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A nontrivial redundancy relation, due to the differential structure of the gravitational Bianchi identity 
as well as the symmetry of the Friedmann-Robertson-Walker metric, in the gravitational field equation is 
clarified. A generalized Friedmann-Robertson-Walker metric is introduced in order to properly define a 
one-dimensional reduced problem which offers an alternative approach to obtain the gravitational field 
equations on Friedmann-Robertson-Walker spaces. 

I. INTRODUCTION 

In this Brief Report we will study some gravitational 
field equations which appear when considering physics at  
the cosmological scale. 

This Brief Report is organized as follows. In Sec. I1 we 
solve a simple gravitational theory with nonvanishing 
cosmological constant on the Friedmann-Robertson- 
Walker (FRW) spaces [l-61. We also describe how 
redundancy arises among the Einstein equations as a re- 
sult of the Bianchi identity (BI) [ 2 ] .  I t  is also remarked 
that the exclusive Friedmann equation cannot be con- 
sidered as a redundant equation because of the 
differential structure of the gravitational BI [2]. In Sec. 
I11 the reduced problem is defined by directly substituting 
the FRW metric into the gravitational action introduced 
in Sec. 11. A generalized Friedmann-Robertson-Walker 
(GFRW) metric is thus introduced in order to make the 
reduced problem a complete theoretical approach. In 
Sec. IV, the advantage of the independent reduced prob- 
lem is demonstrated by analyzing a general covariant 
theory with scalar-metric coupling [7- 101. Finally, in 
Sec. V, we make some concluding remarks. 

The main purpose of this Brief Report is to reduce the 
labor in dealing with the complicated gravitational sys- 
tem by defining an appropriate reduced problem which is 
a simple one-dimensional Lagrangian system. We show 
that the FRW metric needs to be generalized to a G F R W  
metric such that the exclusive Friedmann equation can be 
reproduced accordingly. 

Note that, throughout this Brief Report, the curvature 
tensor R Eva (gp,, ) is defined by the equation 

i.e., R Eva = -aargv- rfiVrEA- (Y-a). Here rEv is the 
Christoffel symbol (or spin connection of the covariant 
derivative, i.e., D Avra,Av-TE,Aa) .  To be more 
specific, a - ;ggD(i3,ggv +adg -aagpv ). Also, the 
Ricci tensh:;is defined as 

and the scalar curvature R is defined as the trace of the 
Ricci tensor, i.e., R =gPvR,,. 

11. FRIEDMANN-ROBERTSON-WALKER METRIC 
AND REDUNDANCY 

Consider the action given by 

s = J d 4 x g ~ h . = J d 4 x g ~ ( - ~ - 2 1 \ )  , (3) 

where & is the scalar Lagrangian. The equation of 
motion (EOM) for the general covariant theory (3) takes 
the form 

In standard cosmology we are considering a spatially 
homogeneous and isotropic universe which is indicated 
by gravitational observations [I]  as well as some philo- 
sophical considerations. I t  can thus be shown that all 
spatially isotropic and homogeneous spaces can be de- 
scribed [2-61 by the well-known FRW spaces. The FRW 
metric can be read off from the equation 

Here d f l  is the solid angle df l=do2+sin28 dx2 ,  and 
k = O , f  1 stands for a flat, closed, or open universe, re- 
spectively. 

The explicit form of all nonvanishing Ricci tensor com- 
ponents can be obtained by substituting the FRW metric 
(5) into the definition of the curvature tensor (2). After 
some algebra one obtains the following nonvanishing 
components of r zv :  

Here we have listed all nonvanishing spin-connection 
components. Also, a prime denotes differentiation with 
respect to the argument 1. We have also written 
h . .  11 - = g . . / a 2  11 (hence h ij=a2g'j such that hiJhjk = S i  ). One 
can also compute all nonvanishing components of the 
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Ricci tensor R P,: 

Note that in deriving (10) we have used the identity 
Ri j (hk i )=--2khi j ,  which follows from the fact that hij 
corresponds to a three-dimensional maximally symmetric 
space. Moreover, by taking the trace of the Ricci tensor, 
one obtains the scalar curvature as 

Now ( 4 )  becomes 

after the FRW metric is substituted. The solution to (12)  
and (13)  can hence be obtained by straightforward alge- 
bra. The result reads 

Here a. is a free parameter. Indeed, from (13)  minus 
(121, we obtain the linear ordinary differential equation 
(ODE) 

which can be solved rather easily. 
It is known that because of the Bianchi identity 

D,GPv=O, (13)  is actually derivable from the Friedmann 
equation (12) .  This can be checked as follows. (i) at(  12)  
gives a'a" = ( A / 3 ) a a 1 .  If al#O, we should have 
a"= ( A / 3  )a. (ii) One has 2 a a " = ( 2 ~ / 3  )a from 2a times 
the preceding equation. (iii) Adding (12)  to the preceding 
equation, one obtains 2aa" +a "+ k = Aa  2 ,  which is ex- 
actly Eq. (13) .  It is, however, impossible to derive (12)  
from (13)  alone. A formal proof will be given shortly. 

Therefore, the redundancy due to the Bianchi identity 
does apply to Eq. (13) ,  but does not apply to the exclusive 
Friedmann equation (12) .  This can also be understood by 
observing that the Friedmann equation (12)  is a first- 
order ODE in contrast with (131, which is a second-order 
one. 

Note, however, that the redundant field equation [e.g., 
(1311 is usually very useful in obtaining a solution even if 
it can be ignored initially. Also, the exclusive role played 
by the Friedmann equation is due to the differential 
structure of the gravitational BI. This point will be em- 
phasized again in Sec. IV. 

111. REDUCED PROBLEM 
AND THE GENERALIZED 

FRIEDMANN-ROBERTSON-WALKER METRIC 

On the other hand, the reduced action 3 ( a ( t ) )  
=S(g,,(a ( t ) )  ), with g,,(a( t )  ) denoting the FRW metric 

given in (5) ,  can be shown to be 

S ( a ( t ) ) = ~ $ d t [ 6 ( a ~ a " + a a ' ~ + k a  ) - - 2 ~ a ~ ]  . (16)  

Here N r $ d 3x  is the time-independent factor. 
The reduced problem can thus be defined as the re- 

duced one-dimensional Lagrangian system given by (16) .  
The variational equation 6S"( a  ) /6a = 0 gives, however, 
only Eq. (13): 2a" /a  + [ ( ~ ' ) ~ + k ] / a  '=A.  The Fried- 
mann equation (12)  cannot, unfortunately, be obtained 
from the reduced action (16) .  

A remedy for this flaw can be found by introducing a 
b ( t )  field variable in the (GFRW) metric g,, given by 

Defining the modified reduced problem from the reduced 
action S ( b ( t ) , a ( t ) ) r s ( g ( b ( t ) , a ( t ) ) ) ,  the variational 
equation 

will thus reproduce the Friedmann equation (12) .  Indeed, 
it can be shown that the spin-connection components are 

after substituting the GFRW metric (17) .  The remaining 
spin-connection components are the same as listed in ( 7 )  
and (8) .  Similarly, all nonvanishing R,, components be- 
come 

Also, the scalar curvature changes to 

Hence, the reduced action 3 becomes 

It  is then straightforward to derive the Friedmann equa- 
tion from the variational equation of b ( t ) .  Indeed 
straightforward algebra shows that the variational equa- 
tion (18)  reproduces the Friedmann equation as prom- 
ised. 
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IV. APPLICATIONS 

The use of the GFRW metric can reduce the labor in 
deriving the equations of motion in gravitational theories 
in which FRW spaces are of major concern. Especially 
when we encounter a theory with matter fields coupled 
directly to the metric field, the general Einstein field 
equations are usually very difficult to obtain without a 
thorough knowledge of covariant operations. It is also a 
very complicated exercise to work out the field equations, 
which require delicate care in handling the factors and 
signs. The advantage of the GFRW metric is to reduce 
the computation from a general covariant theory to a 
simple one-dimensional Lagrangian system. This re- 
duced problem can normally be handled without knowing 
any geometric concepts of the gravitational theory. An 
undergraduate student should be able to handle the re- 
duced problem by interpreting the reduced problem as a 
constrained motion [i.e., setting b ( t ) = l  after deriving 
the variational equation]. For example, let us analyze the 
following general covariant theory involving a scalar- 
metric coupling: 

Here 4 denotes a real scalar field, while E is a dimension- 
less coupling constant. Equation (25) also provides a nat- 
ural explanation for a universe with dimensional con- 
stants such as gravitational and cosmological "con- 
stants." 

For later convenience we will define 4reP"  and 
k 1  = 1/46. In terms of this set of new variables and pa- 
rameters, one obtains the following variational equations 
for q, and metric gab,  respectively [6]: 

after some straightforward calculations. The generalized 
energy-momentum tensor T,,( q, ) is defined as 

Assuming that q = p (  t  ), one has the following generalized 
Friedmann and scalar field equations: 

Here we have written a =en. Equation (30) is obtained 
by comparing the scalar curvature term R in Eqs. (26) 
and (27). The R for (26) can be obtained by taking the 
trace of (26). Also, the redundant G,. equations in (26) 
are not listed since they are related by the Bianchi identi- 
ty. 

It is known that four (in fact, one because of the sym- 
metry of the Friedmann-Robertson-Walker metric) out of 
Eqs. (26) and (27) are redundant because of the Bianchi 
identity D,GPv=O. A careful analysis shows, however, 
that every equation is equally redundant except the tt 
component of Eq. (26) [i.e., Eq. (29), which is known as 
the generalized Friedmann equation]. This can be readily 
understood by observing that the generalized Friedmann 
equation (29) is in fact a first-order ODE in contrast with 
all other equations which are second-order ones. In fact, 
Eq. (26) takes the form H,,=O. Here H,, = G,,-K,,, 
with K,, denoting what appears on the right-hand side of 
Eqs. (26). Consequently, the Bianchi identity can be re- 
phrased, on shell, as 

This is because D,GPv=O as a result of the Bianchi iden- 
tity and D,KFV=O, serving as an on-shell constraint. 
Equation (3 1 ) becomes 

as soon as the FRW metric is substituted into (31). Here 
H = +h ' J H ~ ~  and g..  11 =a - 'hi,. It is now straightforward to 
show that Hij =Hhij  in this theory under the constraint 
that g, is spatially independent. The exclusive role played 
by the tt equation of H,,=O can be readily checked at 
this moment. Indeed, (32) indicates that H ,  =O implies 
H=O if af#O. On the other hand, H =O implies, in- 
stead, 

( a ,  +3a1)H,=0 . (33) 

In fact, Eq. (33) can be integrated directly to give the re- 
sult 

which is not sufficient to imply the desired result HooZO. 
Therefore, the generalized Friedmann equation (29) is 
indeed an exclusive equation of motion. We are thus free 
to exclude any redundant equations among the whole set 
of equations of motion, except the generalized Friedmann 
equation H,=O. For later convenience we can hence 
stick to (29) and (30) by ignoring the redundant i j  equa- 
tion of (27) without loose ends. 

Alternatively, we could deal instead with the reduced 
problem defined by the reduced action 
S(b ,a ,q , ) -S (g ,v (b ( t ) ,a ( t ) ) ,q , ( t ) ) .  Here b ( t )  is treated 
as a constrained field variable. After some algebra we ob- 
tain the reduced action 
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The generalized Friedmann equation can now be ob- 
tained by varying S" with respect to b and imposing the 
constraint b = 1 afterward, i.e., 

This correspondence can be verified directly. Indeed, we 
can write 

The constraint 63 /6b  / =, = - 2 6 ~ ( ~ : $ ~  )/6go, =O gives 
us precisely the generalized Friedmann equation (29). 

V. CONCLUSIONS 

We have shown that the Friedmann equation is an ex- 
clusive equation which cannot be obtained from the re- 

duced problem defined by the reduced action, e.g., (16). 
I t  is also shown that the nontrivial redundancy relation, 
which left the Friedmann equation as an exclusive non- 
redundant field equation, is due to the nontrivial 
differential structure of the gravitational Bianchi identity. 
This point was clarified in Sec. IV. Finally, it is found 
that a general Friedmann-Robertson-Walker metric can 
be employed to define a modified one-dimensional re- 
duced problem. The reduced problem can hence be used 
to reproduce the desired Friedmann equation as its varia- 
tional field equation. One can therefore greatly reduce 
the labor in deriving gravitational field equations on 
Friedmann-Robertson-Walker spaces. 

The method introduced in this Brief Report can be ap- 
plied to all theories that have to do with the cosmological 
evolution of our spatially isotropic and homogeneous 
universe. This includes all higher-dimensional gravity 
models such as Kaluza-Klein [ l  1 - 141 theories. The most 
important point in defining a proper reduced problem is 
demonstrated in Eq. (37). Equation (37) shows how to in- 
troduce appropriate constrained field variables in order 
to recover the lost field equation due to the symmetry of 
the ansatz (e.g., the F R W  metric). This method can 
hence be generalized to similar systems. 
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