

A Global Pinching Theorem for Compact Minimal Surfaces in S³ Author(s): Yi-Jung Hsu Source: *Proceedings of the American Mathematical Society*, Vol. 113, No. 4 (Dec., 1991), pp. 1041-1044 Published by: <u>American Mathematical Society</u> Stable URL: <u>http://www.jstor.org/stable/2048782</u> Accessed: 28/04/2014 15:05

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

http://www.jstor.org

A GLOBAL PINCHING THEOREM FOR COMPACT MINIMAL SURFACES IN S^3

YI-JUNG HSU

(Communicated by Jonathan M. Rosenberg)

ABSTRACT. Let M be a compact minimally immersed surface in the unit sphere S^3 , and let S denote the square of the length of the second fundamental form of M. We prove that if $||S||_2 \le 2\sqrt{2}\pi$, then M is either the equatorial sphere or the Clifford torus.

Let M be a compact minimally immersed hypersurface in the unit sphere S^{n+1} . Denote by S the square of the length of the second fundamental form of M. It is well known that if $0 \le S \le n$, then M is either the equatorial sphere or a Clifford torus [1]. Recently, C. L. Shen [4, Theorem 2] proved that if M is a compact embedded minimal surface of nonnegative Gauss curvature in the unit sphere S^3 with $||S||_2 < 1/(6912\sqrt{2\pi(g+1)})$, then M is the equatorial sphere, where g denotes the genus of M. The purpose of this note is to improve this theorem and obtain the best constant. The following is our main result:

Theorem. Let M be a compact minimally immersed surface in the unit sphere S^3 . Then $||S||_2 \ge 2\sqrt{2g\pi}$. The equality sign holds if and only if M is either the equatorial sphere or the Clifford torus. In particular, if $||S||_2 \le 2\sqrt{2\pi}$, then M is either the equatorial sphere or the Clifford torus.

1. NOTATIONS AND AUXILIARY RESULTS

Let M be a compact connected minimally immersed surface in the unit sphere S^3 . Following the notations of [1], denote by $h = (h_{ij})$ the second fundamental form of M, and by S the square of the length of h, $S = \sum h_{ij}^2$. We need the following auxiliary results.

Lemma 1 [1]. $\frac{1}{2}\Delta S = S(2-S) + \sum h_{ijk}^2$, where h_{ijk} denote the covariant derivatives of h_{ij} .

©1991 American Mathematical Society 0002-9939/91 \$1.00 + \$.25 per page

1041

Received by the editors April 11, 1990.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 53C42; Secondary 53C40.

Lemma 2 [3]. The set of all zeros of S is either the whole space M or at most a finite set of points.

Lemma 3. $|\nabla S|^2 = 2S \sum h_{ijk}^2$.

From Lemmas 1 and 3, we see that if S is constant, then either $S \equiv 0$ or $S \equiv 2$.

Lemma 4. If $g \ge 1$, then

$$\lim_{\varepsilon \to 0} \sum_{i=1}^{k} \int_{\partial B\varepsilon(p_i)} \frac{S_r}{S} = 16\pi(g-1)$$

where p_1, p_2, \ldots, p_k constitute all the zeros of S and S_r denotes the derivative of S on $\partial B\varepsilon(p_i)$ in the radial direction from p_i .

Proof. At the points where S is positive, by Lemma 3, we get

(1)
$$\Delta \log S = 2(2-S).$$

Integrating (1) over $M\varepsilon = M \setminus \bigcup_{i=1}^{k} B\varepsilon(p_i)$, we get from the Gauss equation

$$(2) 2K = 2 - S,$$

where K is the Gauss curvature of M, the assertion by Stokes's theorem and the theorem of Gauss-Bonnet. \Box

Lemma 5.

$$\int_{M} \sqrt{\frac{S}{2}} + \left(\frac{\pi}{4} - \sin^{-1}\sqrt{\frac{S}{2+S}}\right) \frac{2-S}{2} \ge (g+1)\pi^{2}.$$

Proof. Regard M as an immersed surface of \mathbb{R}^4 . Then the total absolute curvature of M, in the sense of [2], is given by

$$\int_{M} \int_{0}^{2\pi} \left| \left(\sin \theta \right)^{2} - \frac{S}{2} \left(\cos \theta \right)^{2} \right| d\theta dV$$
$$= \int_{M} 2\sqrt{2S} + \left(\pi - 4 \sin^{-1} \sqrt{\frac{S}{2+S}} \right) \frac{2-S}{2}$$

By a well-known inequality of Chern-Lashof [2], we have

$$\int_{M} \sqrt{\frac{S}{2}} + \left(\frac{\pi}{4} - \sin^{-1}\sqrt{\frac{S}{2+S}}\right) \frac{2-S}{2} \ge \frac{\pi^{2}}{2}(b_{0} + b_{1} + b_{2}),$$

where b_i denotes the *i*th Betti number relative to the real field, for i = 0, 1, 2. Since *M* is of two-dimensional, $b_0 = 1$, $b_1 = 2g$, and $b_2 = 1$. \Box

1042

2. Proof of theorem

We may assume that S is positive except possibly at a finite set of points (Lemma 2). By using (1) and Lemmas 3 and 4, we get

$$\begin{split} &\int_{M} 1 + \frac{1}{4} h_{ijk}^{2} - \sqrt{\frac{S}{2}} - \left(\frac{\pi}{4} - \sin^{-1}\sqrt{\frac{S}{2+S}}\right) \frac{2-S}{2} \\ &= \int_{M} \left[\frac{1}{\sqrt{2}(\sqrt{2} + \sqrt{S})} - \frac{1}{2}\left(\frac{\pi}{4} - \sin^{-1}\sqrt{\frac{S}{2+S}}\right)\right] (2-S) + \frac{1}{4} h_{ijk}^{2} \\ &= \lim_{\varepsilon \to 0} \int_{M\varepsilon} \frac{1}{2} \left[\frac{1}{\sqrt{2}(\sqrt{2} + \sqrt{S})} - \frac{1}{2}\left(\frac{\pi}{4} - \sin^{-1}\sqrt{\frac{S}{2+S}}\right)\right] \Delta \log S + \frac{|\nabla S|^{2}}{8S} \\ &= \lim_{\varepsilon \to 0} \int_{M\varepsilon} \frac{1}{2} \nabla \left[\frac{1}{2}\left(\frac{\pi}{4} - \sin^{-1}\sqrt{\frac{S}{2+S}}\right) - \frac{1}{\sqrt{2}(\sqrt{2} + \sqrt{S})}\right] \nabla \log S + \frac{|\nabla S|^{2}}{8S} \\ &- \lim_{\varepsilon \to 0} \int_{\partial M\varepsilon} \frac{1}{2} \left[\frac{1}{\sqrt{2}(\sqrt{2} + \sqrt{S})} - \frac{1}{2}\left(\frac{\pi}{4} - \sin^{-1}\sqrt{\frac{S}{2+S}}\right)\right] \frac{S_{r}}{S} \\ &= -(4-\pi)\pi(g-1) + \lim_{\varepsilon \to 0} \int_{M\varepsilon} \left(\frac{1}{4} - \frac{1}{(2+S)(\sqrt{2} + \sqrt{S})^{2}}\right) \frac{|\nabla S|^{2}}{2S} \\ &= -(4-\pi)\pi(g-1) + \int_{M} \left(\frac{1}{4} - \frac{1}{(2+S)(\sqrt{2} + \sqrt{S})^{2}}\right) h_{ijk}^{2} \\ &\geq -(4-\pi)\pi(g-1), \end{split}$$

where the equality sign holds if and only if S is constant. According to Lemma 5, we get

(3)

$$A + \frac{1}{4} \int_{M} h_{ijk}^{2} \ge -(4 - \pi)\pi(g - 1) + \int_{M} \sqrt{\frac{S}{2}} + \left(\frac{\pi}{4} - \sin^{-1}\sqrt{\frac{S}{2 + S}}\right) \frac{2 - S}{2}$$
$$\ge 2g\pi^{2} - 4\pi(g - 1),$$

where A denotes the area of M. By combining (2) with the inequality (3), it follows that

$$\int_{M} 2S + h_{ijk}^{2} = 4A + 16\pi(g-1) + \int_{M} h_{ijk}^{2} \ge 8g\pi^{2}.$$

The desired inequality now follows from Lemma 1.

References

- 1. S. S. Chern, M. Do Carmo, and S. Kobayashi, *Minimal submanifolds of a sphere with second fundamental form of constant length*, Functional Analysis and Related Fields, Springer-Verlag, 1970, pp. 59-75.
- 2. S. S. Chern and R. K. Lashof, On the total curvature of immersed manifolds. II, Michigan Math. J. 5 (1958), 5-12.

YI-JUNG HSU

- 3. H. B. Lawson, Complete minimal surfaces in S^3 , Ann. of Math. 92 (1970), 335-374.
- 4. C. L. Shen, A global pinching theorem of minimal hypersurfaces in the sphere, Proc. Amer. Math. Soc. 105 (1989), 192–198.

Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan, Republic of China