) and static, polarization and exchange
(SPX) potentials for electrons of 100 and 400 eV in gold.
As expected, the polarization potential makes a substantial
contribution to the cross section only for predominately
forwards scatterings, whereas, the exchange potential
makes an important correction for backwards scatterings.
This correction, however, is negligible for electron energies
greater than about 400 eV. A comparison of elastic
differential cross sections calculated using relativistic and
non-relativistic models is made in figure 3 for 400 eV
electrons in gold. It can be seen that the relativistic
effect is important for backwards scatterings. The total
elastic cross sections calculated using the S, SP and SPX

Figure 5. A plot of surface excitation probabilities in gold
as a function of the electron incidence or escape angle, α,
for several electron energies.

Figure 6. The angular distribution of electrons, with various
energies, reflected elastically from gold surfaces. The full
and dotted histograms are, respectively, MC results
calculated using the SPX and S scattering potentials. The
full curves are experimental data [19]. All results have
been normalized with respect to the elastically reflected
electron intensity at 25◦ escape angle.

potentials are plotted in figure 4 as functions of the electron
energy in gold. It is observed that the polarization potential
contributes slightly at all electron energies. The exchange
potential, however, makes a significant contribution at
electron energies below about 400 eV.
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Figure 7. The angular distribution of 400 eV electrons
reflected elastically from gold surfaces. The full and dotted
histograms are, respectively, MC results calculated using
the relativistic and non-relativistic models. The full curve
shows experimental data [19]. All results have been
normalized with respect to the elastically reflected electron
intensity at 25◦ escape angle.

Figure 8. The elastic reflection coefficient of normally
incident electrons reflected from gold surfaces into
acceptance angles between 6◦ and 52◦ as a function of the
electron energy. The broken and dotted curves are,
respectively, calculated results using the SPX and S
scattering potentials. The full curve shows experimental
data [18].

Figure 5 is a plot of electron surface excitation
probabilities in gold as a function of the cross angle
(incidence or escape angle) between the electron velocity
and the surface normal. The sharp increase in the SEP
at large cross angles reveals that surface excitations are
most probable for glancing electrons. This confirms
the experimental observations [39]. Furthermore, the
monotonic increase in the SEP with decreasing electron
energy suggests that surface excitations are more important
for lower energy electrons.

Figure 6 shows the angular distribution of electrons
reflected elastically from gold surfaces. Note that all results
correspond to normally incident electrons normalized with
respect to the elastically backscattered electron intensity at
25◦ escape angle. The solid histograms are MC results of
the present work using elastic differential cross sections
calculated by the SPX approximation. For comparison,
we plot experimental data (full curves) [19] and results
computed using the S approximation for elastic differential
cross sections (dotted histograms). Better agreement
between experimental data and MC results was found by
using the SPX approximation than was found by using
the S approximation, especially for electron energies below
400 eV. A comparison of the angular distribution calculated
using relativistic and non-relativistic elastic differential
cross sections is made for 400 eV electrons reflected
elastically from gold surfaces in figure 7. The agreement
between experimental data and MC results obtained by
using the relativistic model was better than that obtained
by using the non-relativistic model for all escape angles.

Finally, we plot in figure 8 the elastic reflection
coefficient computed using the S (dotted curve) and SPX
(broken curve) approximations of the relativistic model for
normally incident electrons reflected from gold surfaces into
acceptance angles between 6◦ and 52◦. Also plotted in
figure 8 are experimental data (full curve) of Schmidet al
[18]. Again, calculated results including polarization and
exchange effects are in good agreement with experimental
data at all electron energies.

4. Conclusions

MC calculations to study the influence of exchange,
polarization and relativistic effects on the angular dis-
tribution and the elastic reflection coefficient for electrons
backscattered from gold surfaces have been performed.
These showed that the polarization effect made a
contribution to elastic differential cross sections at small
scattering angles, whereas the exchange and relativistic
effects contributed to these cross sections at large scattering
angles. These effects are important to the angular
distribution and the elastic reflection coefficient for electron
energies below 400 eV. MC results calculated in this work
are in very good agreement with experimental data.
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