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AMERICAN MATHEMATICAL SOCIETY
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A GLOBAL PINCHING THEOREM
FOR COMPACT MINIMAL SURFACES IN S°

YI-JUNG HSU

(Communicated by Jonathan M. Rosenberg)

ABSTRACT. Let M be a compact minimally immersed surface in the unit sphere
53 ,and let S denote the square of the length of the second fundamental form
of M . We prove that if ||S]|, < 2v/2m ,then M is either the equatorial sphere
or the Clifford torus.

Let M be a compact minimally immersed hypersurface in the unit sphere
S™*! Denote by S the square of the length of the second fundamental form of
M . Tt is well known that if 0 < .S < n, then M is either the equatorial sphere
or a Clifford torus [1]. Recently, C. L. Shen [4, Theorem 2] proved that if M
is a compact embedded minimal surface of nonnegative Gauss curvature in the
unit sphere S° with 1SN, < 1/(69124/2n(g + 1)), then M is the equatorial
sphere, where g denotes the genus of M. The purpose of this note is to
improve this theorem and obtain the best constant. The following is our main
result:

Theorem. Let M be a compact minimally immersed surface in the unit sphere
S>. Then ||S|, > 2+/2gn. The equality sign holds if and only if M is either
the equatorial sphere or the Clifford torus. In particular, if ||S||, < 2V2n, then
M is either the equatorial sphere or the Clifford torus.

1. NOTATIONS AND AUXILIARY RESULTS

Let M be a compact connected minimally immersed surface in the unit
sphere S°. Following the notations of [1], denote by h = (h, ;) the second

fundamental form of M, and by S the square of the length of A, S =73 hfj .
We need the following auxiliary results.

Lemmal[l]. JAS=S52-S)+% hl.zjk , where h, ik denote the covariant deriva-
tives of h; T

Received by the editors April 11, 1990.
1980 Mathematics Subject Classification (1985 Revision). Primary 53C42; Secondary 53C40.

© 1991 American Mathematical Society
0002-9939/91 $1.00 + $.25 per page

1041

This content downloaded from 140.113.38.11 on Mon, 28 Apr 2014 15:05:06 PM
All use subject to JISTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

1042 YI-JUNG HSU

Lemma 2 [3]. The set of all zeros of S is either the whole space M or at most
a finite set of points.

Lemma 3. |VS|’ =2SY k7, .

From Lemmas 1 and 3, we see that if S is constant, then either S = 0 or
S=2.

Lemmad. If g > 1, then

where p,, p,, ..., D, constitute all the zeros of S and S, denotes the derivative
of S on 9Be(p,) in the radial direction from p; .

Proof. At the points where S is positive, by Lemma 3, we get

(1) AlogS =2(2-79).

Integrating (1) over Me = M\ U',;l Be(p;), we get from the Gauss equation
(2) 2K=2-35,

where K is the Gauss curvature of M , the assertion by Stokes’s theorem and
the theorem of Gauss-Bonnet. O

S T -1 S 2-S 2
/M\/;+(Z—sm \/—2+S)—2 2(g+)n".

Proof. Regard M as an immersed surface of R*. Then the total absolute
curvature of M , in the sense of [2], is given by

L4l

. =1 S 2-8
= /M2\/2S+ (n—4sm m) —5 -

Lemma 5.

By a well-known inequality of Chern-Lashof [2], we have

/[ ( _ sin” \/;_i_‘;)z_z_s T (by+ b, + b)),

where b; denotes the ith Betti number relative to the real field, for i=0,1, 2.
Since M is of two-dimensional, b, =1, b, =2g,and b,=1. O
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2. PROOF OF THEOREM

We may assume that S is positive except possibly at a finite set of points
(Lemma 2). By using (1) and Lemmas 3 and 4, we get

1,2 S T . -1 S 2-8

/M”Z”UFVT(Z‘S“’ \/z+—s>—z—
1 1 (= . -1 S 2
=/M[\/—2—(\/5+— \/S)_E(Z_Sln Vﬁ)](z )+ huk

lim n__t __lfz_ sin”™' IVS|2
£—0 V2(V2+VS) 2\4 8S
= lim l\7 Iz _ sin”" o) - ! |VS|2
T =0 a2 |2\ 4 2+S V2(V2 +VS) 8S
—lim 1 ! _iz_ sin~ o) 5
e—0 3M6 \/— \/—+ \/_) 2\4 2 +S S
1 1 |VS|
=—-4-m= —1+11m = —
(-mme=D+ing ., (4 2+8)(V2+ \/§)Z> 28

1 1 2
~@-mnle -~ +/M (Z T2+ S)(V2+ \/3)2) i
> - (4-mn(g-1),

where the equality sign holds if and only if S is constant. According to Lemma
5, we get

(3)
A+%/Mhizjk2—(4—n)n(g—1)+/M\/§+ (Z——sin_l /%)#

>2gn’ —4n(g - 1),
where A denotes the area of M . By combining (2) with the inequality (3), it
follows that
/ 28 + b}y = 44+ 167(g — 1)+/ h > 8gm’.
M M

The desired inequality now follows from Lemma 1.
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