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Computing Location and Orientation of Polyhedral 
Surfaces Using a Laser-Based Vision System 

Din-Chang Tseng and Zen Chen 

Abstract-A laser-based vision system for computing the location and 
orientation of 3-D polyhedral surfaces is proposed. In this system, an 
expanded laser beam passes through a code plate marked with equally 
spaced vertical and horizontal lines and impinges on a polyhedral object 
to create a spatial-encoded image for analysis. Then, based on the 
vanishing points or the directly available line directions of the perceived 
grid lines on the polyhedral surface, the polyhedral surface orientation 
can be inferred. In the meantime, the given dimensions of the grid 
pattern on the plate are used to estimate the depth information of the 
polyhedral surfaces. More importantly, we shall solve the noise problem 
that occurs in the real image by a least squares estimation method and 
an iterative refinement method based on a geometric constraint crite- 
rion. Experiments are conducted to provide practical insight into the 
method. The experimental results indicate that the method is remarkably 
accurate and stable. 

I.  INTRODUCTION 

Computer vision endows machines with a visual capability with 
applications in robot navigation, surface measurement, object mod- 
eling, camera position determination, automatic target recognition, 
etc. In the literature, a number of methods have been presented for 
measuring the 3-D orientation, location, and structure of objects 
using structured light. In [ I ]  and [2], a vertical slit projector and a 
TV camera were employed to construct a range finder based on a 
triangulation technique to acquire range data for measuring polyhe- 
dral surfaces. Hall et al. [3] used a mask of a known form to 
project easily detected features on the surface of the object. The 
known form mask and the recorded image were then used as a 
stereo image pair. Then by using a least squares method, the 
three-dimensional coordinates of points on the object were calcu- 
lated from the transformation matrices of the image pair. These two 
methods require the point correspondences to compute the 3-D 
coordinates of points. However, the correspondence information is 
generally not easy to get. Wang et al. [4] used grid coding to infer 
the surface orientation and the structure of visible object surfaces. 
They used the direction of the projected stripes to infer local surface 
orientation and did not require any correspondence relationship 
either the grid lines or the grid junctions. To simplify the mathemat- 
ical derivation, they assumed a parallel projection model. However, 
based on this model, the absolute depth can not be determined. Hu 
and Stockman [5 ]  also presented a method for 3-D surface measure- 
ment using a projected grid of light. Based on triangulation compu- 
tation and some geometric and topological constraints on the grid 
pattern, the 3-D surface points were computed. Again, the point 
correspondence information was used in this method. 

Manuscript received September 26, 1988; revised February 20, 1991. 
D.C. Tseng is with the Department of Electronic Engineering, National 

Z. Chen is with the Institute of Computer Engineering, National Chiao 

IEEE Log Number 9102767. 

Central University, Chung-Li, Taiwan, Republic of China. 

Tung University, Hsinchu, Taiwan, Republic of China. 

In this study, a new system for determining the 3-D location and 
orientation of polyhedral surfaces will be proposed. Compared to 
previous approaches, this system can find not only the orientation 
but also the depth parameter of polyhedral surfaces without using 
the point correspondences as required in the triangulation technique. 
Moreover, our method’s computation model is nontrigonometric 
and rather simple. In this system a laser beam passes through a grid 
plate marked with equally spaced vertical and horizontal lines and 
impinges on a polyhedral object to create a spatial-encoded image 
for analysis. Based on the vanishing points or the directly available 
line directions of the perceived grid lines on the polyhedral surface, 
the polyhedral surface orientations can be inferred. In the meantime, 
the given dimensions of the grid pattern on the plate are used to 
estimate the depth information of the polyhedral surfaces. In order 
to deal with the noise in the real image, the extracted perceived grid 
pattern is first rectified by a least squares estimation method. Then 
an iterative method based on a geometric constraint criterion is 
employed to refine the polyhedral surface estimation. Experimental 
results indicate that the method is remarkably accurate and stable. 

11. GEOMETNC CONFIGURATIONS 

A .  Camera Geometry 

Let the x,, y , ,  and z ,  axes be the three principal axes of a 
camera geometry, and let the origin be at the camera lens center. 
Assume that the image plane is parallel to the x,y ,  plane and its 
position is at z, = q .  The q value is roughly equal to the focal 
length for an object at a great distance. Assume that ( x , ,  y , ,  z,) is a 
3-D point and ( a , ,  b,) is its corresponding 2-D image point; then 
they are related by a,  = qx, / z ,  and b, = qy, /z,. 

B. Laser Projector Geometry 

A laser projector consisting of a laser source and a grid plate is 
used to generate two orthogonal sets of parallel sheets of light 
planes. The coordinate system of the laser projector is defined as 
follows. The two orthogonal grid lines on the plate are defined as 
the x ,  and y ,  axes, and the normal vector to the grid plate is 
defined as the z ,  axis. The dimensions of the grid pattern on the 
plate are known. The relative orientations of the x,, y , ,  and z, 
axes with respect to the camera coordinate system can be deter- 
mined based on the same method, to be given later, that is used to 
determine the orientation of an unknown polyhedral surface. For 
this so-called laser calibration process, a planar surface with a 
known orientation (say, parallel to the grid plate) is used. 

111. GRlD CODING AND SEGMENTATION OF ARBITRARY 
POLYHEDRAL SURFACES 

A.  Grid Coding of Polyhedral Surfaces 
The perceived grid lines and grid points in the grid-coded polyhe- 

dron image need to be extracted in order to infer the 3-D location 
and orientation of the visible polyhedral surfaces. Since the per- 
ceived grid lines are the darkest pixels in the image, these lines can 
be extracted by a regular thresholding method. Also, a regular 
four-connected thinning algorithm can be applied to the thresholded 
grid lines to produce the lines. The following steps are used to 
obtain the 2-D coordinates of perceived grid points and a list of grid 
features to be used for polyhedral surface segmentation. 

I) Grid Point Extraction: The thin grid lines obtained in the 
image are scanned row by row. The nearby branching pixels are 
detected at the place where two horizontal runs of grid pixels begin 
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to merge as a single run and at the place where a single run starts to 
split into two runs. The midpoint of the two branching pixels is 
identified as a coarse grid point and will be assigned a label. 

2) Grid Line Tracking: Along each of the four grid line direc- 
tions at each coarse grid point, the pixels belonging to a grid line are 
traced and linked based on the line slope. 

3) Grid Point Refinement: Once all grid lines are traced, pixels 
on the same grid lines undergo a least squares line fitting. The 
intersection of fitted lines replace the coarse grid points as the final 
grid points. 

4) Grid Features: Three grid features are derived at each grid 
point during the line tracking process. The feature list will be used 
in the polyhedral surface segmentation described later. It consists of 

i) 

ii) 

iii) 

the neighbor identification labels of the four neighboring 
pixels at a grid point as represented by a vector ( n , ,  n,, n , ,  
n4) (if no such neighboring point exists, the corresponding 
label is set to zero), 
the distance vector ( d , ,  d , ,  d , ,  d 4 )  representing the dis- 
tances between the current grid point and its four neighboring 
grid points (if no such neighboring grid points exists, the 
corresponding distance label is set to zero), and 
the slope vector (s,, s,, s3, s4) associated with the four line 
directions at the grid points. 

B. Polyhedral Surface Segmentation by Clustering 

Intuitively, we know that if the surface normal vectors to polyhe- 
dral surfaces are different, then the shapes of the perceived grid 
patterns on these polyhedral surfaces will be different. So the 
neighboring grid points with the same feature list will be clustered 
to signify a surface patch. Notice that two disconnected clusters of 
perceived grid patterns with the same feature list will correspond to 
two separate surfaces of identical surface orientation. Thus, the 
shape features and connectedness of grid lines serve as the bases for 
surface segmentation. That is, the three grid features mentioned 
above will be used. 

Next, the clustering technique will be described. To generate a 
cluster, an arbitrary interior grid point (i.e., not at the border) is 
selected to be the seed of the cluster. Then the neighboring grid 
points are examined. If a neighboring point has a great similarity 
measure with reference to the current grid point, this point is then 
assigned to the same cluster. In this way, all connected interior grid 
points are grouped into the same cluster. If there are remaining 
interior grid points, then an arbitrary point is selected as the seed of 
a new cluster and the same process is repeated to construct another 
cluster. The overall image processing flow from image thresholding 
to surface segmentation of a polyhedron scene is given in Fig. 1. 

IV . THREE-DIMENSIONAL LOCATION AND ORIENTATION 
DETERMINATION OF ARBITRARY POLYHEDRAL SUFWACES 

A .  Recti3cation of Grid Pattern 

The image formation of the perceived grid pattern can be viewed 
as the consequence of a sequence of geometric projection transfor- 
mations applied to the grid pattern on the grid plate. Namely, it 
involves a parallel projection transformation from the grid pattern 
on the plate to the grid pattern on the polyhedral surface, a 
perspective transformation from the grid pattern on the polyhedral 
surface to the projected grid pattern on the image plane, and 
possible rotation and translation of the projected grid pattern to the 
actual perceived image. Such a sequence of transformations can be 
represented by a resultant transformation matrix in the homoge- 
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Fig. 1. The overall image processing flow of a grid-coded polyhedron 
scene. (a) A grid-coded image. (b) The bi-level thresholded image. (c) The 
thinned image. (d) The extracted grid points. (e) The clustered grid points. 

neous coordinate system, i.e., 

[perceived grid pattern] 

= [grid plate pattern] [transformation matrix] . 

In general, a 4 x 3 transformation matrix is used to describe the 
relation between a set of noncoplanar points in 3-D space and its 
corresponding image points (6). However, grid points on the grid 
plate are coplanar, and the z coordinates of all these grid points will 
be set to zero, so a 3 x 3 submatrix of the 4 x 3 transformation 
matrix is used for analysis. This is given as 
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where ( x p i ,  yp i )  is the 2-D coordinates of a perceived grid point, 
( x o i ,  y o l )  is the 2-D coordinates of a grid point on the grid plate, 
[ A j j ]  is the 3 X 3 transformation matrix, and w is a real constant. 
For i = 1, 2 ,  * * . , n ,  the combination of equations can be rewritten 
in a matrix form as 

or 
QB = P 

where Bij  = A j j / A 3 3 ,  1 I i I 3, 1 I j 5 3. 

matrix can be obtained as 
Then the least squares estimation of B using a pseudoinverse 

where B,, is set to 1. Here, ( xbi, yhi) is the new rectified value of 
( x p l r  U,;) based on the above least squares estimation. 

In the above computation, the relative coordinate values of points 
( x o i ,  yo i )  of a grid line on the grid plate corresponding to the 
points ( x p i ,  y,;) of a perceived grid line are specified according to 
the relative positions on the grid plate. Here, exact point correspon- 
dences are not required. Any translation or any rotation of a 
multiple of 180" should be included in transformation matrix A .  
One only needs to check if the set of perceived grid lines is 
correspondent to the right set of grid lines on the grid plate. This 
can be done through the determination of the polyhedral grid line 
direction based on the set of perceived grid lines, which will be 
introduced next. 

B. Deriving the Initial Surface Equations 

1) Deriving the Polyhedral Grid Line Direction: It is well 
known that the perspective projection of parallel lines that are not 
parallel to the image plane will converge at a vanishing point [7] ,  
[ 8 ] .  Therefore, the lines projected from the parallel grid lines onto 
the polyhedral surface will intersect at a vanishing point assuming 
the surface is not parallel to the image plane. Due to camera and 
image-processing errors, the lines projected from the parallel grid 
lines may not intersect at a point. However, the perceived grid lines 
rectified by a least squares estimation technique will converge to the 
vanishing point. 

which passes through point ( x o ,  y o ,  z ,)  and has a direction 
specified by the vector [ a ,  b, c]. Let ( x ( t ) ,  y ( t ) ,  z ( t ) )  be a point 
on this polyhedral grid line and ( u ( t ) ,  u(t))  be the corresponding 
image point on the image plane; then 

q x ( t )  4 x 0  + a t )  u ( t )  = -- - 
z ( t >  ( z o  + c t )  

where q is the distance from the camera lens center to the image 
plane. The vanishing point ( uo,  uo) is obtained as (U( t ) ,  u( t ) )  when 
t --* 03. That is 

qa 
u o =  t+m lim u ( t ) = -  C 

qb 
u o =  lim u ( t ) = - - .  

t - m  C 
(7) 

It implies that the line directions [ a ,  b,  c ]  and IuO, uo ,  q]  are 
equivalent. In case the grid line on the polyhedral surface is parallel 
to the image plane (i.e., c = 0), the grid line direction can be 
directly determined as the direction of the perceived grid line on the 
image plane without the need to find the vanishing point. 

2) Deriving the Normal Vector of a Polyhedral Surface: 
Assume two vanishing points ( u l r  U,) and (U,, U,) are found for a 
polyhedral surface. Then the surface normal vector of the planar 
surface is defined by the cross product of the two line direction 
vectors [ u , , ~ , ,  q ]  x [ u z ,  u 2 ,  q ] .  Let this unit normal vector be 
denoted by N = [ A ,  B ,  C ] ;  then the plane equation is given by 

A x + B y + C z = D  (8) 
where D is the depth parameter that specifies the distance from the 
origin to the given plane. One can use the procedure presented here 
to compute the orientations of the two sets of laser planes (i.e., the 
laser calibration) by placing a planar object surface with a known 
orientation to the laser light; an object surface parallel to the grid 
plate is used for this purpose. 

3) Deriving the Depth Parameter D of a Polyhedral Surface: 
Assume the directions of the x ,  and y ,  axes of the laser coordinze 
syste? relative to the camera coordinate system are given by L ,  
and L, ,  respectively. 

In Fig. 2, let the grid line g,g, be the intersection between the 
polyhedral surface Ax + By + Cz = D and one of the y ,  z ,  laser 
plane, i.e., one with the normal vector i,. Assume g,g, is 
bounded by two x ,  z ,  laser planes with a space of k grids, and each 
grid on the grid plate islength 1. Then the angle 0 between line g,g, 
and the normal vector L ,  of the x , z ,  laser plane can be computed 
as 

e =  COS-^ [ ( G  x L,) . i,/ I r3 x L , ~ ~ i , l ] .  (9) 
Let D ,  be the length of G; then 

D, = k l /  [cos 0 1 .  
Assume ( x , ,  y , ,  z , )  and ( x , ,  y 2 ,  z , )  are two coordinates of the 

grid points g ,  and g , ,  and ( a , ,  b, )  and ( a 2 ,  b,) are their two 
corresponding 2-D coordinates on the image plane. It then can be 
shown that 

Assume the parametric equation of a grid line on a polyhedral D 
surface is given by 

A x ( t )  = xo + at 
= + D ,  

4P2 4P1 4P2 4Pl P2 PI y ( t )  = yo  + bt 

z ( t )  = zo + ct ( 5 )  ( 10) 

- - 0 3 1 t 1 w  
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Fig. 2. The configuration of the laser planes of light impinging on the 
polyhedral surface. In this view, the direction of L ,  is perpendicular to the 
page. 

where p i  = ( a j A / q )  + ( b , B / q )  + C, i = 1, 2. Since z ,  and z2  
are positive, the sign of D depends on p i ,  i = 1 or 2. That is, D 
and p j ( i  = 1 or 2) have the same sign. 

v. ITERATIVE REFINEMENT BASED ON A GEOMETRIC 
CONSTRAINT CFUTERION 

A .  Principle 

The above surface determination is based on the perceived grid 
points rectified by the least squares estimation; thus, the noise in the 
original image points is reduced. However, the residual error may 
still cause some errors in the transformation matrix estimation. The 
obtained matrix may not fully fulfill the geometric projection con- 
straints. Therefore, we use the geometric constraints to iteratively 
modify the solution obtained above. 

In the iterative modification, the 3-D grid points g,  and g ,  
mentioned previously are selected to be two points on a polyhedral 
grid line coplanar with the y ,  axis. Similarly, the grid points on a 
polyhedral grid line coplanar with the x, axis are also selected. 
From these four points, the grid pattern on the polyhedral surface 
can be constructed by interpolation as well as extrapolation. Then 
the constructed grid pattern is reprojected via the precise perspective 
transformation matrix onto the image plane to compare the projected 
grid points with the original perceived grid points to compute a sum 
of distance errors to evaluate the accuracy of the polyhedral surface 
estimation. 

Assume ( x p j ,  y p j ) ,  j = 1, 2 ; .  ., n ,  are n original grid points 
on the perceived grid pattern, and ( xo,, yoJ) ,  j = 1, 2 , .  . . , n are 
the n corresponding grid points obtained from the reprojection of 
the 3-D grid points on the estimated polyhedral surface. Let 

be the sum of distance errors between these two sets of grid points. 
Each estimation of the polyhedral surface will be associated with 
such an error. The optimal polyhedral surface is defined as the one 
associated with a minimal error. 

B. Iterative ModiJication of Plane Equation Based on the 
Geometric Constraint Satisfaction 

The normal vector of the estimated polyhedral surface can be 
reduced to a vector containing only two variables. That is, without 
loss o f  generality, let I A I = maximum ( I A 1 ,  I B 1 ,  I C I); then 
[ A ,  B,  C ]  = I A I . [sign ( A ) .  1, B’, C‘]. Thus, [ A ,  B,  C] is 
reduced to [sign ( A )  . 1, B‘, C’], which contains two variables B’ 
and C‘. 
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Fig. 3. Three polyhedra used in the experiments. 

Now we can modify the normal vector by changing the values of 
B’ and C’ in a 2 - D  space based on the sum of distance errors defined 
in (11). The initial solution of the normal vector is the one obtained 
based on the grid points rectified by the least squares estimation. 
Assume the starting location of the 2 - D  point (B’ ,  C’) is associated 
with an error SS,. We modify (B’ ,  C‘) by adding to or subtracting 
from B‘ or C‘ a value Ad (i.e., change (B’ ,  C’) to (B’  + A d ,  C‘), 
(B’  - Ad,  C’), (B’ ,  C’+ A d )  and (B’ ,  C’ - Ad) )  where Ad is 
the step size of the modification. Find the errors for these new 
locations, called SS,, SS,, SS,, and SS,. In the set of {SS,, i = 0, 
1, 2,  3, 4 } ,  if SS,  is the smallest, then reduce Ad to A d / 2 ;  
otherwise, move (B’ ,  C‘) to the location with the smallest error SS, ,  
and set SS, to this smallest error; repeat the modification process 
until the error is smaller than a threshold or no significant improve- 
ment is made. To ensure a global minimum solution, a coarse 
search is applied first to a larger region around the initial position of 
(B’ ,  C’). 

VI. EXPERIMENTS AND DISCUSSIONS 

In the experiments a CCD camera with a fixed focal length lens of 
25 mm was used and the pictures taken were all in a 256 X 240 
array with 256 intensity levels. The polyhedra used are shown in 
Fig. 3 .  
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TABLE I 
THE SUMMARIZED ESTIMATION ERRORS OF 3-D POLYHEDRAL SURFACE 

DETERMINATION IN 26 EXPERIMENTS 

Distance error Orientation error 

mean minimum maximum mean minimum maximum 
(percentage) (degree) 

1.2% 0% 2.9% 0.67" 0.06" 1.7" 

TABLE I1 
SOME RESULTS OF THE POLYHEDRAL SURFACE ESTIMATION 

Item 

Surface Rotation 
angle 

on polyhedral surface 
to camera lens center 

Coefficients of polyhedral 

Distance from a point 

plane equation 
( A ,  B , C ,  D) 

Angle between two 
intersecting grid lines 
on polyhedral surface 

intersecting grid lines 
on polyhedral surface' 

Lengths of two 

Sum of Distance errors/ 
(number of grid points)* 

Polyhedron ID 
g l l  g14 g17 g1902 

measured 
computed 

measured 
computed 

computed 

measured 
computed 

measured 

computed 

computed 

0" 30" 60" 80" 
1.7" 30.3" 58.9" 80.1" 

590 590 588 566 
600 587 577 555 

-0.702 -0.276 0.218 0.582 
0.086 0.101 0.093 0.017 
0.707 0.956 0.972 0.813 
424 557 558 450 

90" 81.5" 53" 22.5" 
91.4" 81.6" 53.2" 20.7" 

I O  11 16 40 
10 11 16 40 
10 10.77 15.39 39.9 

10.18 10.79 15.2 39 

84/(72) 21/(48) 31/(26) 3.3/(7) 

I All distances and lengths are in millimeters. 
* The sum of distance errors is in pixels. 

TABLE 111 
SOME RESULTS FOR DIFFERENT ORIENTATION CONFIGURATIONS 

OF LASER, CAMERA, A N D  POLYHEDRAL SURFACE 

Polyhedron ID 
Item g57 g51 g53 g55 

Measured camera 
rotation angle' 

10.4" 28.9" 51.7" 68.8" 

Distance from a point measured 619 624 604 538 
on polyhedral surface computed 683 624 603 537 
to camera lens center 

Coefficients of polyhedral 
plane equation 
( A ,  B, C, D) 

Angle between two 
intersecting grid lines 
on polyhedral surface 

Lengths of two inter- 
secting grid lines on 
polyhedral surface 

-0.208 -0.504 - 0.795 - 0.937 
0.023 0.020 0.038 0.032 
0.978 0.864 0.606 0.347 

665.9 546.7 381.6 184.2 

89.6" 90.4" 90.6" 92.7" 

10.01 10.00 10.00 10.02 
10.01 9.84 10.08 10.26 

Sum of distance 17.7 /(68) 50.9/(63) 22/(65) 63/09) 
errors/(number of 
grid points) 

I The camera rotation angle means the angle between two consecutive setups of the camera when the camera is moving around 
the polyhedon. 
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TABLE IV 

OF POLYHEDRAL SURFACE DETERMINATION 
EFFECTS OF SELECTING DIFFERENT SET OF GRID POINTS ON THE ACCURACY 

Polyhedron ID 
Item g57 g5 1 g53 g55 

~~ ~ 

Measured camera 
rotation angle' 

Distance from a point 
on polyhedral surface 
to camera lens center 

Coefficients of polyhedral 
plane equation 
( A ,  B ,  C ,  D )  

Angle between two 
intersecting grid lines 
on polyhedral surface 

Lengths of two inter- 
secting grid lines on 
polyhedral surface 

measured 
computed 

10.2" 30.5" 50.9" 69.4" 

679 624 604 538 
680 616 60 1 534 

-0.203 - 0.530 - 0.789 - 0.943 
0.031 0.016 0.039 0.030 
0.979 0.848 0.613 0.333 

665.0 534.3 387.6 172.0 

89.9" 89.3" 90.8" 89.1 

10.00 10.00 10.00 10.03 
10.00 9.8 10.00 10.35 

Sum of distance 7.4/(35) 12.5/(20) 5.5/(22) 11.8/(15) 
errors/(number of grid 
points) 

' The camera rotation angle means the angle between two consecutive setups of the camera when the camera is moving around 
the polyhedon. 

A .  Accuracy of the Potyhedral Surface Estimation 

Twenty-six experiments were conducted to demonstrate the accu- 
racy of the polyhedral surface estimation. The results are summa- 
rized in Table I; part of the detailed results are given in Tables I1 
and III. For a more detailed report, refer to [9]. In Table I, the 
distance is defined from a preselected grid point on the polyhedral 
surface to the camera lens center, and the surface orientation means 
either the relative angle of the polyhedral surface with respect to a 
reference direction or the angle between two adjacent polyhedral 
surfaces, depending on which is appropriate. Twenty-six experi- 
ments were analyzed for distance accuracy, and 19 experiments 
were analyzed for orientation accuracy. The estimation errors are 
generally small; the errors range from 0 to 2.9% with a mean 1.2% 
for the distance estimation and range from 0.06" to 1.7" with a 
mean 0.67% for the orientation estimation. 

B. Influence of Different Orientation Configurations of Laser, 
Camera, and Polyhedral Surface 

Here, the influence of different orientation configurations of laser, 
camera, and polyhedral surface over the accuracy of surface deter- 
mination is examined. The results are shown in Tables I1 and 111. 
The image data used in Table I1 were taken by rotating the polyhe- 
dral surface around the laser optical axis from 0" to 80" with the 
laser and camera being fixed. The image data used in Table 111 were 
taken by moving the camera around the polyhedral surface from 11 ' 
to 70" with the laser and the polyhedral surface fixed and the grid 
light perpendicular to the polyhedral surface. 

From the estimation errors listed in these two tables, we can see 
that the different orientations of laser, camera, and polyhedral 
surface do not cause any serious problem. The estimation errors for 
the cases with a larger camera-to-polyhedron angle in Table I1 (such 
as case g1902) are due to the fact that the projected grid lines 
become larger in size and thicker in width. In these cases, the 
coordinates of the grid points become slightly inaccurate. However, 
under such situations a small grid plate can be used instead to 
prevent the grid lines from becoming sparse and thick. 

C. Efiect of Selecting Dizerent Sets of Grid Points 

On the othef hand, we repeated the experiments reported in Table 
I11 by selecting different numbers of grid points. The grid points 
near the boundary of the projected grid pattern were selected on 
purpose. The results are shown in Table IV. The experiments 
indicate that rather consistent results are obtained regardless of the 
set of grid points selected. 

VII. CONCLUSION 

A structured light vision system for computing 3-D location and 
orientation of arbitrary polyhedral surfaces is proposed. In this 
system a laser projector was constructed to encode the scene con- 
taining a polyhedral object to create a grid-coded image for analysis. 
A clustering technique was developed to segment grid-coded poly- 
hedral surfaces. In order to deal with the errors caused by the laser 
projector, camera lens distortion, and image processing, the per- 
ceived grid pattern was first rectified by a least squares model. 
Based on the vanishing points of one planar surface of the polyhe- 
dron and the physical dimensions of the grid plate, the plane 
equation then was estimated. At last, the iterative method based on a 
geometric constraint criterion was employed to refine the plane 
equation. The experiments indicate that the results are quite accurate 
and stable for various orientation configurations of laser, camera, 
and polyhedral surface. We are currently applying the same equip- 
ment to measuring a cylindrical object surface. A 3-D object 
recognition system based on the proposed vision system is also 
under investigation. 
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Motion Estimation under Orthographic Projection 

Xiaoping Hu and Narendra Ahuja 

Abstract-In this short paper, we present some new results for the 
problem of motion estimation under orthographic projection. We refine 
some basic results obtained by previous researchers and provide more 
detailed and precise results. We shbw that, in the two-view problem, 
when the rotation is around the optical axis, the motion (but not the 
structure) is uniquely determined. We show that, in the three-view 
problem, only under certain conditioHs are the motion and structure 
uniquely determined. We show that, for any motion problem, if two-view 
matching cannot determine the motion, only under certain conditions 
can three- or multiview matching help. 

Index Terms-Depth, motion, motion estimation, orthography, rigid- 
ity, structure. 

I. INTRODUCTION 

In the literature, two projectidn models of image formation have 
been widely used: perspective projection and orthographic projec- 
tion. The motion estimation problem has been investigated mainly 
for perspective projection [9]-[18] with some work on ortho- 
graphic projection [ 1 ] - [ 7 ] .  Ulkman [2] started the research on the 
motion problem with orthographic projection. But in later work, the 
primary interest of motion researchers has been in perspective 
projection. This is probably due to the fact that perspective projec- 
tion models the imaging process of ordinary cameras more accu- 
rately and is better conditioned in the sense of determinedness from 
correspondence data. But, when a long-focus telephoto lens is used, 
the imaging process can be approximated by orthographic projection 
if the motion and the object size in the direction of the optical axis 
are negligible compared with the object distance, although a scale 
constant may be involved [4]. In medical imaging such as X-ray 
imaging, the imaging process can be considered as an orthographic 
projection. Therefore, it is necessary to investigate the motion 
problem under orthographic projection. Another projection model 
that lies between the perspective and orthographic projections also 
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has been investigated and is called paraperspective projection [8] .  
In this work, we will discuss the motion estimation problem under 
orthographic projection only. 

This short paper concerns conditions under which motion is 
uniquely determined from only monocular image point correspon- 
dence data. For the two-view problem, determinedness means that 
the rotation matrix R is uniquely determined and the translation 
vector T = [ t ,  t ,  t,IT is determined up to a scale and a constant, 
i.e., [ t ,  t,IT is determined up to a scale, and t ,  is not determined. 
For the three-view problem, determinedness means that all rotation 
matrices are uniquely determined, the translation vector between the 
second and the third views is determined to a scale, and the 
translation vector between the first and the second views is deter- 
mined to a scale and a constant (similar to the two-view case). 

Ullman [2] showed that the two-view motion problem is generally 
not determined, but the three-view motion problem can generally be 
determined with four correspondences of projections of noncoplanar 
space points, and he proposed a nonlinear algorithm for motion 
estimation from three-view matching. Later, Aloimonos and Brown 
[ 3 ]  showed that the two orthographic views of four noncoplanar 
points admit only four interpretations of the structure of the four 
points and that it is possible to uniquely recover structure from three 
orthographic views of three points in space, contradicting Ullman’s 
results. Huang and Lee [ 1 1  proposed a linear algorithm for three-view 
motion estimation. They gave formal proof that the two-view mo- 
tion problem is generally not determined and the three-view motion 
problem is generally determined. 

In this short paper, we will reexamine some of the problematic 
results obtained in the above referenced papers. We concern motion 
estimation only and do not discuss structure estimation. We show 
that, for monocular vision, the two-view motion is determined if 
and only if the rotation is around the optical axis, and three-view 
motion is determined if and only if certain necessary and sufficient 
conditions are satisfied. We show that, given a sequence of images 
under orthographic projection, only under certain conditions can the 
motion between each pair of views be determined by multiview 
matching. These results contrast those obtained by Ullman [2] and 
Huang and Lee [ 1 1 .  

In Section 11, we present some preliminary results for motion 
estimation. In Section 111, we investigate the two-view motion 
problem. We show that rotation is uniquely determined if and only 
if it is around the optical axis. In Section IV, we reexamine Huang 
and Lee’s three-view algorithm and show that the three-view motion 
problem is determined only under certain conditions. Section V 
summarizes the paper. 

11. REPRESENTATION OF TWC-VIEW MOTION 

We use x - y to denote image coordinates and X - Y - Z to 
denote real-world coordinates. An image point ( x ,  y )  represents the 
projection of a scene point X = (X, Y ,  Z ) .  For orthographic pro- 
jection, we have 

x = x  

y =  Y .  (1) 

Throughout this work, we will use the following notation. Bold 
capital letters represent vectors or matrices, italic capital letters 
coordinates in the space, italic lowercase letters coordinates in the 
image plane or elements of vectors or matrices. ( x ,  y ) .  ( x i ,  yi), 
and ( x i ,  yj) correspond to the projections of X = ( X ,  Y ,  Z ) ,  
X i  = (Xi, Yi,  Z;) ,  and X’i = ( X i ,  Y ; ,  Z j ) ,  respectively. 8, ei, 
and 0: denote [ x ,  y lT ,  [ x i ,  yiIT, and [ x i ,  y ; l T ,  respectively. 
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