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Single-Fault Fault-Collapsing Analysis in Sequential 
Logic Circuits 

Jwu E Chen, Chung Len Lee, Member, IEEE, and Wen Zen Shen, Member, IEEE 

Abstract-This paper studies single-fault fault collapsing in 
sequential logic circuits. Two major phenomena, self-hiding 
(SH) and delayed reconvergence (DR), which arise from the 
existence of feedback paths and storage elements in sequential 
circuits, are analyzed and found to cause the dominance rela- 
tionship which is valid in combinational circuits but no longer 
valid in sequential circuits. A fault-collapsing procedure is pro- 
posed to collapse faults in sequential circuits. It first collapses 
faults in the non-SAD (self-hiding and delayed-reconvergence) 
gates of the combinational part of the sequential circuit and 
then further collapses faults by identifying the prime fan-out 
branches. Finally, it collapses faults in feedback lines. The col- 
lapsed faults constitute a sufficient representative set of prime 
faults. This procedure has been applied to collapse faults for 
31 benchmark sequential circuits 111 and the number of faults 
has collapsed to 43% of the original number. 

I. INTRODUCTION 
N testing, fault collapsing is usually employed to ease I the burden of test generation and fault simulation. For 

combinational circuits, procedures have been proposed to 
collapse faults based on the equivalence and dominance 
relationships. For examples, Schertz and Metze [2] intro- 
duced a three-stage procedure to collapse faults in com- 
binational circuits. Chang and Breuer [3] introduced a 
multiple-fault checkpoint-labeling procedure for sequen- 
tial circuits, the checkpoints obtained being the lines for 
which faults need to be considered for testing. For single- 
fault sequential circuit fault collapsing, to the best of the 
author’s knowledge, there have been no reported studies 
or results. Although Breuer and Friedman [4] stated that 
‘‘the dominance relationship used in fault collapsing for 
combinational circuits is not valid for sequential circuits” 
and that “collapsing techniques based on fault equiva- 
lence on gates (for combinational circuits) can still be used 
(for sequential circuits),” no explicit results on how to 
collapse faults were presented. 

In sequential circuits, owing to the existence of storage 
elements and feedback paths, fault propagation becomes 
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Fig. 1. An example of circuit M1, where CM, is the combinational part of 
M1. (a) States of the circuit when the initialization pattern (0, 0, 0) is 
applied. (b) States and the propagation fault lists for G1 when the pattern 
(0, 0, 1) is applied. (c) States and the propagation fault lists for G1 when 
the pattern (1,  1, 1) is applied. 

quite complicated. Faults of dominance, after passing 
through delay elements and feedback paths, do not nec- 
essarily hold the relationship anymore. An example is 
demonstrated in Fig. 1, where C,, is the combinational 
part of circuit M1. The output fault 0 (E struck-at-0) of 
G1 dominates the input fault CY (B stuck-at-1) of G1 if 
only the combinational part C,, of the circuit is to be con- 
sidered. However, if the whole sequential circuit is con- 
sidered, there is a test sequence: ((0, 0, 0), (0, 0, l ) ,  (1, 
1, 1) I (A, B, C)}, which can detect the fault CY but not 
the fault 0; i.e. CY is not dominated by 6 .  As will be ex- 
plained later, this is caused by the “self-hiding” effect of 
the fault. 

In this paper, the goal is to study the conditions which 
invalidate the dominance relationship in synchronous se- 
quential circuits. It is to be shown that self-hiding and 
delayed reconvergence are two major phenomena which 
invalidate the relationship. For a non-SAD (self-hiding 
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and delayed-reconvergence) gate in the combinational part 
of a sequential circuit, the relationship still holds, and 
faults of the equivalence and dominance relationships can 
still be collapsed. Furthermore, the equivalence relation- 
ship between faults at the prime fan-out branches and their 
corresponding fan-out stems is also analyzed. Then new 
fault relationships in the delay elements (D flip-flops) are 
also identified to collapse the faults at feedback lines. A 
fault-collapsing procedure for single faults in nonredun- 
dant sequential circuits is then proposed to obtain a suf- 
ficient representative set of prime faults. Finally, this pro- 
cedure is applied to 3 1 benchmark circuits [ 11 to collapse 
faults. The number of faults, after applying this proce- 
dure, can be reduced to 43% of the original number. 

11. MODEL AND DEFINITIONS 
In this paper, only the synchronous sequential circuit is 

treated. This section discusses the circuit model and def- 
initions which are to be used in the later sections. 

A synchronous sequential circuit, M, is represented by 
the Huffman’s model as shown in Fig. 2, where the net- 
work CM is the combinational part of M, and D is a set of 
delay elements which are clocked and are able to be set/ 
reset. Faulty signals which occur either at the network CM 
or at the inputs/outputs of the delay elements D ,  may pass 
through CM and be stored in D before propagating to pri- 
mary outputs. To analyze the fault relationships for this 
synchronous sequential circuit, it is assumed that all dealy 
elements are D-type flip-flops and that faults are stuck- 
at-1 and stuck-at-0 faults. 

For the purposes of clarity for the following analysis, 
the following definitions of g-equivalence/dominance, c- 
equivalence/dominance , and s-equivalence/dominance are 
given to distinguish between fault relationships in a single 
gate, in combinational circuits, and in sequential circuits, 
respectively. 

Dejinition 1: Two faults, a and p, are said to be 
g-equivalent in a single gate if and only if the function 
under that fault a is equal to the function under the fault 
/3 for every input combination of the gate. 

Dejinition 2: A fault 0 (g-dominant fault) is said to 
g-dominate another fault a (g-dominated fault) in a single 
gate if and only if every test for a is also a test for p. 

Definition 3: Two faults, a and p,  are said to be 
c-equivalent in a combinational circuit if and only if the 
function under the fault a is equal to the function under 
the fault 0 for every input combination of the circuit. 

Dejinition 4: A fault p is said to c-dominate another 
fault CY in a combinational circuit if an only if every test 
for a is also a test for 6. 

Dejinition 5: Two faults, a and 0, are said to be 
s-equivalent in a sequential circuit if and only if the func- 
tion under the fault a is equal to the function under the 
fault 6 for any input sequence of the circuit. 

Inputs outputs 

I SET/RESET 
CLK 

Fig. 2.  Huffman’s model of a synchronous sequential circuit M, where C, 
is the combinational part of M, and D is a set of delay elements which are 
clocked and are able to be setheset. 

TABLE I 
CONTROLLING VALUE, d ,  INVERSION PARITY,  p ,  A N D  v = (d 8 p )  FOR 

W I R E ,  D FLIP-FLOP, A N D  EACH TYPE OF U N A T E  GATE 

Gate Controlling Inversion 
Type Value ( d )  Parity @) u = d O p  

wire 
BUFF 
NOT 
AND 
OR 
NAND 
NOR 
D f / f  

Defintion 6: A fault is said to s-dominate another 
fault a in a sequential circuit if and only if every test se- 
quence for a is also a test sequence for 0. 

Given a gate G, d and p are the controlling value and 
the inversion parity of G ,  respectively, and Y = (d 0 p ) .  
For an example, for a NAND gate G, the controlling value 
d = 0, the inversion parity p = 1, and v = (0 0 1) = 1 .  
Table I shows the values for d ,  p ,  and U for each type of 
mate gate, the wire, and the D flip-flop. 

With the above definitions, the following lemma and 
theorems can be stated without proof. 

Lemma 1: For a gate G ,  the s-a-( 1 U) fault at the out- 
put of G g-dominates the s-a-( i d )  fault at each input of 
G (( 1 v) denoting the complement value of U). 0 0 

Theorem 1: If G is a gate in a nonredundant combi- 
national circuit, the s - a - ( iv )  fault at the output of G 
c-dominates the s-a-( i d )  fault at each input of G; i.e., 
the g-dominant fault of G also c-dominates the 
g-dominated fault of G in a nonredundant combinational 
circuit. 00  

Theorem 2: If G is a gate in a combinational circuit, 
all the input s-a-d faults and the output s-a-v fault of G 
are c-equivalent; i.e., the g-equivalent faults of a gate are 

00 also c-equivalent in a combinational circuit. 
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111. FAULT ANALYSIS IN THE COMBINATIONAL NETWORK 
OF SEQUENTIAL CIRCUITS 

The discussion of the behavior of fault propagation in 
a synchronous sequential circuit can be divided into two 
parts. The first part is on the propagation in the combi- 
national network of the sequential circuit, and the other 
is on the propagation in delay elements. In this section, 
fault propagation in the combinational network is first dis- 
cussed. 

A. Intergate and Intragate Fault Analysis 

1 )  Self-Hiding: When a faulty signal propagates in the 
combinational network of a sequential circuit, the signal 
may pass through a feedback path and propagate to the 
node from which the faulty signal originates. A self-hid- 
ing phenomenon may occur. As described previously for 
the circuit example of Fig. 1 ,  the fault a (B stuck-at-1) is 
c-dominated, but not s-dominated, by the fault (E stuck- 
at-0) in CM,. For the test sequence, ( (0 ,  0, 0), (0, 0, l ) ,  
(1, 1 ,  1) 1 (A,  B ,  C ) } ,  the first pattern (0, 0, 0) is to 
initialize the D flip-flop, and the second pattern (0, 0, 1) 
activates both the faults a and 0. Hence, CY and are in- 
cluded in the fault list of the line E of G1 (Fig. l(b)). This 
fault list propagates to the lines F and H. After the next 
test pattern ( 1 ,  1, 1) is applied, the fault list for the line 
H passes through the D flip-flop and propagates to the line 
D .  Under this pattern, the logic value 0 of the line E masks 
the fault 0. As a result, only the fault a can propagate 
through G1 and G2 to the output I .  The fault signal orig- 
inating at the line E for the fault propagates to the line 
E again and this faulty signal is masked by the fault p 
itself. Hence the s-dominance relationship between the 
fault a and the fault /3 does not hold, and the g-dominated 
fault CY can be extracted from the propagating fault list 
under the applied test sequence. This phenomenon is 
called self-hiding. 

DeJnition 7: A closed path is said to be an O-path with 
respect to an input of a gate if and only if the path origi- 
nates from and terminates at the input of the gate and has 
an odd inversion panty. 

In Fig. 1 ,  G1 has an O-path, [D, E ,  H,  D ] ,  with respect 
to the input D of G1. It should be pointed out that an 
O-path must pass through at least one delay element (D 
flip-flop) and a gate may have more than one O-path with 
respect to one of its inputs. 

Dejinition 8: A pair of g-dominant and g-dominated 
faults of a gate is said to be self-hiding if the pair of faults 
originates from the gate and passes through an O-path (or 
O-paths) to the gate itself, and the g-dominated fault is 
not on the O-path (or O-paths). 

Lemma 2: For a gatk G in sequential circuit, if there 
exist the self-hiding phenomenon for the g-dominant fault 
at the output of G and the g-dominated fault at an input 
XJ of G, the gate G has O-paths with respect to at least 
one gate input X,, where j # i .  

Proof: For the gate G, let CY and p be the 
g-dominated fault at the input X,  and the g-dominant fault 
at the output of G, respectively. 

Case 1) If there is no closed path passing through G, 
the fault p cannot feed back to mask itself. No 
self-hiding phenomenon can occur. 

Case 2) Suppose that G has closed paths which origi- 
nate from and terminate at the gate input X ,  
only. In this case, the fault a is able to prop- 
agate to the faulty gate G itself only when the 
value of the input X,  is equal to the controlling 
value. Hence, the value of the gate output is 
(d 0 p ) ,  and the g-dominant fault p of the out- 
put of G is also activated. Thus, the 
g-dominant fault p must be included in the 
propogating fault list with respect to the gate 
G. Hence, the g-dominant fault at the output 
of G and the g-dominated fault at the input X ,  
of G do not have the self-hiding phenomenon. 

Case 3) Suppose that each closed path originating from 
and terminating at the gate input X,, where 
j # i ,  has an even inversion parity. While the 
propagating fault list, {a, p }  or { p } ,  with re- 
spect to G propagates back to the gate input 
XJ, the fault-free value of the gate input 4 is 
equal to the controlling value of the gate. 
Hence, the value of the gate output is (d 0 p ) ,  
and the g-dominant fault /3 of the output of G 
is activated for this case. Thus, the g-dominant 
fault must be included in the propagating 
fault list when it propagates back to G if it is 
faulty. There exists no self-hiding phenome- 
non for the g-dominant fault at the output of 
G and the g-dominated fault at the input X ,  of 
G. Hence, if the self-hiding phenomenon ex- 
ists for the g-dominant fault at the output of a 
gate and the g-dominated fault at an input of 
the gate in a sequential circuit, the gate must 
have O-paths with respect to at least one other 

Dejinition 9: A gate in a sequential circuit is said to be 
non-SH (self-hiding) if and only if the gate has O-paths 
with respect to at most one gate input. 

Lemma 3: For a non-SH gate in a sequential circuit, if 
the gate has no O-paths, the g-dominated faults at all of 
its inputs may be s-dominated by its corresponding output 

Lemma 4: For a non-SH gate in a sequential circuit, if 
the gate has only O-paths with respect to one gate input, 
the g-dominated fault at this gate input may be 
s-dominated by its corresponding output g-dominant 
fault. 00 

For a non-SH gate, all of its gate inputs, if the gate has 
no O-path, or the gate input, from which the O-path orig- 
inates, are s-dominatable. By s-dominatable is meant that 

input of the gate. 00 

g-dominant fault. 00 
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the fault at this input could be s-dominated by its corre- 
sponding g-dominant fault at the gate output. Also, for a 
non-SH gate, the g-dominated fault at the s-dominatable 
input and the g-dominant fault at the output do not have 
the self-hiding phenomenon. 

For the example circuit of Fig. 1, G1 has an 0-path 
with respect to only the input D. It is a non-SH gate and 
the line D is an s-dominatable input of G1. However, the 
stuck-at-1 fault at the line B and the stuck-at-0 fault at the 
line E may have the self-hiding phenomenon. For G 2 ,  it 
does not have any 0-path, it is also a non-SH gate, and 
both inputs A and F are s-dominatable inputs of G 2 .  

2) Delayed Reconvergence: In sequential circuits, in 
addition to the self-hiding phenomenon, there is another 
phenomenon which invalidates the fault dominance rela- 
tionship. This is due to the fact that faulty signals, origi- 
nating from a fault, may pass and be stored in delay ele- 
ments and then reconverge with the signals themselves. 
An example circuit, M 2 ,  is shown in Fig. 3 to demon- 
strate this phenomenon, where C,, is the combinational 
part of the circuit. For the faults a (A stuck-at-1) and P 
(E stuck-at-0) in G1, from Theorem 1, the fault a is 
c-dominated by the fault /3 in CM2. However, for this cir- 
cuit, it can be seen that a test sequence: ((0, 0, l), (0, 1, 
l ) ,  (0, 0, 0) I (A, B, C)], can detect a but not P .  For this 
test sequence, the pattern (0, 0, 1) is to initialize the D 
flip-flop, and the pattern (0, 1, 1) is to activate the faults 
a and /3 (Fig. 3(b)). Under this pattern, CY and are in- 
cluded in the fault list of line E, and this fault list prop- 
agates to the lines F, H, and I. The faults are then stored 
in the delay element D flip-flop. With the last pattern (0, 
0, 0) applied, the fault list at the line I passes through the 
D flip-flop and propagates to the line J. Also, with this 
pattern, the fault 0 is activated and this fault propagates 
to the input F of G2 and reconverges with the fault p of 
the fault list at the input line J of G2 (Fig. 3(c)). In this 
situation, only the fault CY propagates to the line K. Hence, 
a! is not s-dominated by p in the sequential circuit M2. 
This phenomenon is called delayed reconvergence, 

Definition 10: A pair of g-dominant and g-dominated 
faults of a gate is said to exhibit delayed reconvergence 
if the two faults, originating from the gate and passing 
through paths, where some pass through delay elements, 
reconverge at some gates with different inversion parities. 

With the above definition, one can define a non-DR 
(delayed-xeconvergence) gate as follows. 

I C M 2  

RESET 
CLK 

n - r g  13," 

C 

Fig. 3 .  An example circuit M2, where C, is the combinational part of 
M2. (a) States of the circuit when the initialization pattern (0, 0, 1)  is 
applied. (b) States and the propagation fault lists for G1 when the pattern 
(0, I ,  1) is applied. (c) States and the propagation fault lists for G1 when 
the pattern (0, 0, 0) is applied. 

By Definition 11, for the non-DR gate of cases 1 and 
2, it is just like a gate in a combinational circuit. No de- 
layed reconvergence can occur. For case 3, since the 
propagation paths which pass through different numbers 
of delay elements all have the same inversion parity, all 
the corresponding sensitized inputs of the reconvergent 
gate have the same logic value. For this situation, either 
the g-dominant fault alone or both the g-dominant fault 
and the g-dominated fault of the gate may propagate to 
the output of the reconvergent gate. Hence, for a non-DR 
gate in a sequential circuit, there is no delayed reconver- 
gence at the reconvergent gate for the gate. 
For the circuit of Fig. 3, G1 has two propagation paths 

to G2. The propagation path including lines E and F does 
not pass the D flip-flop and has an even inversion parity, 
and the other propagation path, including lines E, H, I ,  
and J ,  passes through one D flip-flop and has an odd in- 
version parity. From Definition 11, G1 is a DR gate. Sim- 
ilarly, since G2 and G3 are on paths which do not recon- 

Definition 11: A gate in a sequential circuit is said to 

1) which do not reconverge at any gate; or 
2) which reconverge at gates but every path passing 

each Of these gates does not pass through 
any delay element; or 

3) which pass through different numbers of delay ele- 
ments and reconverge at some gates and the paths 
which pass through any of these gates have the same 
inversion parity. 

verge at any gate, they are non-DR gates. 
The DR phenomenon is very similar to SH from the 

point of view of fault propagation, except that for the SH 
phenomenon, the fault effect passes through cyclic paths 
(0-paths) to the gate from which it originates, while for 
the DR phenomenon, it propagates through delay ele- 
ments and reconverges with the fault effect itself at an- 
other gate. 

Theorem 3: For a nonredundant sequential circuit, only 
self-hiding or delayed reconvergence makes a fault pair 

be non-DR if and only if the gate is on paths 
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which is g-dominant and g-dominated be not s-dominant put of the gate, the g-dominant fault also c-dominates the 
and s-dominated. g-dominated fault. 00  

It is obvious that if faults at a gate are of s-dominance, Proofi This theorem can be proved by proving that 
a pair of g-dominant and g-dominated faults which do not 
have the self-hiding and delayed-reconvegence will keep they are also of c-dominance. 

the s-dominance relationship. 4) Equivalence Fault Collapsing: 
For a pair of g-dominant and g-dominated faults, if 

there exists a sequence of tests to test the g-dominated 
fault, both the g-dominant and the g-dominated faults must 
first be activated. For this test sequence, both faults prop- 
agate along the sensitized paths with respect to the 
g-dominated fault. If the two faults do not have self-hid- 
ing and delayed reconvergence, they will neither pass 
through 0-paths to the faulty gate itself nor pass through 
paths with delay elements and reconverge with different 
inversion parities. They will propagate to the primary out- 
puts under this test sequence; i.e., the g-dominant fault 
will not be masked by itself. Thus, the s-dominance re- 

0 0  lationship for this fault pair holds. 

3) Dominance Fault Collapsing. 

Dejinition 12: A gate in a sequential circuit is said to 
be non-SAD (self-hiding and delayed-reconvergence) if 
and only if the gate is both non-SH and non-DR. 

Theorem 4: If G is a non-SAD gate in a nonredundant 
sequential circuit, the s-a-( 1 U )  fault at the output of G s- 
dominates the s-a-( i d )  fault at each s-dominatable input 
of G. 

Proofi Since G is a non-SAD gate, it has at least one 
s-dominatable input. Since the circuit is nonredundant, 
there exists a test sequence which detects the s-a-( 1 d) 
fault at the s-dominatable input. Since the ea- (  1 d)  fault 
at the s-dominatable input of G is g-dominated by the 
s-a-( 1 U )  fault at the output of G, the test sequence which 
activates the g-dominated fault must activate the 
g-dominant fault. From Theorem 3, the g-dominated fault 
at the s-dominatable input of G and the g-dominant fault 
at the output of G have neither self-hiding nor delayed 
reconvergence. Under the test sequence, the g-dominant 
fault in the fault list with respect to G cannot be masked 
alone. Thus, the test sequence which detects the s-a-( 1 d)  
fault at the s-dominatable input of G must detect the 
s-a-( i U )  fault at the output of G; i.e., the s-a-( 1 U )  fault 
at the output of G s-dominates the s-a-( i d )  fault at the 

As shown in Fig. 1, both G1 and G2 are non-SAD. 
Since line D is an s-dominatable input of G1, the stuck- 
at-1 fault (g-dominated fault) at line D is s-dominated by 
the stuck-at-0 fault (g-dominant fault) at line E. Similarly, 
since G2 does not have an 0-path, both inputs A and F 
are s-dominatable inputs of G2. Hence, the stuck-at-1 
faults at lines A and F are s-dominated by the stuck-at-1 
fault at line I .  

s-dominatable input of G. 00  

Corollary I :  In a nonredundant sequential circuit, if 
the g-dominant fault at the output of a non-SAD gate 
s-dominates the g-dominated fault at an s-dominatable in- 

Theorem 5: For a gate G in a sequential circuit, all the 
input s-a-d faults and the output s-a-2r fault of G are 
s-equivalent . 

Proofi When any of the input s-a-d faults or the out- 
puts s-a-2r fault occurs at the gate G, the output value stays 
at the stuck-at-value of o. Thus, the functions of the cir- 
cuit under these two cases are the same for any input se- 
quence. That is, all the input s-a-d faults and the output 

0 0  

From Theorems 2 and 5 ,  the equivalence relationship 
is a combinational circuit holds for a sequential circuit. 
That is, g-equivalence is eqivalent to s-equivalence for a 
sequential circuit. 

s-a-o fault of G are s-equivalent. 

B. Fan-Out Fault Analysis 

Dejinition 13: In a sequential circuit, a fan-out branch 
is said to be prime if and only if all the propagation paths 
from other fan-out branches of its fan-out stem to the pri- 
mary outputs pass through this fan-out branch. 

It is noted that the prime fan-out branch defined herein 
is similar to the singular fan-out branch mentioned in [3]. 
As shown in Fig. 1,  for the fan-out branches F and H of 
the stem line E, since all the paths from the branch H to 
the primary output pass through the branch F, F is prime. 

Theorem 6: In a sequential circuit, faults at a prime 
fan-out branch and at its corresponding fan-out stem are 
s-equivalent . 

Proof: When a fault occurs at a prime fan-out branch 
or at its corresponding fan-out stem, the value of the fan- 
out branch is at its stuck-at value, and the function of the 
circuit under the fault is not influenced by the values of 
other fan-out branches of its corresponding stem. Thus, 
the function is the same for the circuit under the fault at 
the prime fan-out branch or at its corresponding fan-out 
stem. Hence, faults at a prime fan-out branch and at its 

0 0  corresponding fan-out stem are s-equivalent . 

IV. FAULT ANALYSIS IN THE DELAY ELEMENTS (D 
FLIP-FLOPS) 

In this section, the behavior of faults at the delay ele- 
ments is discussed. As mentioned in Section 11, only 
D-type flip-flops are treated, and the flip-flops are able to 
be setheset. However, the method and results can be ex- 
tended to other types of flip-flops. It is also assumed that 
only a single stuck fault occurs at the input or output of 
the flip-flops and no faults occur at the clock line or the 
setheset lines. 
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DeJinition 14: In a sequential circuit, a D flip-flop is 
said to be non-SAD if and only if the D flip-flop is on 
paths 

1) which do not reconverge at any gate; or 
2) which reconverge at gates but every path passing 

through each of these gates does not pass through 
any other delay elements; or 

3) which pass through different numbers of delay ele- 
ments and reconverge at gates and the paths which 
pass through any of these gates have the same in- 
version parity. 

For the example circuits of Fig. 1 and Fig. 3, each flip- 
flop is non-SAD since there is only one flip-flop in each 
circuit. It is to be mentioned that, since a D flip-flop has 
only one input, no self-hiding phenomena can occur for 
the D flip-flop in a circuit. 

Theorem 7: In a nonredundant sequential circuit, the 
output fault of a non-SAD D flip-flop s-dominates the in- 
put fault of the flip-flop. 

Proof: The proof of this theorem is similar to that of 
Theorem 4. 0 0  

Dejinition 15: A D flip-flop which has a setheset sig- 
nal line is said to be settable/resettable if and only if the 
setheset signal line is used to initialize the D flip-flop in 
test process. 

Theorem 8: In a sequential circuit, for a settable (re- 
settable) D flip-flop, the stuck-at-1(0) faults at the input 
and the output of the flip-flop are s-equivalent. 

Proof: For a settable D flip-flop in a sequential cir- 
cuit, initially set the state of the flip-flop to be 1. The 
output stuck-at-1 fault of the flip-flop is not activated, and 
the input stuck-at-1 fault of the flip-flop is blocked by the 
clocking signal. Hence, under the initialization pattern, 
the function of the circuit is independent of either of the 
faults. When the clocking signal is on, the D flip-flop al- 
ways stays at l because of the stuck-at-l fault, regardless 
of whether it is at the input or the output and the output 
value of the flip-flop is 1. Thus, the functions of the cir- 
cuit under the two faults are the same for any test se- 
quence after the initialization. Hence, the input and the 
output stuck-at-1 faults of a settable D flip-flop are 
s-equivalent. Similarly, the input and the output stuck- 
at-0 faults of a resettable D flip-flop are s-equivalent. 

0 0  

V. FAULT-COLLAPSING PROCEDURE 
With the above theorems, the fault-collapsing proce- 

dure for the synchronous nonredundant sequential circuit 
can be given as follows: 

Procedure for  Single-Fault Fault Collapsing 

Step 1) Partition the given circuit M into two parts: the 
set of D flip-flops and the combinational part 
C,, and levelize the circuit C,. 

Step 2) 

Step 3) 

Step 4) 

Step 5 )  

Step 6) 

Step 7) 

Determine all the SAD gates, the prime fan- 
out branches, and the SAD D flip-flops. 
Flag both S-A-I (stuck-at-1) and S-A-0 (stuck- 
at-0) on each primary input, each nonprime 
fan-out branch, and the output of each non- 
settablehesettable and SAD D flip-flop. 
Flag S-A-0 on the output of each settable and 
SAD D flip-flop. 
Flag S-A-I on the output of each resettable and 
SAD D flip-flop. 
For each gate G (selected first from the lowest 
level in C,): 

IF all the inputs of G are of the S-A-d value, 
THEN flag S-A-v on the output of G; 
IF G is SAD, THEN flag SA-(  i U )  on the out- 
put of G; 
Remove S-A-d on each input of G. 

The flagged faults constitute an representative 
set of prime faults (RSPF). 

From the above procedure, each fault in the circuit can 
be collapsed into a fault class of equivalence/dominance. 
To identify the SAD gates, the prime fan-out branches, 
and the SAD D flip-flops, the following procedures, based 
on each corresponding definition, are given. 

Procedure for Determination of SAD/Non-SAD Gates 

/*Determination of SH/non-SH gates */ 
FOR each gate G in the circuit; { 

{ 

Initiate the state of each line to be at “X”; 
Mark the state of G according to Table 11; 
DO { 

Determine the state of each gate except G ac- 
cording to Tables I11 and IV; 

} UNTIL no state changes; 
IF there is at most one “C” state at the input of 
G, 
THEN label G to be non-SH, 
ELSE label G to be SAD. 

1 
/*Determination of DR/non-DR gates */ 
FOR each non-SH gate G in the circuit; { 

Initiate the state of each line to be at “XX”; 
Mark the state of G according to Table V; 
DO { 

Determine the state of each gate except G ac- 
cording to Tables VI-VII; 

} UNTIL no state changes; 
IF there exists at least one “CC” state on any 
gate in the circuit, 
THEN label G to be SAD, 
ELSE label G to be non-SAD. 

1 
} /*End of procedure for determination of SAD/non- 

SAD gates */ 

In Tables 11, 111, and IV, the states “X,” “E,” “0,” 
and “C” denote the path inversion parity. “X” means 
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TABLE I1 

PROCEDURE FOR DETERMINING SH/NON-SH GATES 
~NlTlALlZATlON TABLE FOR EACH TYPE OF GATE IN THE 

TABLE VI1 

DETERMINING DR/NoN-DR GATES (m # n) 
EVALUATION FOR NAND A N D  NOR GATES IN PROCEDURE FOR 

Gate Type Each Input output xx 

A N D  E E 
N A N D  E 0 
OR 0 0 
NOR 0 E 

TABLE 111 
EVALUATION FOR AND GATES, OR 
GATES, AND D FLIP-FLOPS IN THE 
PROCEDURE FOR DETERMINING SH/ 

NON-SH GATES 

Output Current 
State Input 

X X E O C  
E E E C C  
0 o c o c  
C c c c c  

TABLE IV 
EVALUATION FOR NOT, NAND, A N D  NOR 

GATES I N  PROCEDURE FOR DETERMINING 
SHINON-SH GATES 

Output Current 
State Input 

X X O E C  
E E C E C  
0 o o c c  
C c c c c  

TABLE V 

OF GATE I N  PROCEDURE FOR 
DETERMINING DRINoN-DR 

GATES 

~NlTlALlZATlON FOR EACH TYPE 

Gate Type output 

A N D  OE 
NAND 00 
OR 00 
NOR OE 

TABLE VI 
EVALUATION FOR AND AND OR GATES IN PROCEDURE FOR DETERMINING 

DR/NoN-DR GATES (m + n) 
XX nE nO nC mE mO mC CE CO 

XX XX nE nO nC mE mO mC CE CO 
nE nE nE nC nC CE CC CC CE CC 
nO nO nC nO nC CC CO CC CC CO 
nC nC nC nC nC CC CC CC CC CC 
mE mE CE CC CC mE mC mC CE CC 
mO mO CC CO CC mC mO mC CC CO 
mC mC CC CC CC mC mC mC CC CC 
CE CE CE CC CC CE CC CC CE CC 
CO CO cc CO cc cc CO cc cc CO 

xx xx 
nE nO 
nO nE 
nC nC 
mE mO 
mO mE 
mC mC 
CE CO 
CO CE 

nE nO nC mE mO mC CE CO 

nO nE nC mO mE mC CO CE 
no nC nC CO CC CC CO CC 
nC nE nC CC CE CC CC CE 
nC nC nC CC CC CC CC CC 
CO CC CC mO mC mC CO CC 
CC CE CC mC mE mC CC CE 
CC CC CC mC mC mC CC CC 
CO cc cc CO cc cc CO cc 
CC CE CC CC CE CC CC CE 

TABLE VI11 
EVALUATION FOR D 

FLIP-FLOPS IN PROCEDURE 
FOR DETERMINING DR/ 

NON-DR GATES 

X X 

nE (n + l )E  
nO (n + 1 ) 0  
nC (n + l)C 
CE CE 
CO CO 

“don’t care.” “E” and “0” mean the even and the odd 
inversion parity, respectively. “C” denotes the state when 
“E” and “0” meet together; i.e., it represents a conflict- 
ing inversion panty. In Tables V-VIII, the state is rep- 
resented by two words. The left word is an integer which 
denotes the number of D flip-flops passing through. “C” 
denotes the state when two different values meet together. 
The right word is the path inversion parity, and its nota- 
tions are similar to those of Tables 11, 111, and IV. 

Procedure for Determination of Prime Fan-out Branches 

FOR each fan-out stem in the circuit; { 
{ 

Initiate the state of each line to be at “X”; 
FOR each fan-out branch, 

find all the paths from the branch to primary 
outputs until any of the primary outputs of this 
fan-out stem is reached; 

IF there exists one fan-out branch which reaches 
primary outputs and besides this 
fan-out branch, all other fan-out branches 
reach only the fan-out stem, 

THEN label this fan-out branch to be prime. 

} /*End of procedure for determination of prime fan- 
out branches*/ 

1 

Procedure for Determination of SAD/Non-SAD D Flip- 
Flops 

FOR each D flip-flop in the circuit; { 
{ 

Initiate the state of each line to be at “XX”; 

1-7-7 - 
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I RESET I RE~ET 

(a) (b) 
CLK CLK 

Fig. 4. (a) The 11 equivalent faults for the circuit MI after collapsing with 
the s-equivalence relationship. (b) The five prime faults for the same circuit 
after collapsing with the s-equivalence and s-dominance relationships. 

Mark the state of the D flip-flop to be at “OE”; 
DO { 

Determine the state of each gate except the D 
flip-flop according to Tables VI-VIII, 

} UNTIL no state changes; 
IF there exists at least one “CC” state on any 
gate in the circuit, 
THEN label the D flip-flop to be SAD, 
ELSE label the D flip-flop to be non-SAD. 

1 
} /*End of procedure for determination of SADhon- 

SAD D flip-flops */ 

VI. EXPERIMENTAL RESULTS ON BENCHMARK CIRCUITS 
A. Run Examples 

The circuit examples of Figs. 1 and 3 can be used to 
demonstrate the above fault-collapsing procedure. First, 
consider the circuit of Fig. 1: 

Step 1) Partition the circuit and levelize the combina- 
tional part. 

Step 2) Identify G1 and G2 to be non-SAD gates, the 
D flip-flop to be a non-SAD flip-flop, and line 
F to be prime. 

Step 3) Flag both S-A-1 and S-A-0 on lines A,  B, C ,  
and H. 

Step 6) For G1, remove S-A-0 on line B and S-A-0 on 
line C; 
for G2, remove S-A-0 on line A.  

Step 7) The RSPF consists of the stuck-at-1 fault at line 
A,  the stuck-at-1 fault at line B, the stuck-at-1 
fault at line C ,  and the stuck-at-1 and stuck- 
at-0 faults at line H. 

The set of equivalent faults and the representative set 
of prime faults of the circuit are marked in parts (a) and 
(b) of Fig. 4. The circuit originally has 16 total faults. 
After applying equivalent-fault fault collapsing, the num- 
ber of equivalent faults is reduced to 11. After applying 
prime-fault fault collapsing, the number of prime faults is 
further reduced to 5 .  

With the same step-by-step procedure applied to the 
circuit of Fig. 3, the total number of faults is reduced 
from 18 to 12 and 8 respectively for the number of equiv- 
alent faults and prime faults respectively. The reduced 

n 
B 

C 

t t  
I RESET 

CLK 
I RESET 

CLK 

(a) (b) 
Fig. 5 .  (a) The 12 equivalent faults for the circuit M 2  after collapsing with 
the s-equivalence relationship. (b) The eight prime faults for the same cir- 
cuit after collapsing with the s-equivalence and s-dominance relationships. 

7 
I I 13 

IO 

CLK RESET - : prime fanoul branch 

(b) 

Fig. 6. (a) The 32 equivalent faults for the benchmark circuit s27 after 
collapsing with the s-equivalence relationship. (b) The 16 prime faults for 
the same circuit after collapsing with the s-equivalence and s-dominance 
relationships. The fan-out branches, line 12 + 15 and line 11 + 17, are 
prime. 

equivalent and the prime faults are marked in Fig. 5(a) 
and (b), respectively. 

Another circuit example, the benchmark circuit s27 [ 11, 
is shown in Fig. 6. The number of faults is reduced from 
52 to 32 equivalent faults (shown in Fig. 6(a)), and 16 
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TABLE IX 
RESULTS OF APPLYING FAULT-COLLAPSING PROCEDURE TO 3 1 BENCHMARK CIRCUITS 

No. of 
No. of No. of No. of No. of 

Circuit No. of non-SAD Fan-Out prime No. of SAD D Total Equivalent C-prime S-pnme 
Name Gates Gates Stems FOB’S D f / f ’ s  f / f ’ s  Faults Faults Faults Faults 

No.  of No.  of No. of Non- 

s27 10 10 4 2 3 3 52 32 
s208 96 67 32 0 8 1 416 215 
s298 119 82 34 8 14 6 596 308 
s344 160 62 40 4 15 0 670 342 
s349 161 60 41 4 15 0 680 350 
s382 158 91 49 4 21 7 7 64 399 
s386 158 88 26 0 6 0 772 3 84 
s400 164 89 53 4 21 7 806 426 
s420 196 135 66 0 16 1 840 430 
s444 181 93 65 4 21 7 888 474 
s510 211 67 73 0 6 0 1020 564 
s526n 194 92 54 7 21 6 1052 553 
s526 193 90 54 7 21 6 1052 555 
s64 1 379 311 57 0 19 4 1278 467 
s713 393 295 80 0 19 4 1426 581 
s820 289 105 39 0 5 0 1640 850 
s832 287 97 39 0 5 0 1664 870 
s838 390 265 134 0 32 1 1676 857 
s953 395 237 158 0 29 23 1906 1079 
sl196 529 509 155 0 18 17 2392 1242 
s1238 508 484 165 0 18 17 2476 1355 
s1423 657 216 180 33 74 6 2846 1515 
s1488 653 381 76 0 6 0 2976 1486 
s1494 647 370 76 0 6 0 2988 1506 
s5378 2779 2035 855 0 179 13 10590 4603 
s9234 5597 3638 1013 60 228 7 18468 6927 
~ 1 3 2 0 7  7951 5734 1224 187 669 74 26358 9815 
~ 1 5 8 5 0  9772 6572 1518 242 597 58 3 1694 11725 
~35932  16065 3861 5295 0 1728 0 71224 39094 
~38417 22179 13695 . 4569 833 1636 74 76678 31180 
~38584  19253 8238 3946 40 1452 2 76864 36303 

25 
169 
266 
269 
275 
328 
295 
352 
340 
388 
44 1 
473 
474 
398 
496 
702 
718 
679 
826 
962 

1034 
1212 
1110 
1123 
4033 
5752 
8234 
9556 

30085 
25778 
30386 

16 
182 
252 
316 
324 
342 
340 
37 1 
368 
419 
534 
492 
494 
409 
52 1 
786 
806 
740 
896 
928 

1018 
1333 
1285 
1302 
4238 
6522 
848 1 

10406 
37366 
27647 
34447 

prime faults (shown in Fig. 6(b), where all the gates and 
flip-flops are identified as non-SAD and the branches of 
line 12 + 15 and line 11 --* 17 as prime) after applying 
the procedures. 

ing to note that, for circuits s27, s298, s1196, and s1238, 
the numbers of S-prime faults are smaller than those of 
C-prime faults. This is because new fault equivalence/ 
dominance relationships, which originally did not exist in 
combinational networks, are introduced by inclusion of 

B. Results on Benchmark Circuits 

The above procedures have been implemented in C lan- 
guage on a SUN SPARC 330 workstation and applied to 
31 benchmark circuits [ l] ,  and the results are listed in 
Table IX, where D flip-flops are assumed to be reset- 
table. Besides the total number of original faults, the table 
also gives the numbers of equivalent faults and prime 
faults after collapsing; the analyzed characteristics of the 
circuits, such as the numbers of D flip-flops, fan-out 
stems, and gates; and the numbers of non-SAD D flip- 
flops, prime fan-out branches, and non-SAD gates. For 
the prime fault, the number of C-prime faults is the num- 
ber of faults obtained by applying the prime-fault fault- 
collapsing procedure to the combinational parts of the cir- 
cuits, assuming that the circuits are in the full-scan mode. 
The number of S-prime faults is the number of faults ob- 
tained by applying the above fault-collapsing procedure 
to the whole part of these circuits. Comparing the values 
of these two columns, for most of the cases, the numbers 
of S-prime faults are greater than those of C-prime faults. 
This means that most fault dominance relationships are 
invalidated by inclusion of delay elements. It is interest- 

the feedback paths and the delay elements. For an ex- 
ample, the equivalence relationship between the prime 
fan-out branch and its associated fan-out stem is created 
when feedback paths are connected to the combinational 
network. Also, it can be seen that, in general, the per- 
centage of the numbers of reduced faults is proportional 
to the percentages of non-SAD gates and non-SAD D flip- 
flops of the total gates and the total D flip-flops, respec- 
tively, of a circuit. The average final equivalent faults, 
C-prime faults, and S-prime faults to the orginal total 
faults after reduction are approximately 50%, 40%, and 
43 % , respectively. It is to be mentioned that the proposed 
procedures are derived for nonredundant circuits, How- 
ever, the procedures can also be applied to redundant cir- 
cuits except that nonredundant faults may be collapsed to 
redundant faults for which no tests can be found. Since 
for the above benchmark circuits, many contain redundant 
faults, the final fault sets obtained in Table IX are not 
guaranteed to contain faults that are all detectable. A fault 
set derived from the procedures can be treated as an initial 
fault set of target faults [5 ]  for a circuit for the later test 
generation. The run times for determination of SAD gates, 
prime fan-out branches, and SAD D flip-flops for the 31 
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TABLE X 
RUN TIMES FOR DETERMINING SAD GATES, PRIME FAN-OUT BRANCHES, 

AND SAD D FLIP-FLOPS FOR THE 31 BENCHMARK CIRCUITS 

CPU Time for CPU Time for CPU Time for 
Circuit Determination Determination Determination 
Name of SAD Gates of Prime FOB’S of SAD D f / f ’ s  

s27 0 0 0 
s208 0.03 0.03 0.02 
s298 0.10 0.05 0.02 
s344 0.25 0.05 0.02 
s349 0.25 0.05 0.02 
s382 0.10 0.08 0 
s386 0.13 0.02 0 
s400 0.12 0.10 0.02 
s420 0.13 0.10 0.02 
s444 0.17 0.13 0.02 
s510 0.33 0.08 0.02 
s526n 0.38 0.17 0.03 
s526 0.42 0.18 0.02 
s64 1 0.20 0.07 0.03 
s713 0.28 0.12 0.03 
s820 0.47 0.13 0.02 
s832 0.48 0.13 0.02 
s838 0.50 0.38 0.07 
s953 0.58 0.20 0.05 
s1196 0.52 0.17 0.03 
s1238 0.55 0.18 0.03 
s1423 2.07 0.75 0.15 
s1488 1.70 0.38 0.02 
s1494 1.65 0.43 0 
s5378 13.18 8.85 1.52 
s9234 34.57 54.10 3.52 
s 13207 60.85 70.52 15.38 
~15850 157.48 143.12 16.53 
s35932 599.48 543.50 80.58 
~38417 1090.40 922.40 102.77 
~38584 1801.98 682.45 78.58 

benchmark circuits are listed in Table X, where the time 
unit is in CPU seconds on a SUN SPARC 330 worksta- 
tion. 

For the benchmark circuits, it is to be mentioned that: 
1) The benchmark circuit s400 has one floating input 

and one floating output which have either no driver 
or no load. In the run results, a primary input and a 
primary output had been added. 

2 The benchmark circuits s9234, ~13207,  ~15850 ,  and 
s38417 have irregular circuit parts [3] which have 
no primary outputs, and the circuit functions have 
nothing to do with these circuit parts. 

VII. CONCLUSIONS 
In this paper, a study of fault collapsing for synchro- 

nous sequential circuits has been presented. Two phe- 
nomena, self-hiding and delayed reconvergence, are iden- 
tified which invalidate the combinational fault dominance 
relationship in sequential circuits. These phenomena are 
caused by the existence of feedback paths and storage ele- 
ments in sequential circuits. From this analysis, a single- 
fault fault-collapsing procedure for synchronous nonre- 
dundant sequential circuits has been proposed to reduce 
the faults that a test needs to be generated for. This pro- 
cedure can be applied not only to a non-scan-mode circuit 
but also to a full-scan-mode circuit and a partial-scan- 

mode circuit by cutting the inputs and the outputs of 
scannable D flip-flops as the primary outputs and the pri- 
mary inputs of the circuit, respectively. This procedure 
has been applied to collapse faults for 31 benchmark se- 
quential circuits, and a 57% reduction in the number of 
faults has been obtained. The set of collapsed faults de- 
rived by applying this procedure constitutes a sufficient 
representative set of prime faults for each circuit. It is 
believed that this is the maximum fault reduction so far 
reported for sequential circuits. 
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