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Department of Civil Engineering, National Chiao- Tung University, Hsin-Chu. Taiwan 30049 

SUMMARY 

Presented is a systematic procedure for generating impedance (or compliance) matrices for foundations with arbitrary 
shapes, resting on an elastic half-space medium. A technique to decompose prescribed harmonic tractions on the half- 
space medium is employed to solve analytically the differential wave equations in cylindrical coordinates. However, the 
interaction stresses due to the vibration of a foundation with arbitrary shape are described in rectangular coordinates, 
and assumed to be piecewise constant in the region of the arbitrary shape. A coordinate transformation matrix is 
introduced for the piecewise constant tractions in order to use the solution of the differential wave equations in 
cylindrical coordinates. Finite element modelling is assumed in rectangular coordinates for the foundation itself. The 
impedance matrix is then obtained for the finite element model, using a variational principle and the reciprocal theorem. 
A simple example of a rigid square plate resting on a half-space medium and subjected to vertical excitation is used to 
demonstrate the efficiency and effectiveness of the procedure. Some numerical aspects are investigated and some possible 
extensions of the procedure are also discussed. 

INTRODUCTION 

Soil-structure interaction is of importance in the seismic analysis of heavy and stiff structures, and in the 
dynamic analysis of machinery foundations. To deal with the soil-structure interaction problems, there are 
numerous methods; for example, hybrid modelling and boundary element method.1J In the hybrid 
modelling method, the far-field of a semi-infinite soil domain is represented by an impedance matrix at the 
interface of the far-field and the near-field. The impedance matrix is then combined with the finite element 
modelling of the near-field. In the boundary element method, Green’s function is used as a fundamental 
solution to generate the impedance matrix at the assumed boundary of the structure. 

Several analytical procedures are available for generating impedance functions for a foundation resting on 
half-space or layered half-space media. For the vertical vibration of rigid circular plates, for example, 
Robertson has developed a standard technique to reduce the dual integral equations of mixed boundary 
value problems to a Fredholm integral e q ~ a t i o n . ~  Luco and Westman calculated the compliance functions 
for torsional, vertical, rocking and horizontal vibrations of rigid circular plates by reducing the Fredholm 
integral equation to a set of algebraic equations using the finite difference m e t h ~ d . ~  Lysmer solved for the 
compliance function for the vertical vibration of a rigid circular plate by assuming that the interaction stress 
between the plate and the half-space medium was piecewise constant in the r-direction of the cylindrical 
coordinates.’ Veletsos and Tang used the same technique to generate the compliance function for the vertical 
vibration of a rigid ring foundation.6 For the case of a foundation with arbitrary shape, Wong and Luco 
divided the contact area of the foundation and the subsoil medium into several subregions and assumed a 
constant distribution for the contact stresses in each subregion. Green’s functions are then used to calculate 
the influence functions for the subregions. The impedance matrix is then generated using these influence 
functions.’.’ 
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This paper is concerned with the generation of an impedance matrix for a foundation with an arbitrary 
shape. In the process of generating the impedance matrix, analytically solving the wave equations is 
considered first. The contact region of the foundation and the half-space medium is divided into several 
subregions. In each subregion, the contact stresses are described in rectangular coordinates and assumed to 
be constant. The piecewise constant tractions on the half-space medium are then transformed into cylindrical 
coordinates and can be written in terms of an infinite series of Fourier components with respect to azimuth. A 
technique reported in Reference 9 is used to decompose each Fourier component into series of Bessel 
functions in the radial direction of the cylindrical coordinates, which can fit easily in the general solution of 
the wave equations. For the foundation structure, finite element modelling is employed, and the displacement 
shape function for each individual element is also described in rectangular coordinates. Then, a sub- 
structuring concept, the principle of virtual work and the reciprocal theorem are employed to obtain the 
impedance matrix for the finite element model of the foundation structure. In order to demonstrate the 
effectiveness and efficiency of the procedure presented, a simple example of a rigid square foundation 
subjected to vertical excitation is studied. Some features of the procedure presented are also elaborated. 

FORMULATION OF IMPEDANCE MATRIX 

In the analysis of soil-structure interaction problems, a substructure technique is often employed. This 
combines a finite element model of the foundation structure with an impedance matrix due to the 
surrounding soil medium. To generate the impedance matrix, an analytical solution of the general differential 
equations of wave propagation in cylindrical coordinates will be employed. However, for the cases of 
foundations with arbitrary shapes, the prescribed tractions (or contact stresses) are better described in 
rectangular coordinates in order to be compatible with finite element modelling of the foundation structure. 
Therefore, a coordinate transformation matrix is introduced. ,- subregion j 

/ 

Material Properties A, G, P 

Half-Space Medium 

Figure 1. Dynamic loading of half-space medium 
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A half-space medium with prescribed tractions having a harmonic time history at the surface z = 0 is 
shown in Figure 1. The shadow area, which is the contact area of the medium and foundation, is the region 
where tractions are imposed. The shadow area can be divided into several subregions. In each subregion, the 
prescribed tractions are assumed to be constant. 

where 

1, if point ( x ,  y )  in subregion j 
0, otherwise hj(x,  Y )  = 

m is the total number of subregions, 3 x 3m matrix H = diag (hT, hT, hT), vector PT = (qT, pT, sT), and qj ,  pj  and 
s j  are the stress intensities in the subregion j for Z,,, CZz and fyz respectively. (Since the time harmonic 
variation ei"" appears on both sides of the equations, it will be omitted hereafter.) 

Since it is easier to solve the general wave equations in cylindrical coordinates, the prescribed tractions in 
equation (1) are transformed into cylindrical coordinates and then expressed in terms of Fourier components 
with respect to 0 as follows: 

where T is the coordinate transformation matrix and can be expressed as 

cos0 0 sin0 

- sin0 0 cos9 
T = [  0 1 0 ] 

a, is the distance from the origin to the farthest point on the shadow area, matrix T; = diag (cos no, cos no, 
- sin no), matrix T: = diag (sin n6, sin n0, cos n9), and superscripts s and a denote the symmetric and anti- 

symmetric components with respect to the 0 = 0 axis respectively. Applying the orthogonal property of 
Fourier series to equation (2) gives 

an 

and 

where 

27r, if n = 0 
7r i f n = 1 , 2 ,  . . . ,  00 
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The general differential equations of wave propagation, presuming harmonic excitation, can be expressed 
in cylindrical coordinates as follows: 

a A  2 ~ a w ,  aw8 - w2pur = (A + 2G)- - - ~ + 2G- 
dr r 86 aZ 
a A  2G ~ ( T - W , )  2~ awr +-- 
a z  r d r  r d 0  

- O'PU, = ( A  + 2G) - (4) 

where 1. and G are the Lam6 constants, p is the mass density, o is the frequency, 

1 a(rur) 1 au, du, 
A = - -  +--+- r a r  r a6 az 

is the dilatation. and 

and 2w, = du,/az - du,/ar are the rotations. 
The solution of the governing equations [equations (4)] must satisfy the prescribed boundary conditions 

[equation (2)] and the radiation condition in the far-field. From superposition, it is sufficient to describe the 
procedure by solving the general equations of wave propagation just satisfying the boundary condition of the 
nth Fourier component in equation (2). (For convenience, the subscript n for the nth component, is sometimes 
dropped in the formulation that follows.) 

To solve equations (4), Sezawa has developed a technique to separate the dilatational and rotational waves 
in the general equations of wave propagation, and used the technique of separation of variables to obtain the 
general solution for the nth Fourier component (either a symmetric or an anti-symmetric component) with 
respect to azimuth." The general solution can be expressed in matrix form as follows: 

or 

where 

0 

(z-::) 
0 ( -  

T,u, = T,J,K,eA 

Jn 

0 

0 

sin n 8  
cos n6 

J,(kr) 0 :Jn(kr) 

:Jn(kr) 0 J,(kr) 
J, = [ 0 kJ,(kr) 0 

k - v '  0 
- V  k 0 
0 0 1  

vector A = (Al,  B,,  C,)= are unknown coefficients determined from the boundary conditions at z = 0, matrix 
e = diag(e-", e-"', e-""), v = J [ k Z  - (m2/c i ) ] ,  v' = J [ k z  - (mz/c,2)], cp and c, are the compressional 
and the shear wave velocities, k is the wave number in the radial direction, matrix T, represents either Tf, or 

TE, J,(kr) is a Bessel function of the first kind of order n, and Jb(kv) = 
d J  (kr)  

dr ' 
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The stress field is obtained by differentiating the displacement fieId of equation (5) with respect to the 
corresponding variables I, z and 0, and multiplying these by the constitutive matrix of elasticity. The stress 
components on the horizontal plane can then be expressed with matrix T, in equation (5) factored out as 

- 2 k G v  G(2k2-k,2) 0 
G(2k2 - k j )  - 2kGv' 0 

0 0 - Gv' 

t, = J,K,eA 

eA (7) 

Substituting z = 0 into equations ( 5 )  and (7), there is obtained the stress and displacement components on 
the surface of the half-space medium. Combining these two equations, the unknown coefficient vector A can 
be eliminated, and the displacement vector can be expressed in terms of the stress vector on the surface. This 
leads to equation (8): 

or 

U, = JQJ-'t,, where Q = K,K;l 

This derivation has shown that the displacement and stress fields in the half-space medium can be 
expressed in terms of the unknown tractions at the surface. To satisfy the boundary condition of the nth 
component in equation (2), one can decompose the nth component in the way of fitting in equation (8). A 
technique for doing this is reported in Reference 9. 

Let f, be the nth Fourier component (either i: or i:) of the prescribed tractions in equation (2). The 
tractions can then be decomposed as follows: 

where 
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The integrals on the right hand sides of equations (9) and (9aH9c) are Hankel transform pairs. 
Since the vectors (1,0, - l)', (0, 1, O)T and (1,0, l)T are the orthogonal eigenvectors corresponding to the 

eigenvalues - k J , + , ( k r ) ,  kJ,(kr) and k J , - , ( k r )  of matrix J, defined in equation (6), equation (9) can be 
rewritten as 

1 

f,, = j; - J, 1 O I j  C,+,(k)dk + 1: J, I!] C,(k)dk + 1: J, I!] C,-,(k)dk (10) 

Since the outward normal vector to the surface of the half-space medium is in the negative z-direction, one 
can conclude that in = - t,. Therefore, equation (10) can be substituted into equation (8) to obtain the 
displacement vector on the surface of the half-space medium. 

0 C,-,(k)dk 
1 'I 

or 
fx 

u,= J J,QC,dk 
0 

In equation ( l l ) ,  matrix Q defined in equation (8) is symmetric and can be written in explicit form as 
follows: 

where 

L o  0 
- 1  
Gv' - 

( 1  la)  

A = G(4k2vv' - (2k2 - k; )* )  

Also, after some mathematical manipulations, making use of equations (9aH9c), the identities of 
dJ,(x)/dx = [J , -  ,(x) - J,+ ,(x)]/2 and (n/x)J,(x) = [J.+ ,(x) + J,_ , ( x ) ] / 2  and equations (3), the vector C, 
can be written as 

1 1 

0 a, a, 

ao 2n 

c,= s, - - ; J,f,dr = Jo - f J, 1 T,THdBdrP ~ = D,P (12) 

This concludes the analytical solution for the half-space medium with the prescribed tractions of the nth 
Fourier component in equation (2). Also, it should be noticed that superscripts s and a are omitted in the 
derivation. 
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The complete solution for the prescribed tractions of equation (2) can be deduced by superposing all the 
solutions for n = 0, 1, . . . , co of both symmetric and anti-symmetric components: 

4, 

U =  n = O  C (T~uT, +Titi;)= n = O  (( TT, j r n  0 J,QDidk + Ti 1: J,,QD;dk)F' t) (13) 

In this equation, uT, and u i  are the corresponding solutions for f; and 1; respectively. Although equations (1 1) 
and (13) show only the displacements at the surface of the half-space, the same procedure can be applied to 
obtain the displacements and stresses in the half-space. 

To form the impedance matrix using equation (13), a substructuring concept is employed. Consider the 
half-space medium with the prescribed tractions of equation (2); the variational principle gives the virtual 
work of the system: 

where u is given by equation (13) and a more explicit form off, can be obtained by substituting equations (3) 
into equation (2): 

m 

f, = n = O  2 ((Ti 1: T;THdO + T i  1: T;THdO) p i )  

Substituting equations (15) and (13) into equation (14), and making use of the orthogonal property of Fourier 
components and the definition of D, in equation (12), equation (14) becomes 

+ J o  J o  HTTTT;dOJnrdrQD:)dkP 

" 0 0 1  
o n = O a ,  

= - 6PT 1 1 - (Di'QD: + D:' QD;)kdkP 

= SP'KP (16) 
Matrix Q of equation (l la) is symmetric, as is the matrix K in equation (16). 

the elements, the displacement field of the foundation can be written in the following form: 
For the foundation itself, a finite element method in rectangular coordinates is used. After assembling all 

w, Y) = w, Y)V (17) 

where matrix N is the assembly of the shape functions assumed in the finite element method, and v is the 
nodal displacement vector of the foundation finite element model. Applying the variational principle and 
making use of equations (1) and (17), the virtual work done is 

6 W = 1 SITudA = SP' I H'NdAv = GP'Bv 

where A denotes the area of the arbitrary shape of the foundation, and traction vector f and matrix H are 
defined in equation (1). 

By observing f of equation (1) and f ,  of equation (2), one concludes that f and f, are the same tractions, 
except that they are described in different coordinate systems. Equating equation (18) to equation (16) and 
cancelling out 6PT, the following equation is obtained 

or KP = BV (19) 

V = BV ( 194 
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where vector V is the generalized displacement at the subregions of the assumed piecewise constant traction 
model. Equation (19a) gives the relationship between the generalized displacement of the traction model of 
equation (1) and the nodal displacement of the finite element model of the foundation. The reciprocal 
theorem can be employed to obtain the corresponding force-stress relationship for both models: i.e. 

F = BTP (20) 
where vector F is the generalized nodal force of the foundation finite element model. Substituting P = K-'Bv 
from equation (19) into equation (20) yields 

F = BTK-'Bv = IV (21) 

The matrix I is the impedance matrix for the finite element model of the foundation. This impedance matrix 
can be incorporated into the total stiffness matrix of the finite element model of the structure for the analysis 
of soil-structure interaction. Matrix K of equation (16) is symmetric, as is the impedance matrix I. 

NUMERICAL EXAMPLE 

A simple example is used to investigate some numerical aspects of the proposed method: a rigid massless 
square plate resting on a half-space medium is subjected to vertically harmonic excitation. A relaxed 
boundary condition, which neglects the contact shear stress between the plate and half-space medium, is 
assumed in order to compare the results with that in Reference 7. Complex shear modulus G = G,(1 + 2ri) is 
assigned to the half-space medium in order to avoid the singularity situation in calculating matrix Q in 
equation (16) at the Rayleigh wave number. The hysteretic damping ratios (c) in the example are chosen to be 
0-02, 0.05 and 0.10, and Poisson's ratio is assumed to be 0.33. 

Gaussian quadrature is used in computing the matrices Di, D; and K in equation (16). To compute the 
matrices D; and D:, it is noticed that the integrations with respect to 8 can be obtained by closed-form 
formulae. To compute the matrix K, one encounters semi-infinite integration, with the integrand having an 
infinite series. However, after an extensive numerical study, it is concluded that the infinite integration limit 
can be replaced by a finite number without losing accuracy, and the infinite series of the integrand can be 
truncated by neglecting the high order components. In general, the replaced finite number of the integration 
limit should be increased with the number of components left in the integrand. For example, k = 300/h 
should be used to replace the infinite integration limit for the truncated integrand having all the components 
of n < 24. The compliances and frequencies presented in Figures 2-4 have been non-dimensionalized and are 
defined as C,,Gb and whlc, respectively, in which C,, and b are the vertical compliance and the half width of 
the square plate respectively, and c, is the shear wave velocity in the half-space medium. 

Only a quarter of the plate is used in modelling the system, since the square plate is symmetric with respect 
to the x- and y-axes. The accuracy of the results is dependent upon how many components are used for the 
truncated integrand in equation (16) and how fine the meshed contact region in equation (1) is. To address 
these problems, a numerical scheme is devised for the example. In the scheme, the contact region is always 
divided into subregions with equal size. Figures 2 and 3 show some of the results. Figure 2 compares the 
results by changing the number of subregions for the square contact area. Examining this figure, one can see 
that the model with 3 x 3 subregions has given fair results for the example. Figure 3 compares results by 
changing the number of components left in the integrand. It is concluded that all the components of n Q 8 are 
needed in order to obtain good results for the example. 

Therefore, the 3 x 3 subregion mesh of the square contact region and the truncated integrand of all the 
components n < 8 are assigned to the scheme of verification. Figure 4 shows the comparison of the results of 
the proposed method and that in Reference 7. In the figure, the present results are in fair agreement with the 
results in Reference 7, except for some 10 per cent disagreement for the imaginary part over the frequency 
range 07-2-7. However, one can see that the disagreement is becoming smaller as the hysteretic damping 
ratio t -, 0. This zero damping condition is presumed in Reference 7. Also, to generate one compliance using 
the proposed method with a 3 x 3 mesh and n < 8, the CPU time on a SUN IV work station is less than 
2 min. 
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Figure 2. Vertical compliances of different meshes (t = 0.05, n < 8)  
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Figure 3. Vertical compliances of truncated integrands (< = Q05, 3 x 3 subregions) 
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Figure 4. Comparison of vertical compliances (n < 8, 3 x 3 subregions) 

CONCLUDING REMARKS 

Based on the procedure developed and the numerical example carried out, the following suggestions can be 
made. 

The shapes of subregions for the piecewise constant traction model in equation (1) can be arbitrary, e.g. 
rectangular, triangular, . . . etc. This will make the contact stress model easier to fit in the arbitrary 
shapes of foundations. 
Although the distribution of the contact stresses is assumed to be piecewise constant, higher order 
distributions can be used in the proposed method without difficulty. These higher order distributions 
may reduce the number of subregions needed to attain the precision, and perhaps save some 
computational cost. 
The procedure can be extended easily to the cases of a layered medium. To do this, one just has to 
replace the matrix Q in equation (16) with the equivalent matrix of the layered medium. The equivalent 
matrix can be obtained using the transfer matrix between layers, as shown in Reference 9. 
Examining equation (16), one can observe that most of the computational effort is expended in 
generating the matrices DS, and D; which are the results of surface integrals. However, these matrices, in 
contrast to the counterpart in the boundary element methods of using Green functions or fundamental 
solutions, are independent of the complexity of the subsoil and the excitation frequency, since the 
changes of soil properties and excitation frequency are reflected only in the matrix Q of equation (16). 
This Q matrix is easy to calculate, even for a medium with multiple layers. Therefore, the method 
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presented should have an advantage over the boundary element methods in calculating the impedance 
matrix for a surface foundation, if the subsoil consists of many different layers. 

5. Furthermore, one also can calculate simultaneously several K matrices of equation (16) with respect to 
different excitation frequencies, if enough storage space in the computer is reserved for these K matrices. 
This means that one can generate several impedance matrices with respect to several different excitation 
frequencies at one time. This is because those matrices DS, and Di in equation (16) and matrix B in 
equation (2 1) are independent of the excitation frequency. Actually, the method presented, when 
compared to the boundary element methods, needs a smaller storage space in a computer. This feature 
of the method presented would further slash the computational cost of generating a foundation 
impedance matrix for soil-structure interaction. 
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