

A Global Pinching Theorem for Compact Minimal Surfaces in S3 Author(s): Yi-Jung Hsu Source: Proceedings of the American Mathematical Society, Vol. 113, No. 4 (Dec., 1991), pp. 1041-1044 Published by: [American Mathematical Society](http://www.jstor.org/action/showPublisher?publisherCode=ams) Stable URL: [http://www.jstor.org/stable/2048782](http://www.jstor.org/stable/2048782?origin=JSTOR-pdf) Accessed: 28/04/2014 15:05

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at <http://www.jstor.org/page/info/about/policies/terms.jsp>

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to *Proceedings of the American Mathematical Society.*

http://www.jstor.org

A GLOBAL PINCHING THEOREM FOR COMPACT MINIMAL SURFACES IN S^3

YI-JUNG HSU

(Communicated by Jonathan M. Rosenberg)

ABSTRACT. Let M be a compact minimally immersed surface in the unit sphere S3 ,and let S denote the square of the length of the second fundamental form of M. We prove that if $||S||_2 \leq 2\sqrt{2}\pi$, then M is either the equatorial sphere **or the Clifford torus.**

Let M be a compact minimally immersed hypersurface in the unit sphere S^{n+1} . Denote by S the square of the length of the second fundamental form of M. It is well known that if $0 \leq S \leq n$, then M is either the equatorial sphere **or a Clifford torus [1]. Recently, C. L. Shen [4, Theorem 2] proved that if M is a compact embedded minimal surface of nonnegative Gauss curvature in the** unit sphere S^3 with $||S||_2 < 1/(6912\sqrt{2\pi(g+1)})$, then M is the equatorial sphere, where g denotes the genus of M . The purpose of this note is to **improve this theorem and obtain the best constant. The following is our main result:**

Theorem. Let M be a compact minimally immersed surface in the unit sphere S³. Then $||S||_2 \geq 2\sqrt{2g}\pi$. The equality sign holds if and only if M is either *the equatorial sphere or the Clifford torus. In particular, if* $||S||_2 \leq 2\sqrt{2}\pi$ **, then M is either the equatorial sphere or the Clifford torus.**

1. NOTATIONS AND AUXILIARY RESULTS

Let M be a compact connected minimally immersed surface in the unit sphere S^3 . Following the notations of [1], denote by $h = (h_{ij})$ the second fundamental form of M, and by S the square of the length of h , $S = \sum h_{ij}^2$. **We need the following auxiliary results.**

Lemma 1 [1]. $\frac{1}{2}\Delta S = S(2-S) + \sum h_{ijk}^2$, where h_{ijk} denote the covariant derivatives of h_{ij} .

? 1991 American Mathematical Society 0002-9939/91 \$1.00 + \$.25 per page

1041

Received by the editors April 11, 1990.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 53C42; Secondary 53C40.

Lemma 2 [3]. The set of all zeros of S is either the whole space M or at most a finite set of points.

Lemma 3. $|\nabla S|^2 = 2S \sum h_{ijk}^2$.

From Lemmas 1 and 3, we see that if S is constant, then either $S = 0$ or $S \equiv 2$.

Lemma 4. If $g \ge 1$, then

$$
\lim_{\varepsilon \to 0} \sum_{i=1}^k \int_{\partial B\varepsilon(p_i)} \frac{S_r}{S} = 16\pi(g-1)
$$

where p_1, p_2, \ldots, p_k constitute all the zeros of S and S_r denotes the derivative of S on $\partial B\varepsilon(p_i)$ in the radial direction from p_i .

Proof. At the points where S is positive, by Lemma 3, we get

(1)
$$
\Delta \log S = 2(2 - S).
$$

Integrating (1) over $M\epsilon = M\setminus\bigcup_{i=1}^k B\epsilon(p_i)$, we get from the Gauss equation

$$
(2) \t\t\t 2K = 2 - S,
$$

where K is the Gauss curvature of M , the assertion by Stokes's theorem and **the theorem of Gauss-Bonnet.** \Box

Lemma 5.

$$
\int_M \sqrt{\frac{S}{2}} + \left(\frac{\pi}{4} - \sin^{-1}\sqrt{\frac{S}{2+S}}\right) \frac{2-S}{2} \ge (g+1)\pi^2.
$$

Proof. Regard M as an immersed surface of \mathbb{R}^4 . Then the total absolute curvature of M , in the sense of [2], is given by

$$
\int_M \int_0^{2\pi} \left| (\sin \theta)^2 - \frac{S}{2} (\cos \theta)^2 \right| d\theta dV
$$

=
$$
\int_M 2\sqrt{2S} + \left(\pi - 4 \sin^{-1} \sqrt{\frac{S}{2+S}} \right) \frac{2-S}{2}
$$

By a well-known inequality of Chern-Lashof [2], we have

$$
\int_M \sqrt{\frac{S}{2}} + \left(\frac{\pi}{4} - \sin^{-1}\sqrt{\frac{S}{2+S}}\right) \frac{2-S}{2} \ge \frac{\pi^2}{2} (b_0 + b_1 + b_2),
$$

where b_i denotes the *i*th Betti number relative to the real field, for $i = 0, 1, 2$. Since \dot{M} is of two-dimensional, $b_0 = 1$, $b_1 = 2g$, and $b_2 = 1$. \Box

2. PROOF OF THEOREM

We may assume that S is positive except possibly at a finite set of points **(Lemma 2). By using (1) and Lemmas 3 and 4, we get**

$$
\int_{M} 1 + \frac{1}{4} h_{ijk}^{2} - \sqrt{\frac{S}{2}} - \left(\frac{\pi}{4} - \sin^{-1}\sqrt{\frac{S}{2+S}}\right) \frac{2-S}{2}
$$
\n
$$
= \int_{M} \left[\frac{1}{\sqrt{2}(\sqrt{2} + \sqrt{S})} - \frac{1}{2} \left(\frac{\pi}{4} - \sin^{-1}\sqrt{\frac{S}{2+S}}\right) \right] (2-S) + \frac{1}{4} h_{ijk}^{2}
$$
\n
$$
= \lim_{\epsilon \to 0} \int_{M\epsilon} \frac{1}{2} \left[\frac{1}{\sqrt{2}(\sqrt{2} + \sqrt{S})} - \frac{1}{2} \left(\frac{\pi}{4} - \sin^{-1}\sqrt{\frac{S}{2+S}}\right) \right] \Delta \log S + \frac{|\nabla S|^{2}}{8S}
$$
\n
$$
= \lim_{\epsilon \to 0} \int_{M\epsilon} \frac{1}{2} \nabla \left[\frac{1}{2} \left(\frac{\pi}{4} - \sin^{-1}\sqrt{\frac{S}{2+S}}\right) - \frac{1}{\sqrt{2}(\sqrt{2} + \sqrt{S})} \right] \nabla \log S + \frac{|\nabla S|^{2}}{8S}
$$
\n
$$
- \lim_{\epsilon \to 0} \int_{\partial M\epsilon} \frac{1}{2} \left[\frac{1}{\sqrt{2}(\sqrt{2} + \sqrt{S})} - \frac{1}{2} \left(\frac{\pi}{4} - \sin^{-1}\sqrt{\frac{S}{2+S}}\right) \right] \frac{S}{S}
$$
\n
$$
= -(4 - \pi)\pi (g - 1) + \lim_{\epsilon \to 0} \int_{M\epsilon} \left(\frac{1}{4} - \frac{1}{(2 + S)(\sqrt{2} + \sqrt{S})^{2}}\right) \frac{|\nabla S|^{2}}{2S}
$$
\n
$$
= -(4 - \pi)\pi (g - 1) + \int_{M} \left(\frac{1}{4} - \frac{1}{(2 + S)(\sqrt{2} + \sqrt{S})^{2}}\right) h_{ijk}^{2}
$$
\n
$$
\geq -(4 - \pi)\pi (g - 1),
$$

where the equality sign holds if and only if S is constant. According to Lemma 5, we get

(3)

$$
A + \frac{1}{4} \int_M h_{ijk}^2 \ge -(4 - \pi)\pi(g - 1) + \int_M \sqrt{\frac{S}{2}} + \left(\frac{\pi}{4} - \sin^{-1}\sqrt{\frac{S}{2+S}}\right) \frac{2-S}{2}
$$

$$
\ge 2g\pi^2 - 4\pi(g - 1),
$$

where A denotes the area of M . By combining (2) with the inequality (3), it **follows that**

$$
\int_M 2S + h_{ijk}^2 = 4A + 16\pi (g - 1) + \int_M h_{ijk}^2 \ge 8g\pi^2.
$$

The desired inequality now follows from Lemma 1.

REFERENCES

- **1. S. S. Chern, M. Do Carmo, and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields, Springer-Verlag, 1970, pp. 59-75.**
- **2. S. S. Chern and R. K. Lashof, On the total curvature of immersed manifolds. II, Michigan Math. J. 5 (1958), 5-12.**

1044 YI-JUNG HSU

- \rightarrow H. B. Lawson, *Complete minimal surfaces in* S^3 , Ann. of Math. 92 (1970), 335–374.
- **4. C. L. Shen, A global pinching theorem of minimal hypersurfaces in the sphere, Proc. Amer. Math. Soc. 105 (1989), 192-198.**

DEPARTMENT OF APPLIED MATHEMATICS, NATIONAL CHIAO TUNG UNIVERSITY, HSINCHU, TAI-WAN, REPUBLIC OF CHINA