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Abstract: The independent error model is often 
adopted to simplify the analysis of ARQ stra- 
tegies. This assumption, however, is not true for 
channels where transmission errors occur in 
bursts. The limiting throughput efficiency of a 
class of continuous ARQ schemes with repeated 
transmissions is analysed under Markovian error 
patterns. The scheme without repeated transmis- 
sions, i.e. the classic go-back-N scheme, has been 
analysed in a previous paper. The results show 
that the throughput efficiency can be significantly 
increased by transmitting multiple copies of each 
data block contiguously to the receiver. The 
results obtained are also compared under Mar- 
kovian error patterns with those obtained under 
the independent error model. 

1 Introduction 

Automatic repeat request (ARQ) strategies are widely 
used to handle transmission errors in a two-way commu- 
nication system. The basic concept of ARQ is to detect 
data blocks with errors at the receiver and then to 
request the transmitter to retransmit the information in 
those erroneous data blocks. Stop-and-wait, go-back-N 
and selective-repeat are the three most popular ARQ 
schemes in use and have been extensively studied. Many 
modifications of these basic techniques [2-5, 9) were pro- 
posed to achieve a better performance for communica- 
tions over channels having high error rates. However, 
most of the results regarding the performance of ARQ 
schemes were derived based on the assumption of inde- 
pendent errors. This assumption, which greatly simplifies 
the analysis, is not true for situations where transmission 
errors occur in bursts, Markov error models are usually 
used to describe such channels. 

Leung, Kikumoto and Sorenson [12] analysed the 
limiting throughput efficiency of the go-back-N ARQ 
scheme under Markovian error patterns. By Markovian 
error pattern it is meant that the probability that a par- 
ticular data block arrives at the receiver with error 
depends on the outcome (success or failure) of the imme- 
diately preceding block. Let Xi denote the outcome of the 
transmission in the ith slot so that Xi = 0 means the 
transmission was a success and X ,  = 1 means the trans- 
mission was a failure. Then the error model studied in 
Reference 12 can be described by prob [X, + = 0 I X, = 
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01 = p and prob [ X , ,  = 1 I X ,  = 1 = q. In other words, 
the channel can be in one of two states, say state 0 and 
state 1. A transmission will be received without (with) 
error with probability 1 if the channel is in state 0 (state 
1). The state transition probabilities are controlled by the 
two parameters p and q. In this model, the average length 
of an error burst is equal to l/(l - 4). The quantity 
c = p + q was defined in Reference 12 as the clustering 
coefficient of the Markov system. It was found that the 
go-back-N ARQ scheme is more efficient for a Markov 
system than an independent error system if and only if 
( i f f )p  + y > 1. 

Lee 1131 studied the throughput efficiencies of the 
Sastry’s modified scheme [2] and the scheme proposed 
by Moeneclaey and Bruneel [9], under the same Markov 
error model. It was found that the Sastry’s modification 
is outperformed by either the go-back-N scheme or the 
scheme proposed in Reference 9. Moreover, the scheme 
proposed by Moeneclaey and Bruneel was shown to be 
more efficient for a Markov system than an independent 
error system iff p + q < 1. 

2 Investigated ARQ schemes 

The operation of the investigated ARQ schemes can be 
described as follows. A chunk of n (n > 1) or less copies 
of each data block are transmitted contiguously to the 
receiver. An error detection procedure is performed at the 
receiver on each received copy. A positive (ACK) or a 
negative acknowledgement (NAK) is sent to the transmit- 
ter according to whether the copy is received successfully 
or erroneously. The data block is considered to be suc- 
cessfully delivered as long as at least one of the copies is 
correctly received. If all the n copies of a data block are 
negatively acknowledged, then, just as in the classic go- 
back-N ARQ strategy, the transmitter goes back to that 
data block and sends another chunk of n or less copies of 
the same data block. n = 1 corresponds to the go-back-N 
scheme and n = a, corresponds to the scheme proposed 
in Reference 9. 

Assume all the data blocks are of fixed length and time 
is divided into slots so that the duration of each slot is 
equal to the transmission time of a copy of any data 
block. Transmissions and retransmissions can only start 
from slot boundaries. The round-trip delay r is assumed 
to be fixed and is equal to an integral number of slots. 
The round-trip delay is defined to be the time interval 
between the end of the transmission of a copy and the 
receipt of its response. The feedback channel is assumed 
to be noiseless for simplicity. 

Consider a particular (re)transmission of a data block. 
Clearly, if the round-trip delay is larger than or equal to 
n - 1, then all the n copies have to be sent before any 
response of the data block arrives at the transmitter. 
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However, if r < n - 1, then an ACK for the data block 
may return to the transmitter before all the n copies are 
transmitted. When this occurs, the transmitter will start 
transmitting the next data block rather than continuing 
transmitting the rest copies. Therefore, the phrase 'or less' 
was used in the description at the beginning of this 
Section. Fig. 1 illustrates the operation of one of the 

transmitter 

transmission 

receiver 

round-trip delay 

Fig. 1 
n = 6 : r = 3  

Operation oJinvestigafed ARQ scheme 

investigated ARQ schemes for n = 6 and r = 3. Notice 
that all the six copies of a data block have to be transmit- 
ted if the first two copies arrive at the receiver erron- 
eously (for example, see the transmission of data block i). 
However, it is also possible that less than the maximal 
allowed number of copies (six, in this example) are 
actually (re)transmitted. For example, since the first copy 
of data block i + 1 is successfully received, there are only 
four copies transmitted. 

3 Analysis of throughput efficiency 

Remember that the random variable Xi is used to denote 
the outcome of the transmission (or equivalently, state of 
the channel) in the ith slot so that X i = O  means the 
transmission in the ith slot is a success and Xi = 1 means 
the transmission is a failure. For convenience, let 

denote the channel state transition matrix. It can be 
shown that the matrix T can be decomposed into 

T = QAQ-' 

where 

1 1 - p  
Q = [ 1  q - l ]  

and 

A = [ '  0 p + q - 1  ] 
Therefore, the k-step transition matrix denoted by Tk is 
equal to QA'Q After some algebraic manipulation 

1 Tk = 

@ + q - l ) k  1 - p  p - 1  
+ 2 - @ + q )  [ q - 1  1 - q  

Let t!,{i, j = 0. 1) denote the (i,j)th entry of TI. For conve- 
nience, allow k to be zero and define tgo = tyl = 1 and 

Consider a particular value of n. The transmission 
sequence can be divided into cycles so that each cycle 
starts with n consecutive Is, i.e. an unsuccessful 

tgl = tyo = 0. 
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(re)transmission of a data block. Fig. 2 shows a typical 
transmission sequence for n = 3 and r = 4. For clarity, 
spaces are inserted in Fig. 2. 

Define the throughput efficiency q(n) to be 

number of data blocks successfully 
received by slot I 

1 
q(n) = lim 

1 - r .  

start of -cycle1 - c y c l e 2 7  

Fig. 2 

tionsm,*s,o" 1010 111 0100 000 110 001 111 1110 110 000011 101 111 
klength of cycle 14 n.3 r.i. 

Typical transmission sequence for n = 3 and r = 4 

where I is an integer. This definition is independent of the 
code used for error detection. The actual throughput eff- 
ciency is equal to qo q(n) where qo = k/m if a (m. k) code is 
used. Let a(n) and L(n) denote the average number of 
data blocks successfully transmitted in a cycle and the 
average length of a cycle, respectively. By the regenerative 
theorem [ I S ] ,  q(n) = a(n)/L(n). Therefore, the remaining 
work is to compute the values of a(n) and yn). 

Since each cycle starts with n consecutive Is, it is not 
hard to see that the value of L(n) is equal to GOLs(n) 
+ t ; lLdn),  where LJn) and L,(n) represent the expected 
cycle lengths conditioning on the transmission in the 
(n + r)th slot of a cycle is a success or a failure, respec- 
tively. Similarly, a(n) = t;o a, (n) + t;laF(n), where .An) 
and adn) denote the expected number of data blocks suc- 
cessfully received in a cycle conditioning on the same 
events stated for Ldn) and L,(n), respectively. The follow- 
ing two cases should be considered separately. 

Case I, n < r + I: When n < r + 1, all the n copies of 
each (re)transmission have to be sent. Let S , + ,  denote the 
event that the transmission in the (n + r)th slot is a 
success. Let A i ,  i = 1, 2,.  . . , n, denote the event that the 
first successful retransmission of the negatively acknowl- 
edged data block occurs at the (n + r + i)th slot. Clearly, 

Air represents the event that there is no data 
block successfully received in a cycle. 

The values of Ldn) and Ldn) can now be computed. 
Notice that, as far as the length of a cycle is concerned, 
there is no difference if the leading (n + r) slots of the 
cycle are deleted and the following (n + r) slots added 
(see Fig. 2). A recursive formula for L,(n) can therefore be 
expressed as 

L,(n) = 1 prob (Ai I S.+,)[n + t; i iLdn) 
, = I  

+ t ; ; 'Ldn)]  + (1  - p)q"-'(n + r) 
Since 



After some algebraic manipulations, eqn. 1 reduces to 

a,,L&n) + a,,L,(n) = n + 41 - p)qn-l (2) 
where 

pt&' + (1 - pW1 - q )  1 qit;G2--' 
i = 0  

and 

+ (1 - px1 - 4) 1 q i t " o 2 - i  
i = O  

Similarly, a recursive formula for L,(n) can be derived 
and another equation of Ldn) and LAn) can be obtained: 

a,,Ldn) + a22 &(n) = n + rq" (5) 
where 

" - 2  

aZ1 = -[(I - 4)~; ; '  + q(1 - q )  1 qit ; ; ;2- i ]  (6)  
i = O  

and 

As for the computation of a(n), since a(n) = t ;oadn)  
+ t;,ad(n), only the values of adn) and aF(n) are required. 

By similar derivations 

a,,a,(n) + alzaF(n) = 1 - (1 - p)qn-' 

a, , a&) + a22 adn) = 1 - q" 

(8) 

(9) 
It can be verified that a&) adn) iff [l -(1 
- ~)q"- l l (a , ,  + a,,) - (1 - 4 " ~ a , ,  + a,,) 2 0. Since a,, 
+ a2,  = q" and a,, + a12 = (1 - p)qn-', then a&) 2 

adn) iff p + q 2 1. Similarly, it can be verified that 
L,(n) 1 L,(n) iff p + q > 1. Let q,(n) represent the 
throughput efficiency for values of n belonging to case 1. 
Then 

and 

where L,(n) and Ldn) can be computed by solving eqns. 2 
and 5 and a,(n) and aF(n) can be computed by solving 
eqns. 8 and 9. 

Case 2, n > r + I :  When n > r + I ,  the transmitter may 
receive an ACK before all the n copies of a data block are 
transmitted. Therefore, the recursive formula for K,(n) 
can be expressed as 

Ldn) = p[r + 1 + tLo L,(n) + t'olLF(n)] + ( I  - p) 

x (1 - q)[r + 2 + t&,L&n) + t'olL,(n)] 

+ (1 ~ P)dl - q)Cr + 3 + tLo Ldn) + tL,L,(n)l 
+ . . . + (1 - p)qn-r-Z 

x Cn + tLoL,(n) + tL,L,(n)] + (1 - p)q"-'-' 
x (1 - q)[n  + t&lLdn) + t;;'Ldn)] 

+ . . . + (1 - p)q"-2(I - q ) [ n  + ~ , ( n ) ]  

+ (1 - p)q"-'(n + r) 

(1 - 4) 

(10) 

(1 1) 

After some manipulations, eqn. 10 can be reduced to 

b 1 1 ~ d n )  + bl ,  L h )  = X 
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where 

1 " - 2  

+(1 - p)(l - q)  qit",2- '  
i = n - r - l  

and 
n - r - 2  

X = p(r + 1) + (1 - pX1 - q) qi(r + 2 + i) 

nq' + (1 - p)q"-'(n + r) 
i = O  

" - 2  

+ (1 - p)(l - q)  
i = n - r - 1  

(14) 
A recursive expression for L,(n) can be similarly derived 
and another equation of Ldn) and Ldn) can be obtained. 
The result is shown in the following equation: 

bZlLdn) + bzz = Y (15) 
where 

and 
n - r - 2  

Y = (1 - q)(r + 1) + q(1 - q)  1 qi(r + 2 + i) 
i = 0  

" - 2  

+ q(1 - q )  1 nqi + q'(n + r) (18) 
i = n - r - 1  

The two simultaneous equations of adn) and adn) which 
are obtained from their recursive expressions can be simi- 
larly derived. The results are 

(19) bllas(n) + b 1 2 4 n )  = 1 - (1 - p)qn-' 

and 

Again, it can be verified that adn) > aF(n) and L,(n) 3 
Ldn) iff p + q > 1. Moreover, the throughput efficiency 
for values of n belonging to case 2, denoted by r/,(n), can 
be computed by 

where Ldn) and Ldn) should be computed by solving 
eqns. 11 and 15 and a,(n) and adn) should be computed 
by solving eqns. 19 and 20. 

It can be easily verified that aij = bij (i, j = 1, 2), 
X = n + r(l - p)q", and Y = n + rq" when n = r + 1. 
Therefore, q l ( r  + 1) = q2(r + l), which is a verification of 
the derivations. Besides, when n = 1, which belongs to 
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case 1, the throughput efficiency ~ ~ ( 1 )  is given by 

+ (1  - 4)CP + 4 - , ) ,+'I  
the same as eqn. 2.10 obtained in Reference 12. Finally, 
when p + q = I ,  which corresponds to the independent 
error model, the expressions of ql(n)  and q2(n) can be 
reduced to 

1 - q" 
V I ( 4  = - n + rq" 

and 

which were also obtained in Reference 1 1 .  
The above derivations for case 2 cannot be used to 

compute the throughput efficiency for the case when 
n = CO because all the values of LJn), Ldn), a&), and 
aF(n) become infinity for this case. A different approach is 
used here to compute qz(co). When n = CO, a new data 
block will not be transmitted until an ACK for the imme- 
diately preceeding data block arrives at the transmitter. 
The transmission sequence can therefore be divided into 
cycles so that each cycle ends with a 0, i.e. a successful 
transmission. Fig. 3 illustrates a typical transmission 

Fig. 3 Typical transmission sequence fur n = E and r = 4 

sequence for this particular ARQ strategy. Let bs and bF 
denote the average cycle lengths conditioning on the 
transmission in the rth slot of a cycle is a success or a 
failure, respectively. Then 

8, = r + p + 2(1 -pH1 - q)  + 3(1 - p )  

x q ( I - q ) + q 1 - p ) q 2 ( 1 - q ) + " ~  (24) 
After some manipulation 

1 - P  B s = r + l + -  
I - q  

The value of BF can be similarly computed and the result 
is 

It can be verified that /Is < B F  iff p + q 2 1. Since 
vz(w) = I /  (t 'oobs + W F )  

+ (1 - p)ll - ( p  + q - l)r+'] 
The same result was given in Reference 13 without deri- 
vation. 

4 Numerical results 

In this Section some examples are studied and the results 
for Markov systems are compared with those for inde- 
pendent error systems. For a Markov system with state 
transition matrix 

the stationary probability distribution is given by 
[ 1 - 4 1 - p]/(2 - p - 4). The effective block error 
probability for the corresponding independent error 
system is therefore equal to (1 - p)/(2 - p - 4). 

Fig. 4 shows the comparison of the throughput effi- 
ciencies of a Markov system and its corresponding inde- 

b I I \  
, 0 3 1  / \%O' 

' 0  4, 2 4 6 8 10 12 14 16 

muximal number of copies n 

Throughput efficiency against maximal number of copies Fig. 4 
I = 5, p = 0.1 
__ Markov error model 
~- independent error model 

pendent error system for round-trip delay r = 5 with 
p = 0.1 and q = 0.1, 0.5, and 0.9. There is only one curve 
for q = 0.9 because a Markov system is identical to its 
corresponding independent error system if p + q = I .  
The classic go-back-N ARQ scheme (n = 1) is less efi- 
cient for a Markov system than its corresponding inde- 
pendent error system when p + q < 1 [12]. The curve for 
q = 0.9 can be shown [11] to be monotonically increas- 
ing with q2(m) = 1/15. Besides, the maximum throughput 
efficiency of a Markov system is larger than that of its 
corresponding independent error system under the con- 
sidered values of p and q. For example, the maximum 
throughput efficiency is equal to 0.41 (which occurs at 
n = 2) for the Markov system and is equal to 0.241 
(which occurs at n = 3) for its corresponding independent 
error system when p = q = 0.1. 

Fig. 5 shows another comparison for p = 0.5. The 
same properties as stated for the curves shown in Fig. 4 

E l  ;" 0 3  

ob 2 1 6 b 10 1; 1; 1; 
maximal  number of copies n 

Throughput efficiency against maximal number of copies Fig. 5 
r = 5: p = 0.5 

~ .~ Markov error model 
~~~~ independent error model 

can be observed in this Figure. The only exception is that 
the maximum throughput efficiency of the Markov 
system is smaller than that of its corresponding indepen- 
dent error system when p = 0.9. Fig. 6 shows the 
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throughput efficiencies for p = 0.9. It can be seen that, 
under such a large value of p ,  the go-back-N scheme is 
the optimal choice for the Markov system. However, the 

O 6r 

01 , d  

0 2 4 6 8 10 12 14 16 
maximal number of copies n 

Throughput efficiency against maximal number of copies Fig. 6 
r = 5 ;  p = 0.9 

Markov error model 
independent error model 

~~ 

~~~~ 

optimal value of n could be greater than unity for the 
corresponding independent error system. Again, the 
maximum throughput efficiency of the Markov system is 
larger than that of its corresponding independent error 
system under the considered values of p and q. 

Figs. 7-9 show similar results for round-trip delay 
r = 10. The maximum throughput efficiency of the 

4r 

qz% 9 

'0 2 4 6 8 I O  12 14 16 18 20 
maxlmal number of copies n 

Throughput efficiency against maximal number of copies Fig. 7 
r =  1O;p = O  I 

~~ ~ independent error model 
Markov error model ~~ ~~ 

maximal number of copies n 

Throughput efficiency against maximal number of copies Fig. 8 
r = I O , p = 0 . 5  
~ Markov error model 
~ ~~ independent error model 
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Markov system is again smaller than that of its corre- 
sponding independent error system only when p = 0.5 
and q = 0.9 (Fig. 8). 

Figs. 4-9 show that the maximum throughput effi- 
ciency is in general greater than ql(l), the throughput effi- 
ciency of the classic go-back-N ARQ scheme. Moreover, 
the function q2(n)  converges rapidly to U*(%). Consider 
the curve for q = 0.1 in Fig. 9. This curve is a monotonic 
decreasing function of n of n 2 10 with q2( .c)  = 0.09. 
Consider the values of q2(11)  and ~ ~ ( 2 0 ) .  Intuitively, 
q2(1 1) can be approximated by 1/11 2 0.091 because for 
r = 10 all the 11 copies have to be sent in each transmis- 
sion and the probability that at least one of the 11 copies 
will be received successfully is equal to 1 - (0.1)" Y 1. 

-1- , 1 1 I 

01 

0 2 4 6 8 10 12 14 16 18 20 
maximal number of copies n 

Thruuyhput efficiency ayainar maximal number of copies Fig. 9 

~~ Markov error model 
~~~~ independent error model 

I =  in .  = O Y  

Similarly, q2(20) can be approximated by 1/[0.9 
~ : p , ( O . l ) ' ~ L  (10 + i) + 2 0 ~ ( 0 . l ) ' ~ ]  2 0.090. The values of 
q2(1 1) and q2(20) reveal that qz(n)  does converge to q2(%)  
very fast for this example. Similar arguments can be 
applied to the curves in the other Figures. As a result, 
q2(m) can be used as a good approximation of g2(n)  as 
long as n is moderately larger than r .  This observation is 
very helpful in searching for the optimal value of n. A 
final point which is worth mentioning is that, given the 
state transition matrix T, the optimal value of n tends to 
be larger as the round-trip delay increases. For example, 
when p = q = 0.5, the optimal value of n is equal to 3 for 
r = 5 and is equal to 4 for r = 10. 

5 Conclusions 

The limiting throughput efficiency of a class of contin- 
uous ARQ schemes with repeated transmissions has been 
analysed. It was shown that the throughput efficiency can 
be significantly increased by transmitting multiple copies 
of a data block contiguously to the receiver, especially for 
channels having large round-trip delays. The function 
q , ( n )  seems to be convex (if n is considered as a continu- 
ous variable) and the function q2(n)  seems to be either 
monotonically increasing or decreasing. However, to for- 
mally prove these properties seems very difficult unless 
p + q = I .  The performance of investigated ARQ 
schemes under other related error patterns can be further 
studied. 
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