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Abstract: In the classical problem of low-angle 
radar tracking, echoes return to the array via a 
specular path as well as by a direct path, with the 
angular separation between the two ray paths a 
fraction of a beamwidth. The performance of any 
bearing estimation scheme in this scenario is 
dependent on the phase difference between the 
direct and specular path signals at the centre of 
the array. The beamspace domain maximum like- 
lihood (BDML) bearing estimator is a recently 
developed three-beam extension of the sum and 
difference beam technique employed in conven- 
tional radar. Nonsymmetric BDML breaks down 
when the phase difference is either 0" or 180". In 
contrast, symmetric BDML, in which the point 
angle of the centre beam is the bisector angle 
between the two ray paths, can theoretically 
handle any phase difference, with the 0" case 
giving rise to the best performance. A simple, 
closed-form bisector angle estimator is developed 
based on characteristic features of the 3 x 3 
forward-backward averaged beamspace corre- 
lation matrix when the centre pointing angle is the 
true bisector angle. In this way, a 2-D parameter 
estimation problem is decomposed into two suc- 
cessive 1-D parameter estimation problems: esti- 
mation of the bisector angle, followed by 
estimation of the target bearing. Simulations are 
presented assessing the performance of the new 
bisector angle estimator and comparing the per- 
formsnce of symmetric BDML employing the new 
estimator with other ML based bearing estimation 
schemes in a simulated low-angle radar tracking 
environment. 

1 Introduction 

Low-angle radar tracking represents a classical problem 
in radar which has been attacked by numerous 
researchers for the past several decades [1-101. The goal 
is to track a target flying at a low altitude over a fairly 
smooth reflecting surface such as calm sea. Owing to the 
low elevation angle of the target, echoes return to the 
radar array via a specular path as well as by a direct 
path, with the angular separation between the two ray 
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paths a fraction of a beamwidth. It is well known that the 
classical monopulse bearing estimation technique breaks 
down under these conditions. As the bearing estimation 
technique employed in conventional monopulse radar my 
be interpreted as an ML estimator based in a 2-D beam- 
space defined by sum and difference beams [4], a number 
of ML estimation schemes based in a suitably defined 
3-D beamspace [S-lo] have been proposed for low-angle 
radar tracking. These may be classified into two cate- 
gories. In the first category, the same beamforming 
weight vector is applied to each of three identical sub- 
arrays. An example is the three-subaperture (3-APE) esti- 
mation scheme. Cantrell, Gordon and Trunk [ S ,  61. In 
the second category, three different beamforming weight 
vectors are each applied to all of the array elements. 
Examples include the least squares adaptive antenna 
(LSAA) method of Kesler and Haykin [7] and the beam- 
space domain maximum likelihood (BDML) method of 
Zoltowski and Lee [9, lo]. Each of these three methods, 
3-APE, LSAA and BDML, is computationally simple in 
deference to the need for real time applicability. 

The performance of any bearing estimation scheme in 
this scenario is dependent on the phase difference 
between the direct and specular path signals at the centre 
of the array, denoted AY. In the case of symmetric multi- 
path, where the bisector angle between the two ray paths 
is assumed known, the Cramer-Rao lower bound (CRLB) 
on the variance of any unbiased estimator of the direct 
path angle monotonically increases as AY increases from 
0" to 180" [lo]. In contrast, in the case of nonsymmetric 
multipath, the CRLB monotonically increases as AY 
either increases from 90" to 180" or decreases from 90" to 
0", with the CRLB at AY = 0" the same as that 
AY = 180". In both the symmetric and nonsymmetric 
cases, the poor performance at AY = 180" may be attrib- 
uted to the low effective SNR due to the severe signal 
cancellation occurring across a large portion of the array 
aperture. The disparity between the two cases for 
AY = 0" may be intuitively explained as follows. For the 
nonsymmetric case we have a 2-D parameter estimation 
problem, and the direct and specular path signals are 
effectively treated as two different entities which must be 
distinguished. As the two arrivals are at the same fre- 
quency, nearly equal in strength, and very closely spaced 
in angle, phase is important as a distinguishing feature. 
The case where the two signals arrive in phase, i.e. 
AY = O", is then expected to yield poor performance. For 
the symmetric case we have a 1-D parameter estimation 
problem, and the combined direct and specular path 
signals are effectively treated as a single entity. In this 
case, AY = 0" yields the best performance owing to the 
constructive interference between the two wavefronts 
occurring across a large portion of the array giving rise 
to a large effective SNR. 
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Each of the aforementioned ML based estimation 
schemes exhibits very poor performance in the case of 
nonsymmetric multipath with AY = 0". As the CRLB 
only holds for unbiased estimators, Cantrell et al. [SI 
conjecture that an estimator may exist which is biased for 
AY = 0" but for which the corresponding variance is sig- 
nificantly lower than the CRLB. We here develop such 
an estimator. 

The BDML estimation scheme is a three-beam exten- 
sion of the sum and difference beam technique employed 
in conventional radar. A simple, closed-form bisector 
angle estimator is developed based on characteristic fea- 
tures of the 3 x 3 forward-backward averaged beamspace 
correlation matrix formed in BDML in the case where 
the pointing angle of the centre beam is the true bisector 
angle. In this way, a 2-D parameter estimation problem is 
decomposed into two successive 1-D parameter estima- 
tion problems: estimation of the bisector angle, followed 
by estimation of the target bearing. Simulations pre- 
sented in Section 4 shows that this estimation scheme 
yields biased estimates in the case of AY = 0" but a per- 
formance which is significantly better than that dictated 
by the CRLB. 

This paper is organised as follows. Section 2 provides 
a brief overview of the symmetric and nonsymmetric ver- 
sions of BDML. The bisector angle estimator is devel- 
oped in Section 3. Finally, in Section 4 simulations are 
presented assessing the performance of the new bisector 
angle estimator and comparing the performance of sym- 
metric BDML employing the new estimator with other 
ML based bearing estimation schemes in a simulated 
low-angle radar tracking environment. 

2 

We here present a brief overview of the beamspace 
domain maximum likelihood (BDML) bearing estimator 
for low-angle radar tracking. The reader is referred to 
References 9 and 10 for a detailed development. The data 
are the collection of signals received at a linear array of 
M antenna elements equispaced by half the wavelength 
of the transmitted pulse. The array is mounted vertically 
to monitor target elevation. Owing to the low elevation 
angle of the target, assumed to be in the far field, the 
direct and specular path signals arrive overlapped in time 
and angularly separated by less than the nominal 3 dB 
beamwidth at broadside. Let x(n) denote the M x 1 snap- 
shot vector. The mth component of x(n) is a sample of the 
complex analytic signal output from the mth element of 
the array at discrete time n. Assuming a narrowband 
signal model, x(n), n = 1 ,  ..., N ,  where N is the number 
of snapshots, may be expressed as 

Overview of beamspace M L  bearing estimator 
for two-ray multipath 

x(n) = Al(n)ej41("){a&l) + pejA'a,(u,)} + n(n) 

where c1 = Al(n)eY1("). The various quantities in eqn. 1 
are defined as follows. u1 = sin el, where denotes the 
elevation angle of the target equal to the arrival angle of 
the direct path signal with respect to broadside. U, = 
sin OZ, where 8, denotes the arrival angle of the specular 
path signal. A,(n) and c$l(n) denote the amplitude and 
phase, respectively, of the sample value of the complex 
envelope of the direct path signal at the nth snapshot. p is 
the ratio of the amplitude of the specular path signal to 
that of the direct path signal, while AY is the relative 
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phase difference between the two signals at the centre of 
the array aperture; both quantities are assumed constant 
over the interval in which the N snapshots are collected. 
It is assumed that the direct path signal is deterministic 
and that the specular path signal is deterministically 
related to the direct path signal. 

As dl(n) is the phase of the direct path signal 
occurring at the centre of the array aperture at the nth 
snapshop, aMful) in eqn. 1 accounts for a linear phase 
variation across the array due to the far field assumption. 
The following is due to the uniform linear array struc- 
ture : 

&'n(M/2-3/Z)u @ M i l -  112)" T 1 (2) 
The notation a&) is such that M designates the dimen- 
sion of the vector. Note that if M is odd the centre 
element of a,(u) is unity. Finally, the components of n(n) 
in eqn. 1 represent the complex, receiver generated noise 
present at each of the array elements at the nth snapshot. 
It is here assumed that the components of n(n) are inde- 
pendent zero-mean Gaussian random variables having a 
common variance of 0.'. 

Note that applying a,(u) for some specific value of U 
as a weight vector to x(n) is referred to as classical beam- 
forming. Consider the M x 3 beamforming matrix 

= [SI f s, ; s3] (3) 
Here U, is the pointing angle of the 'centre' beam; U, 
- 2 /M and U, + 2 /M are the pointing angles of the 'left' 

and 'right' beams, respectively. For notational simplicity, 
the first, second and third columns of S, are alternatively 
denoted as sl, st and s3 ,  respectively, in accordance with 
the far right-hand side of eqn. 3. It is easily shown that 
the three columns of S, are mutually orthonormal owing 
to the 2 /M spacing between the beams and the scaling 

Note that aM(u) exhibits conjugate centrosymmetry, i.e 
1IJ(M). 

r, a,(u) = a*@) (4) 
where p, is the M x M reverse permutation matrix 

r8 8 0 '1 
p - : :  : :  
, - I 0  i . 01  

Thus each of the three columns of S, in eqn. 3 is conju- 
gate centrosymmetric. This property is invoked in the 
BDML method to be described shortly. Note that 
p 7, = Z,, where Z, is the M x M identity matrix. Also, 

= r,. These properties of r, are invoked throughout. 
An algorithmic summary of BDML is delineated 

below. Both the nonsymmetric and symmetric versions of 
BDML are included in the summary. In symmetric 
BDML it is assumed that U, is equal to the bisector angle 
uB between the two ray paths, where uB = { U l  + u,}/2.  A 
procedure for estimating us is developed in Section 3. 
Again, the reader is referred to References 9 and 10 for 
the full development of BDML. 

2.1 Algorithmic summary of BDML bearing estimator 
1 With S, defined in eqn. 3, form xdn) = SEx(n),  

n = 1, . . . , N and Ebb = ( l / N ) C &  I xdn)xf(n) .  
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2(a) Nonsymmetric: compute U = [U,. U,, u3]' as the 
eigenvector of Re {kbb} associated with the smallest 
eigenvalue. 

2(b) Symmetric: compute U = [U,, U,, u3]' as the 
centrosymmetric eigenvector of Re {@} = {Re {$,} + r3 Re {kbb}r3)/2 associated with the smaller eigen- 
value. 

3(a) Nonsymmetric: z1 = @" and z, = pz are esti- 
mated as the two roots of q(z) = qo + qlz + q: zz, where 

q1 = - 2 ( u ,  + u 3 )  cos + 2u ,  cos - (2) (3 
3(b) Symmetric: U, is estimated according to: 

1 
2, = U, + - 

8 

u2 - 20, cos (;) 
U 2  cos ($) - 2u ,  cos (5) x tan-lJ[[ 

2.2 Comments on algorithm 
2.2.1 Step 1 : x,(n) is a 3 x 1 beamspace snapshot vector 
such that $, is a 3 x 3 (complex-valued) matrix. Note 
that N may be as small as one as in monopulse radar. 

2.2.2 Step 2: The following two properties of the M x 3 
beamformer matrix S, are invoked in this step in both 
the nonsymmetric and symmetric versions of BDML: (i) 
SES, = I3 and (ii) r,S, = S,. Since it is assumed that 
the element space noise correlation matrix is u:Z,, it 
follows from the former property that the beamspace 
space noise correlation matrix is U: Z3. As a consequence 
of the latter property, which follows from the conjugate 
centrosymmetry of each of the columns of S,, it follows 
that the 3 x 1 beamspace manifold vector 

44 = SE %(U) (8) 
is real-valued. This claim is substantiated via the 
sequence of manipulations 

Incorporating the fact that b(u) is real-valued in the 
development of the BDML estimator in References 9 and 
IO dictates that we work solely with the real part of the 
beamspace sample correlation matrix formed in step 1. 
Note that the expected value of the beamspace corre- 
lation matrix may be expressed as 

Rbb = E{@,,} = BR,BT + CT.' I3 (10) 
where B = [Nu,)  b(u2)], a real-valued 3 x 2 matrix, and 
R ,  is the 2 x 2 deterministic source correlation matrix 

(1 1) 

Note that R, is rank one owing to the coherence between 
the direct and specular path signals. 
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Nonsymmetric: For the sake of simplicity, the effect of 
taking the real part of E,, is analysed in the asymptotic 
and/or noiseless cases. The noiseless case is obtained by 
setting U: to zero in eqn. IO since the direct and specular 
path signals are assumed to be deterministic. Since. B = 
[b(ut) i b(u,)] is real-valued, Re {R,,} = B Re {R,,}BT 
+ U: Z3, where 

(12) 
Re {Rss} = bf [ p  cosl(AY) co~!"y' 1 

It is easily deduced that, as long as AY is not equal to 
either 0" or 180", Re {R } is of full rank; this in turn 
implies that B Re {R,)B','a 3 x 3 matrix, is of rank two. 
Thus, as long as AY is neither 0" nor 180", the smallest 
eigenvalue of Re {Rbb} is U: and the corresponding eigen- 
vector U is orthogonal to both &U,) and b(u2) individ- 
ually, i.e. uTb(ui) = 0, i = 1, 2. As we will show in the 
simulations presented in Section 4, the nonsymmetric 
version of BDML breaks down when AY = 0" or 
AY = 180". 

Symmetric: Note that, invoking the definition of S, in 
eqn. 3, for any value of U, the beamspace manifold in eqn. 
9 exhibits the property 

p3 b(u) = 4214 - U) or 7, b(u, + A) = b(u, - A) 

(13) 
where p3 is defined by eqn. ( 5 )  with M replaced by 3. In 
the special case where U, is equal to the bisector angle 
U - {U, + u,}/2, it follows from eqn. 13 that b(u2) = 
(b(u,) .  Incorporation of this constraint in the develop- 
ment of the symmetric version of BDML in References 9 
and IO dictates that U be computed as that centro- 
symmetric eigenvector of 

associated with the smaller eigenvalue. Note that it is 
easily shown [9, IO] that two of the eigenvectors of Re 
{kii} exhibit centrosymmetry while the third exhibits 

centro-antisymmetry. Similar to the development for the 
nonsymmetric case, the effect of the forward-backward 
average in beamspace described by eqn. 14 is examined in 
the asymptotic/noiseless case. Since Nu,) = r3 b(u,) when 
U = uB, it follows that B = [b(u,)!b(u,)] satisfies < Bp2 = B. Hence, substitution of eqn. 10 for k,, in eqn. 
14 yields 

Re {RLL} = + { B  Re {R,,}BT + 7, Br, r, 
x Re {R, , }r ,  r, BTr3} + U: I, 

= B )  Re { R, + r, R,, r2}BT + uf I3 

= B Re {R::}BT + U: Z, (15) 

where 

I I .  I\ 

l'OJ 
pcos  AY k!l!? 1 

2 

= U; 

In contrast to Re {Rss} in eqn. 11, which is rank one for 
all values of p when AY is either 0" or 180", R:: in eqn. 
16 is of rank two except when either AY = 0" or 
AY = 180" and, at the same time, p = 1. As a practical 
matter, p is always less than one owing to losses incurred 
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at the surface of reflection [l] and the differential in the 
respective path lengths. Thus, in the asymptotic/noiseless 
case, the smallest eigenvalue of Re {@} is U: and the 
corresponding eigenvector U satisfies uTb(ui) = 0, i = 1, 2, 
regardless of the value of AY. 

2.2.3 Step 3: In this step, both the nonsymmetric and 
symmetric versions of BDML exploit the property that 
the three beams generated by S, have M - 3 nulls in 
common [9, lo] to convert the determination of ui 
satisfy,ing uTb(ui) = 0 into the problem of determining 

+ qzz2,  where the coefficients are given by eqn. 6. For 
the purpose of introducing notation and defining quan- 
tities that will be used in the development of the bisector 
angle estimator in Section 3, we briefly elaborate on this 
result. Note that the common nulls property is illustrated 
in Fig. 1 for the case of an M = 15 element array and 

- - &nu, , i = 1, 2, as the two roots of q(z) = q, + qlz 

1 6 r  

spatial angle, degrees 

Fig. 1 Plot of the respective beam pattern associated with each of the 
three columns of the M x 3 matrix beamjormer S, in eqn. 3 with M = 15 
a n d u . = O  
Note that the beams have M - 3 = 12 nulls in common 
__ reference beam 
_ - _ _  upper auxiliary beam 

lower auxiliary beam 

U, = 0; the three beams have M = 3 = 12 nulls in 
common. 

Let sij, i = 0, .. ., M - 1, j = 1, 2, 3, denote the (i + l), 
j component of S,, and let sJ{z) denote the polynomial of 
order M - 1 formed with the j th column of S, as coeffi- 
cients according to 

S ~ ( Z ) = S o j + s , j z f s 2 j z ~ + " ' + S ~ - I , j Z ~ - ~  

j = 1, 2, 3 (17) 
The common nulls property translates into these three 
polynomials having M - 3 roots in common. It can be 
shown [9, lo] that the M - 3 common roots are located 
on the unit circle at z, = P1u,+(2m/M)1, m = 2, .. . , M - 2. 
Let h(z) denote the polynomial of order M - 3 with these 
roots: 

h(z) = h, + hlz + hzz2 + ... + h M - 3 ~ M - 3  

where aM is a normalisation factor for which conjugate 
centrosymmetry is achieved, i.e. hi = h $ - 3 - i ,  i = 0, . . ., 
M - 3. It follows that sJ{z) = h(z)e,(z), j = 1,  2, 3, where 
eiz) is a polynomial of order 2, i.e. eJ{z) = eOj + eljz 
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+ e2jz2, j = 1, 2, 3. Note that the two roots of s,(z) 
which are not roots of h(z) are z = LP"~ and z = 
piu, +(Z/M)I, H~~~~ 

1 el(z) ~ e-jfflrk+(l/M)l(z - @xZ - &nluc+(2/M)1 

- - &xI*+(UM)l - 2 cos ( n / ~ ) z  

+ e - j n l u ~ + ~ l / M ) l z 2  (19) 

Since sJ{z) = h(z)e@), j = 1, 2, 3 it follows that the coeffi- 
cient sequence for sJ{z) is the linear convolution of the 
coefficient sequence for h(z) with the coefficient sequence 
for e{z) Let 11, = [h, ,  h , ,  ..., hM-3]T and ej = [eoj, elj ,  
ej2]< j ' =  1, 2, 3. The cumulative result of all of these. 
observations is that S, may be factored as 

where H ,  is the M x 3 banded Toeplitz matrix 

H M = r i  

Substituting S, = [l/J(M)]HM E ,  in eqn. 8 yields the 
following expression for the beamspace manifold: 

where we have exploited the banded ToepEtz structure of 
H ,  in eqn. 23. Note that a,_,(u) and a&) are defined by 
eqn. 2 with M replaced by M - 2 and 3, respectively. 
Thus the equation for determing u t ,  i = 1, 2, uTb(ui) = 0, 
may be alternatively expressed as 

i = 1, 2 (26) 

Since l l ~ a M - Z ( ~ i )  is just a scalar for i = 1, 2, eqn. 26 
implies (EMo)"a,(ui) = 0, i = 1,2. Letting 

4 = c40 3 41, 42IT = E; U (27) 
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then eqn. 26 implies that ii = 8"',, i = 1, 2, are the two 
roots of the second-order polynomial q(z) = qn + q,z 
+ q 2  !2, where q2 = q: . It is easily verified that the pre- 

scription for the components of q in eqn. 27, where E, is 
defined by eqn. 24, is exactly the same as that in eqn. 6. 

Symmetric: The final step in either version of the algo- 
rithm is to estimate z1 = and z2 = $.y* as the two 
roots of q(z) = qo + qlz + q: z 2 .  In the symmetric case, 
this final step may be simplified somewhat by exploiting 
the fact that u3 = U ,  in eqn. 6. In this case, the coefficients 
of q(z) simplify as qn = e'xu~{v2 - 20, cos (n/M)} = q: 
and q, = 40, cos ( n / M )  - 20, cos (2nlM). It is easily 
shown that if I q!/qn 1 < 2, the two roots of q(z) lie on the 
unit circle equidistant from the point z = $.ye, Equating 
the phase angle of that root of q(z) having the larger 
phase angle with that of i, = 8"'' yields, after some alge- 
braic manipulation, the expression for ii, in eqn. 7. If 
1 ql /qo 1 > 2, the direct and specular path signals are not 
resolved. 

3 

In the case where U, = ug, B = [b(u,) f b(u2)] satisfies r3 Br2 = B. This property gives meaning to the forward- 
backward average in beamspace described by eqn. 14, 
which in turn yields the effective source correlation 
matrix RC in eqn. 16. The bisector angle estimator to be 
developed in this section is based on using r3 Bf2 = B as 
a discriminating feature between the case of U, = ug and 
the case of U, # us. Denote the signal-only (noise-free) 
component of Re {RL:} as Re {Cl:}. Specifically, the esti- 
mator is based on the fact that if U, = us then Re {Cl:} is 
of rank two and has a zero determinant, while if U, # us 
then Re {Ci:} is of full rank and has a nonzero determi- 
nant provided AY is not equal to either 0" or 180". The 
anomaly occurring with either AY = 0" or AY = 180" is 
averted by employing spatial smoothing [ll, 121. 

In accordance with eqn. 15 Re {Cl:}, as defined above, 
may be expressed as 

Re {Cl:} = f { B  Re {R,,}BT + r3 B Re {R, , }BTr3} (28) 
Note that Re {Cl:} is a nonnegative-definite symmetric 
matrix. In the case U, = ug, Re {Cl:} simplifies as 
BRibBT,  where RAb is defined by eqn. 16, owing to the 
property r, BIZ = B. Since RAb is 2 x 2, it follows that 
det (Re {Cl:}) = 0 in the case U, = ug . In contrast, in the 
case U, # ug eqn. 28 cannot be simplified further such 
that 

Estimation of the bisector angle 

where we have assumed that AY is not equal to either 0" 
or 180" so that Re { R = }  is of full rank. Note that, in 
accordance with eqn. 13, r3b(u,) = 4 2 4  - U,) and r3 b(uJ = 4214 - uz). From the definition of b(u) in eqn. 
8, it is easily proved that any three members of the set of 
four vectors {Mu,), Nuz), b(2u, - U,), b(h,  - u2)} are lin- 
early independent provided uz # 2uc - U,, as would be 
the case when U, = uB. Thus Re {Cl:} is of full rank such 
that det (Re {Cl:}) > 0 in the case U, # uB as long as AY 
is neither 0" nor 180". When AY is equal to either 0" to 
180", Re {R, , }  is of rank one such that the rank of 
Re {Cl:} is one as well and det (Re {Cl:}) = 0, as in the 
case U, = us. Thus, provided Re {R, , }  is of full rank, 
det (Re {Cl:}) may be used to discriminate between the 
case U, = ug and the case U, # ug . 

IEE PROCEEDINGS-F, Vol. 138, No .  6 ,  DECEMBER 1991 

Spatial smoothing [ll, 121 is employed to obtain an 
effective source correlation matrix that is of full rank 
regardless of the value of AY. In spatial smoothing, the 
beamspace sample correlation matrix is spatially aver- 
aged over a number of identical, overlapping subarrays. 
The procedure exploits the fact that the relative phase 
difference between the direct and specular signals at the 
centre of each subarray is different. We point out that 
spatial smoothing need only be employed in the process 
of estimating the bisector angle. Once this is accom- 
plished, one may estimate the arrival angle of the direct 
path signal via the symmetric version of the BDML algo- 
rithm outlined previously with U, equal to the bisector 
angle estimate. A negative side effect of spatial smoothing 
is that the effective aperture is that of the subarray. 
Although the reduction in the effective array aperture is 
not critical in the estimation of the bisector angle, the 
corresponding loss in resolution may prove critical in the 
subsequent estimation of the arrival angles of the direct 
and specular path signals. 

The subarrays employed in spatial smoothing are each 
composed of L continuous elements, with adjacent sub- 
arrays having all but one element in common. An M 
element array is composed of M - L + 1 such subarrays. 
The extraction of the L x 1 snapshot vector for the kth 
subarray, denoted x,(n; k), k = 1, ..., M - L + 1, from 
x(n) may be described mathematically as 

x , ( n ; k ) = J f x ( n )  n =  I, ..., N 

where 

( k  - 1)  x L 
Jk=[:] L x L  

0 ( M - L - k + + ) x L  

k = 1,  ..., M - L + 1 (30) 
With these subarray snapshot vectors, the spatially 
smoothed element space correlation matrix, denoted a,, , 
is constructed as 

Finally, the spatially smoothed beamspace sample corre- 
lation matrix, denoted ab,, is formed as 

(32) @bb = sf 'Xx ' L  

where 

Here uL(u) is described by eqn. 2 with M replaced by L. It 
can be shown 1 1 ,  121 that the signal-only (noise-free) 
component of Lb, denoted ebb, may be expressed as 

where B, = [ S f u L ( u l )  Sfa,(u,)]  = [bs(ul) bs(u2)] and a,, is the effective source correlation matrix 

ebb = B8ass B f  (34) 

where 
e - J = u ~  

@ = [ 0 e-e.] 
From the theory espoused in 
that a,, is of full rank equal 

(35) 

Ell], it is readily deduced 
to two as long as u2 # U, 
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and M - L + 1 2 2. In the case under consideration, 
however, the difference between u1 and u2 is quite small 
such that Re {as} may be ill-conditioned in the case of 
either AY = 0" or AY = 180". Simulations have indi- 
cated that L = (2/3)M is adequate for angular separa- 
tions between the direct and specular paths as small as a 
tenth of a beamwidth. 

abb has the asymptotic form 

E{@,,} =Bsa,Bf+aiI ,  (36) 
such that the smallest eigenvalue of E { a , , } ,  denoted I.:", 
is G.'. e b b  may thus be estimated eb - a,,, - 13, 
where 1%" is the smallest eigenvalue of h,;. Correspond- 
ingly, e{: may be estimated as 

e{: = * { a b ,  + I3 a b b  f3} - 2;:" I 3  (37) 
From the arguments provided previously, it follows 
that in the asymptotic/noise case, det (Re {e{:}) >, 0 
when U, # us regardless of the value of AY, while 
det (Re {e{:}) = 0 when U, = us. This observation 
prompts the scheme for estimating the bisector angle us 
described below. 

Consider U, in the definition of S, in eqn. 33 to be a 
variable quantity. To emphasise such, we will alternative- 
ly denote s, as s,(~,). This dictates that abb and cl: 
computed according to eqns. 32 and 37, respectively, are 
functions of U as well and should be alternatively 
denoted as a',,(u,) and e{:(u,), respectively. Given e{&), the bisector angle may be estimated as that 
value of U, in the vicinity of broadside for which 
det (Re { ~ { ~ ( U J } )  achieves its minimum value. Note that 
in terms of the spatially smoothed element space corre- 
lation matrix a,, constructed according to eqn. 31, 
Re {R{,b(u,)} may be expressed as 

Re {'bb('c)} = Re {sF(uc)axx sL('c)} 

= t ~ s ~ ( u , ) ~ x , ~ L ( u , )  

= sF(~,)~::s,(u,) (38) 

+ sZ(uc)rN I N  a:; b rNS?(Uc)}  

where a:: is the forward-backward-averaged element 
space sample correlation matrix [12] 

a:: = ${a,, + .?Nk:x&} (39) 
Hence, the bisector angle estimation procedure described 
above may be formulated as 

minimise det (+{$'(uJei: SL(u,) 

+ I 3  sF(%)e:: s L ( U J r 3 H  (40) 
where e:: = - 6i lN and 8: is an estimate of the 
noise power. That is, the bisector angle estimate is that 
value of U, which minimises the objective function in eqn. 
40. Given an upper and a lower limit on the estimate of 
the bisector angle, a 1-D search procedure such as golden 
section search may be used to determine the minimising 
value of U,, Note that 5: may be estimated as the smal- 
lest eigenvalue of Rbb(u,) (or Re {~,,(u,)}) for any value of 
U, in the vicinity of broadside. 

The bisector angle estimation procedure described by 
eqn. 40 is not a closed-form procedure but requires a 1-D 
search. However, a simple closed-form estimation pro- 
cedure may be obtained by factoring s,(~,) similar to 
eqn. 22. Exploitation of this factorisation allows us to 
formulate the search for minimising U, in eqn. 40 in terms 
of finding I ,  = ej"". as the root of a quartic equation. The 
appropriate development is provided below. 
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Note that SL(uc) may be factored similar to eqn. 22 as 

~ A U , )  = HL(u,)EL(uJ (41) 
J(L) 

where H,(u,) and E,@,) are defined by eqns. 23 and 24, 
respectively, with M replaced by L and the dependence 
on U, explicitly indicated. Specifically, HL(u,) is the L x 3 
banded Toeplitz matrix 

hL(%) 0 
H L ( U J  = [ 0" 0" ] (42) 

W(u,) = [ 0" 
1 0" ] 

[: : 3 

hL(U,)  

where hL(u,) is the (L - 2) x 1 coefficient vector for the 
common roots polynomial defined similar to h(z) in eqn. 
18 but with M replaced by L and the dependence on U, 
explicitly indicated. Also, note that E,(u,) may be fac- 
tored as 

E L ( U J  = W(u,)E,(O) (43) 

where EL(0) is defined by eqn. 24 with M replaced by L 
and U, = 0 and 

0 

0 

or 

W(A,) = 0 1 0 where A, = e (44) 

Substitution of .!?,(U,) = [l/~(L)]H,(u,)W(u,)E,(O) in the 
objective function in eqn. 40 yields, after some manipula- 
tion and dropping the factor [l/J(L)], 

det O{SF(~,)~if:s,(u,) + & W4,)e~:*st(~Jr~)) 
= det (Ef(0)  Re { W*(u,)HF(u,) 

x H,(u,)WuJIE,(O)) 

x e:: HL(UC)W(4J) det (EL(0)) 

= det (EF(0)) det (Re { W*(u,)HF(u,) 

(45) 

where we have invoked the following properties: 
SF(u,)C:: S,(u,) is real-valued, r3 E,(O) = EZ(O), and 
det (AB)  = det ( A )  det (B) if A and B are both square. 
Since det (E,(O)) does not depend on U,, we may refor- 
mulate the optimisation problem in eqn. 40 as 

minimise det (Re { W*(uc)H?(uc)e:: HL(u,) W(u,)}) (46) 

This does not simplify matters very much owing to the U, 
dependence in H,(u,). We now argue that this depen- 
dence is inconsequential as long as U, is in the vicinity of 
the actual arrival angles such that we may replace HL(u,) 
in eqn. 46 by HL(0). This assumes arrivals near broadside, 
as would be the case in an actual low-angle radar track- 
ing scenario. This simplification facilitates simple closed- 
form solution for U,. The supporting argument is as 
follows. 

Consider the asymptotic/noiseless form of the objec- 
tive function in eqn. 46. To this end, note that the 
asymptotic/noiseless form of e:: may be expressed as 

e:: = A ,  Re {a , }AF (47) 
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where A, = [aL(ul) ! a,(u2)]. Substitution of eqn. 47 in 
eqn. 46 yields, after some manipulation, 

det (Re { W*(u,)H~(u,)c~:H,(u,)W(u,)})  
= det (Re { W*(u,)A3 G(u,) Re {fi,}C*(u,)A 'j W(u,)}) 

(48) 
where A, = [a3(ul) ! a3(u2)] and C(u,) is the 2 x 2 diago- 
nal matrix 

(49) 

The expression on the RHS of eqn. 48 follows from the 
banded Toeplitz structure of HL(uC) similar to the result 
in eqn. 25. Recall that what we desire is that the determi- 
nant in eqn. 48 be zero when U, is equal to the bisector 
angle, uE = {ul + u2}/2, and strictly positive (nonzero) 
otherwise. For this to be the case, we need only require in 
eqn. 48 that G(uJ in eqn. 49 be of full rank equal to two. 
Assuming the arrival angles to be in the vicinity of 
broadside (U, = 0), this requirement will certainly be 
satisfied if we replace HL(uc) by H,(O) in eqn. 48. 

To substantiate this claim and provide insight into the 
estimation scheme, note that 

e-irr(ui -U<) e- j f f (uz-u , l  

p("l-*) p,("l-",) 

When U, = U, = {U' + u2}/2, { W*(uB)!3}4 
from which we deduce, exploiting the 'tnck' 7 r(u,)AS,  

- 12,  

Re { W*(uE)A3 c(o) Re 'j W(uB)}  

= W*(uL?)A3f{G(o)  Re {Bss )G*(o )  

which has rank 2 and determinant zero as required as 
long as G(0) is of full rank. When U, # U,, 
{ W*(uE)A 3 } r 2  # W(uE)A: such that Re { W*(u,)A C(0) 
Re {~ , , }C*(O)A~W(u , ) }  is of full rank and, as a conse- 
quence, has a strictly positive (nonzero) determinant. This 
demonstrates the efficacy of the estimation procedure and 
substantiates the claim that this efficacy is not altered by 
replacing HL(u,) by H,(O) in the objective function in eqn. 
46. 

Based on these observations, the bisector angle esti- 
mate ic, is that U, satisfying 

minimise det (Re { W*(u,)c{l W(u,)}) (52) 

where cif," = HF(O))C$H,(O). Note that since S,(O) = 
(l/JL)H,(O)E,(O), it follows that H,(O) = 
(JL)S,(O)E, '(0). Hence 

where abb is constructed according to eqn. 32 with S, = 
S,(O) and A::., is the smallest eigenvalue of Rbb. In the 
Appendix it is shown that the solution to the opti- 
misation problem in eqn. 52 may be obtained by solving 
for 1, = &2"" as a root of the quartic polynomial 

p(1) = -2pg - p:1+ p113 + 2p014 = 0 (54) 

IEE PROCEEDINGS-F, Vol. 138, No. 6, DECEMBER I991 

where po and p1 are functions of the components of e{:, 
denoted 

(55) 

(56) 

i, j = 1, 2, 3 :  

P O  = (c{j):2(ci(hb)13 - (clL)22(e{L):3 

P i  = 2 I(c{,"hb)~z 12(cli)i3 - 2(c{L)11(c%2 
It is easily shown that at least two of the roots of p(1) in 
eqn. 54 lie on the unit circle. Thus A, = is that root 
of p(1) lying on the unit circle which minimises the objec- 
tive function in eqn. 52. A summary of the bisector angle 
estimation procedure is delineated below. 

3.1 Algorithmic summary of bisector angle estimator 
1 Construct abb according to eqns. 30-33 with S, = 

S.(O). U\ I 

2 Compute e." as the smallest eigenvalue of and 

3 Form A{: = (Ef(O))-' Re {cL!}(E,(0))-l, where 
form )CL: = (1  2){Rbb + I, Rbbr3} - 1:" I ~ .  

E,(O) is defined by eqn. 24 with M = L and U, = 0. 
-4 Root p(2) = - 2pg - p:,? + p1A3 + 2p, R4 = 0, where 

p o  and pl are defined in eqns. 55 and 56. 
5 Then fiE = (l/jn) In (&), where 2, is that root 

of p(1) having unity magnitude for which 
det (Re { W*(A,)c@ W(A,)}) is a minimum, where W(1,) is 
defined in eqn. 44. 

3.2 Alternative algorithm 
With the bisector angle estimate obtained from the pro- 
cedure above, one may estimate the arrival angle of the 
direct path signal via the symmetric version of the 
BDML algorithm outlined previously with U, equal to 
the bisector angle estimate. As indicated previously, this 
mode of operation makes use of the full array aperture 
for maximum resolving power. No spatial smoothing is 
required since the symmetric form of BDML does not 
exhibit any breakdown phenomenon with respect to the 
relative phase difference, AY. However, this mode of 
operation requires that we reform three beams with new 
point angles after the bisector angle has been estimated 
using beams formed with S,(O). As an alternative, we 
briefly develop an equivalent procedure which works 
with abb formed according to eqns. 30-33 with S, = 
S,(O). This method avoids reforming beams or computing 
any new beamspace sample correlation matrices, but has 
a reduced resolution capability owing to the smaller 
aperture of the subarray. 

As a first step, we show that is possible to construct a 
Householder transformation matrix M satisfying 
Ma3(ul) = a3(u2) that only depends on the bisector angle 
uE . M may be expressed as M = I3 - 2wwH, where w is a 
vector having unity magnitude proportional to a3(ul) 
- u3(u2). Note that M is unitary and that ( 1  a3(ul)l12 = 
jja3(u2))j2. Defining 6u such that ul  = uE + 6u and u2 = 
us - 6u, 

e - j n ( u s + d u )  e-jn(uB-du) 

- p3('2) = [ ] - [ ] 
e j , ( " B  + 6") &.%("E - 6") 

= 2j sin (6u) [-;;I (57) 

Thus w = [1/\/(2)][-e-jffUE, 0, &j"""]', which fortuitously 
only depends on U, as stated previously. It is easily veri- 
fied that M = I3 - 2ww" satisfies Ma,(ul) = a,(u2) and 

For the remainder of this development, S,(O), HL(0) 
and E,(O) will be simply be denoted as S,, H, and 

= a3(u1). 
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E L ,  respectively. Recall that bs(u) = SF aL(u) = [ l/J(L)] 
x E; HF aL(u) = [ l/J(L)](L: aL- ,(u))EFa3(u). Hence 

(EF)-'b$(u) a a3(u), where a denotes 'proportional 
to'. It follows that 

M(E%'bs(u~) a Ma3(U1) = %(uz) (EF)-'b3(U2) (58) 
Hence 

{EFM(e!-'}b,(u,) a bs(u2) 

{EFM(G!-l}b,(u,) a b,(u,) (59) 

and 

Let f = EFM(E?)-', a 3 x 3 matrix. Note that ff = 
M 2  = I,. Also, f = E: r3 7, ~ 7 ,  r3(EF)-I = 
E;M*(E;)-l = f*, where we have exploited the conju- 
gate centrosymmetry of the columns of E,. This observa- 
tion implies that f is real-valued. Observing eqn. 59, it 
follows that for the case where U, = 0 # u s ,  f =  
EFM(EF)-l plays the same role that plays for the 
case U, = us,  I.e. fb3(ul) cc b,(u$ and %,(U,) a b,(u,). 
Note, however, that although is equal to its own 
inverse, it is not symmetric. Thus ff' # 13.  This is in 
contrast to the case with r3, which is both symmetric and 
equal to its own inverse. 

Thus, in the case of U, = 0 # ua. U is comouted as a 
generalised eigenvector of the matrix pencil -{Re {I?:!}, 
Q"}, where db", = {dbb + fdbb f 7 / 2  and Q b  = 
I + f p } / 2 .  It is easily verified that dii fT = Rb", and 

two of the generalised eigenvectors of {Re {db",}, Q*b} 
satisfv f'u = U while the third satisfies f T u  = -U. The 

Q tb f T -  - Qtb. As a consequence, it is easily shown that 

. ...- 

desirdd U is that satisfying f T u  = U associated with the 
smaller generalised eigenvalue. Thus, the arrival angles of 
the direct and specular path signals may be alternatively 
estimated via the following algorithm: 

0 Given CB. Also, d employed in the bisector angle 
estimation scheme, i.e. f b b  constructed according to eqns. 
3C33 with S, = S,(O). -. . 

1 With iB, form M = t3 - ~ w w " ,  where w = 
[1/J(2)][ - e - j z G B ,  0, $no8lT. 

2 With f =  EfM(EF)- ' ,  where EL is defined by 
eqn. 24 with M = L and U =0,  form db", = {Rbb 
+ f& ~ ) / 2  and ~ t b  = ( I  + i#f)/2. 

3 Compute U = [U,, u2,'u3]' asthat generalised eigen- 
vector of {Re {db",}, Qtb} satisfying f'u = U associated 
with the smaller generalised eigenvalue. 

roots of q(z) = qo + q,z + 4: z2, where 
4 - - eJnUl and z2 = &jnu2 are estimated as the two 

1 4o = B n u , { u l & ( x / L )  - + U 3 e - j ( n / L )  

41 = -2(u1 + UJ cos (E) + 2u, cos ($) 
4 Computer simulations 

Computer simulations were conducted to assess the per- 
formance of symmetric BDML employing the bisector 
angle estimation scheme developed in Section 3. The 
combined scheme of bisector angle estimation followed 
symmetric BDML is referred to as symmetrised BDML 
or simply S-BDML. The linear array employed was 
composed of M = 15 identical elements uniformly spaced 
by a half-wavelength such that the corresponding stan- 
dard 3 dB beamwidth at broadside is roughly sin-'(2/ 
16) = 7.16". The following parameters were common to 
all of the simulation runs: direct path angle = 2", spe- 
cular path angle O2 = -lo, p = 0.9. AY was varied 
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between 0" and 180" in steps of 22.5". Note that the 
angular separation between the direct and specular path 
signals, 3", is roughly four-tenths of a beamwidth and 
that the bisector angle is 0.5". Subarrays composed of 
L = 11 contiguous elements were employed for spatial 
smoothing purposes in the estimation of the bisector 
angle. The noise added to the sensor signals was Gauss- 
ian, spatially white, and uncorrelated with the received 
signal echoes. Finally, for each algorithm sample means 
(SMEANs) and sample standard deviations (STDDEVs) 
of the respective estimates of 01, 8, or Os were computed 
from the results of 100 independent trials. 

The simulation results presented in Figs. 2 and 3 
compare the performance of nonsymmetric BDML with 
that of S-BDML given N = 5 snapshots for various com- 
binations of direct path SNR and AY. The breakdown of 
nonsymmetric BDML in the respective cases of AY = 0" 
and AY = 180" is evident in the results plotted in Fig. 2. 
Nonsymmetric BDML simply does not provide reliable 
angle estimates for either of these two values of AY 
regardless of the SNR. The substantial improvement in 
performance achieved with S-BDML in the case of 
AY = 0" is exhibited in Fig. 2. The tradeoff for this 
improvement, of course, is the extra computation 
involved in computing the bisector angle estimate. The 
performance improvement in the case of AY = 90" is 
rather modest as this value of AY is that for which non- 
symmetric BDML performs best. Although S-BDML did 
not perform much better than nonsymmetric BDML in 
the case of AY = 180" for SNRs below 15 dB, reliable 
estimates were obtained with an SNR of 20 dB. 

Fig. 4 displays the performance of the bisector angle 
estimator employed in S-BDML for the simulations 
described above. A significant bias, roughly 0.05", is 
observed with AY = 0" even at the relatively high SNR 
of 20 dB. Interestingly, the case of AY = 180" gave rise to 
the smallest bias in the bisector angle estimate for all 
SNR values except 0 dB. On the other hand, Fig. 3 indi- 
cates that the STDDEV of the corresponding S-BDML 
estimates of 8' and 8, were smallest in the case of 
AY = 0". In fact, although the respective Cramer-Rao 
lower bound (CRLB) is not plotted in Fig. 3c, the 
STDDEV of the S-BDML estimates of 8, for AY = 0" is 
significantly below the CRLB. The same is true with 
regard to the S-BDML estimates of 8,. This observation 
is, of course, not contradictory since the CRLB only 
holds for unbiased estimators. Furthermore, this observa- 
tion substantiates the conjecture made in [5] that a 
biased estimator must exist for which the performance in 
the case of AY = 0" is significantly better than that dic- 
tated by the CRLB. 

The second set of simulation results compares the per- 
formance and computational load of S-BDML with that 
of the improved three subaperture (3-APE) method of [ 6 ]  
and the IQML method of [13]. The improved 3-APE 
method incorporates the practical constraint that the 
amplitude ratio p is less than one. The IQML algorithm 
is a computationally efficient implementation of the 
element space based ML estimation scheme. All simula- 
tion parameters were the same as in the first set of simu- 
lations discussed above except that the direct path SNR 
was fixed at 20 dB and each of the algorithms was exe- 
cuted given only a single snapshot, i.e. N = I. SMEANs 
computed from estimates of the direct and specular path 
angles are plotted in Figs. 5a and 56, respectively. The 
corresponding STDDEVs are plotted in Figs. 5c and 5d 
along with the respective CRLBs. The CRLBs were com- 
puted based on formulas provided in [14]. 
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The most important observation gleaned from Fig. 5 is 
that S-BDML significantly outperforms both 3-APE and 
IQML in the case of AY = o", and also in the case of 
AY = 22.5". For example in Fig. 5d it is observed that 
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Fig. 2 Performance of thr  B D M L  estimutor in a nonsymmetrlc multr- 
path scenario forfive different direct path S N R  values 
Target angle 0, = 2"; specular path angle 0 ,  = ~ 1 " ;  M = 15: N = 5 and p = 0.9 
Sample means and sample standard deviations were computed from 100 tndepen- 
dent rials 
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d Specular path sample standard deviations 
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Fig. 3 Performance of the symmetrlsed B D M L  (S-BDML) estimator 
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Fig. 2 
OOdB: x 5dB:+ lOdB.Ol5dB;AZOdB 
U Direct path sample means 
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c Direct path sample standard deviations 
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the STDDEV of the estimates of the specular path signal 
obtained from S-BDML for AY = 0" is approximately 
two orders of magnitude less than that obtained with 
either 3-APE or IQML. Observing the corresponding 
SMEANs plotted in Fig. 5b for AY = O", it is apparent 
that 3-APE and IQML simply provide unreliable esti- 
mates of the specular path angle for small values of AY. 

0.8[ 

It should be noted, though, that the angle of interest is 
actually that of the direct path signal, The performance of 
3-APE is much better in this regard; the STDDEV of the 
3-APE estimates of the direct path angle for AY = 0" is 
below that dictated by the CRLB. The corresponding 
bias, however, is rather high, approximately equal to 
-0.6". On the other hand, it is observed that the STDDEV 
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VI 45 9 0  135 180 

A Y *  degrees 
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Fig. 4 Performance of the bisector anale estimator In  the .same nunsymmetric multipath scenario described in the caption tu Fig. 2 
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b Sample standard deviations 
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Fig. 5 
Target angle 0, = 2 ,  specular path angle 8, = ~ 1 " .  M = 15: N = 1; S N R  = 20 dB for direct path; p = 0.9. Sample mean and sample standard deviation were computed 
from 100 independent trials 
0 3-APE; x S-BDML: 0 IQML 
a Direct path sample means 
b Specular path sample means 
c Direcl path sample standard deviations 
d Specular path sample standard deviations 

Comparison ufthe performance of S-BDML with that oJ3-APE and IQML in a nonsymmetric multipath scenario 
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of the S-BDML estimates of the direct path angle for 
A Y  = 0" is below the CRLB by roughly an order of mag- 
nitude, while the bias is rather small, less than a tenth of 
a degree! IQML provides totally unreliable estimates of 
both angles in the case of A Y  = 0". On the other hand, 
IQML significantly outperforms both S-BDML and 
3-APE in the case of A Y  = 180", achieving the CRLB. 

To assess the tradeoff between performance and com- 
putational load among the three algorithms, the average 
number of floating point operations (flops) per execution 
was examined. This number was determined using the 
PRO-MATAB software package for each of the three 
algorithms under the conditions specified above; it did 
not include the initial computation involved in setting up 
the data. The numbers are: 3.8 x lo3 average number of 
flops per execution for 3-APE, 7.4 x lo4 average number 
of flops per execution for S-BDML, and 6.5 x lo5 
average number of flops per execution for IQML. The 
respective numbers cited for both IQML and 3-APE are 
the respective averages obtained over all 900 trial runs 
(100 independent trials for each of nine different phase 
differences). In contrast to S-BDML, each of these two 
methods is iterative in nature, i.e. not closed-form. The 
actual number of flops for a given execution can vary 
rather significantly depending on the SNR and the value 
of A Y .  Notwithstanding, note that the average computa- 
tional load of 3-APE is roughly one-twentieth that of 
S-BDML and two orders of magnitude lower than that 
of IQML. The increased computational load of S-BDML 
relative to 3-APE is a tradeoff for the significant improve- 
ment in performance observed at the smaller values of 
A Y .  The algorithms perform similarly for A Y  > 45", 
although the STDDEV curve for S-BDML was always 
lower than that for 3-APE. Finally, note that the compu- 
tational load of S-BDML is roughly an order of magni- 
tude lower than that of IQML. 

5 Conclusions 

In symmetrised BDML (S-BDML) the pointing angle of 
the centre beam is set equal to the bisector angle esti- 
mate, which is determined via a simple closed-form pro- 
cedure. This facilitates a 'special' forward-backward 
average in beamspace which averts the breakdown of 
nonsymmetric BDML in the cases of A Y  = 0" and 
A Y  = 180". Simulations indicate that in the case of 
A Y  = 0" the bisector angle estimator is biased but that 
the corresponding performance of S-BDML is signifi- 
cantly better than the CRLB. Simulations also indicate 
that S-BDML significantly outperforms improved 3-APE 
for values of A Y  less than 22.5". The major difference in 
computation between the two methods is in the initial 
steps: in 3-APE a beam is formed at each of three sub- 
arrays of M/3 elements involving 3(M/3) = M complex 
multiplications, while in S-BDML three beams are 
formed on the entire array involving 3M complex multi- 
plications. Simulations also indicate that S-BDML sub- 
stantially outperforms IQML for values of A Y  less than 
22.5", while the opposite is true at A Y  = 180". The per- 
formance of S-BDML in the case of A Y  = 180" may be 
improved by employing the modified version developed 
at the end of Section 3, which works with a modified 
forward-backward average of the spatially smoothed 
beamspace sample correlation matrix employed in the 
bisector angle estimation scheme. However, the per- 
formance of this version of S-BDML in the case of 
A Y  = 0" is worse than that in which beams are reformed 
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using the entire array after bisector angle estimation. 
These observations, combined with the fact that nonsym- 
metric BDML performs comparably to S-BDML in the 
case of A Y  = 90", motivate the development of a scheme 
for estimating A Y  at the outset, which would then dictate 
that version of BDML yielding the best combination of 
performance and computational load. Such an estimation 
scheme is currently under development. 
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8 AppendLx: converting det (Re 

In this appendix we show that the cost function in eqn. 
52 can be expressed in the form of a fourth-order poly- 
nomial and that the minimising ir, can be determined by 
rooting a quartic equation. We begin the derivation by 
substituting eqn. 44 into the matrix W*(uc)f?iL W(u,) in 
eqn. 52. Letting c i j  denote the ijth component of cl:, i.e. 

{W*(u,)Cil ,b(u,)})  into a polynomial 
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Differentiating eqn. 62 with respect to U and setting to 
zero, we get 

-2p,* e-4jnuc - p:e-2jw 

+ ple2jKUc + 2p0 e4jnuc = 0 (63) 

This suggests that the solution for U, can be obtained by 
solving the following quartic equation: 

-2p,*1-2-p;r1 + p 1 1 + 2 p 0 1 2 = 0  (64) 

for a unit root I , ,  where I, = e2jnuc. 
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