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a[(2n + I)ao + nul + ( n  - I)a2 + (n - 2)a3 + ... + a , , ] / a ~  = 
a2[(2n + I)ao + nul + ( n  - l )az  + ( n  - 2)a3 + ... + a, , ] /8y2 

Therefore, at any time 

Thus, during the anodic potential step, the current varies between 
two limits corresponding to complete reversibility ( [ u ~ ] , , = ~  = 0, 
[all,-o = 1, ajs2...,, = 0): 

i ( t )  - 1 
FSPD’12 ( * t ) ’ / 2  

-- 

and complete irreversibility ([ao]y=o = 0, [aj=l . . .nly=~ = 0): 

2 n + 1  1 =-- i(t) 
FSPDII~ n + 1 ( T t ) l I 2  

In other words, the number of electrons per monomer passes from 
1 to (2n + I)/(n + I ) ,  i.e., to 2 when n is large (not taking account 
of the additional charging of the polymerI2). The same is true 
in cyclic voltammetry. 

Two types of calculations were performed for each mechanism. 
We first set all A’s equal to zero except XI, then all A’s were made 
equal to zero except XI and A,, X2 was made equal to XI, finally 
all A’s were made equal to zero except XI, X2, and X3, and X2 and 
X, were made equal to XI. The resulting R-k, C“0 curves are 
represented in parts Aa and Ba of Figure 4 for t i e  CR-CR and 
CR-S-irr mechanisms, respectively, while the resulting R-k,,@02 
curves are represented in Figure 5a for the CR-S-rev mechanism. 
The calculations could have been pursued for XI = X2 = A, = X4 
and (Xj),,4 = 0 and so forth, but we noticed that the R curves 

cease to vary appreciably in between the last two calculations 
(Figures 4Aa,Ba and 5a). 

In the second series of calculations we apply the condition XI 
<< ( X j ) j = 2 , 0 n  and considered the case where n - m. That amounts 
to replacing the preceding sets of partial derivative equations, initial 
and boundary conditions, by the following ones. 
CR-CR 

duo a2ao 
a7 ay2 
- = - + nXla12 

CR-S-irr 
a2ao 
ay2 

9 = - + nX,aoal 

aa, a2a, - -  2nXlaoal 
ay2 

CR-S-rev 
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Closed form solutions for the steady-state permeability P and the lag time L of a linear diffusion system with concurrent 
convection and reaction were obtained by two methods. In the first method, we identify the singularity at s = 0 of the Laplace 
transform of the total amount of diffusant, Q(s), released into the receiver as representaiion of the asymptotic diffusion behavior. 
P and L are then obtained from the time-independent coefficients of an expansion of Q(s) about s = 0. In the second method, 
we transform the convective-reactive diffusion equation into a form that contains only first and second derivatives of the 
concentration distribution function. By comparison of the resulting equation with that for a heterogeneous diffusion system, 
relationships of the convection velocity and rate constant with the position-dependent partition coefficient in heterogeneous 
diffusion is found. Taking advantage of the known solutions for permeability and lag time in heterogeneous diffusion, the 
corresponding expressions for P and L in convective-reactive diffusion are then obtained by transcription. These methods 
have the advantage over earlier approaches in that solutions in an infinite form are avoided. 

Introduction impulse transmission: and colloid flocculation.s In recent years 
Diffusion plays an important role in numerous processes, such some attention has been paid to the mathematical description of 

as chemical reactions in condensed phases,’ nucleation,2J nerve transient diffusion.- This requires complete solutions to diffusion 
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equations, which, however, apart from some simple cases, cannot 
be obtained in closed form. Therefore, one usually contents oneself 
with asymptotic solutions which provide information on the 
permeability and lag time, Le., the steady-state rate of mass 
transport and time required for the attainment of steady state. 
With these two parameters, one is able to estimate the total 
amount of diffusant released into the receiver over long times. 
Such an estimate is adequate for most practical applications. 

The lag time in simple homogeneous diffusion assumes a value 
of h 2 / 6 D , 9  where D is the diffusivity, and h the length of the 
diffusive path (thickness of membrane, etc.). Expressions for lag 
times have also been derived for more complex systems. For 
instance, Jaeger,Io by employing a Laplace transform, gave a 
routine (instead of an explicit expression) for the calculation of 
the lag time for thermal conduction across a multilayer slab. His 
procedure was followed by Barrie et aLI1 to calculate the lag time 
of mass diffusion in a three-layer slab. The pioneering work of 
Frisch12 yielded an elegant method to obtain the lag time for a 
system with concentration-dependent diffusivity without solving 
diffusion equations. This strategy was also used by PaulI3 to obtain 
the lag time for the dual absorption diffusion in polymer films. 
Later Frisch and  collaborator^"^^ and Chen and Fox18 formulated 
the lag time for a heterogeneous diffusion system characterized 
by a position-dependent diffusivity and partition coefficient. Chen 
and Rosenberger have recently extended the treatment to diffusion 
systems with serial and/or parallel paths19 and multiple and pe- 
riodic laminates.20 Earlier, employing Frisch's concept, Petro- 
poulos and Roussis studied the lag time in diffusion systems with 
time- and position-dependent anomalies2'.22 and the "directional 
diffusion lag time a ~ y m m e t r y " . ~ ~  

The lag time in a diffusion system with a linear reaction and 
sorption process has been studied by Ludolph et Their result 
is now superseded by that of Leypoldt and G o ~ g h , ~ ~  obtained by 
employing a finite Fourier transform. Keister and Kasting26 
treated convective diffusion in a constant electrical field (elec- 
trodiffusion) by a separation of variables method. They obtained 
solutions for the lag time in the form of infinite series, which 
require simplification based on the residue theorem in complex 
variable theory if  compact forms for P and L are desired. 

In this article we present two other schemes to obtain closed 
form solutions for P and L. In the first method we utilize Laplace 
transforms as originally suggested by Carslaw and Jaeger27 and 
solve the diffusion equation in the Laplace domain to obtain the 
total diffusant amount Q(s) released into the receiver. The as- 
ymptotic part of Q(s) is identified to correspond to the singularity 
at s = 0. The permeability and lag time arc then obtained in closed 
forms from the expansion coefficients of Q(s) around s = 0. The 
second scheme makes use of the method of change of variables 
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to transform the original convective-reactive diffusion equation 
into the form which contains only terms of first and second de- 
rivatives of the concentration distribution function. By comparison 
of the resulting diffusion equation with that for a heterogeneous 
diffusion system,lel* relationships of the convection velocity and 
rate constant with the position-dependent partition coefficient in 
heterogeneous diffusion is found. Taking advantage of the known 
solutions for permeability and lag time in heterogeneous diffusion, 
the corresponding expressions for P and L in convective-reactive 
diffusion are then obtained by transcription. 

Laplace Transform Approach 
Consider a convective-reactive diffusion process taking place 

in a membrane extending from x = 0 to x = h. The region x < 
0 is designated as donor compartment, and the region x > h as 
receiver compartment. During an experiment, the concentration 
of diffusant in the donor is kept at a constant level, po, while that 
in the receiver is kept a t  zero. Thus, an "infinite constant supply 
and sink condition" is imposed. The membrane is void of diffusant 
a t  the onset of the experiment. 

The mathematical description of the problem involves a dif- 
fusion equation of the form 

supplemented with the initial and boundary conditions 
P ( X , O )  = 0 (2) 

P ( O 4  = KPO (3) 

p(h,t) = 0 (4) 

Here, p(x, t )  is the diffusant concentration at  location x and time 
t ;  D, u, and K are the diffusivity, convective velocity, and rate 
constant of the first-order reaction, respectively. We assume that 
D, u, and K are positive and constant. K(0)  in eq 3 represents the 
partition coefficient characterizing the distribution of diffusant 
on both sides of the interface at  x = 0 and accounts for the 
continuity of the diffusant's chemical potential a t  this interface. 
The foregoing linear differential equation with constant coefficients 
can effectively be solved by a Laplace transform technique. In 
the Laplace domain, eqs 1-4 take on the forms 

a a 
ax2 ax Sfi (X,S)  = D- f i (X ,S )  - U-f i (X,S)  - K ~ ~ ( X , S )  (5) 

P(O,s) = p o K / s  ( 6 )  

fi(h,s)  = 0 (7) 
Here, a circumflex over a function designates its Laplace transform 
on t ,  e.g. 

p ( x , s )  L ( p ( x , t ) )  S-exp(-st)p(x,t) 0 dt (8) 

where s is a Laplace variable. Note that the initial condition (2) 
has been incorporated into eq 5, and the partial differential 
equation has been transformed into an ordinary differential 
equation. The solution to eqs 5-7 is found to be 

with 

q = 4 ( ~ / 2 D ) ~  + (s + K ) / D  (10) 

An experimentally measurable quantity, Q(t), the total amount 
of diffusant released into the receiver within time t ,  is defined as 

l'[ D F  - up(x , r )  Q ( t )  = f J ( h , r )  0 d r  = - d r  = 
1.x-h -If[ D?] d r  (11) 

x-h 
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where J(h,t) is the diffusion flux into the receiver, and the 
boundary condition (4) has been used. The Laplace transform 
of Q(t)  in eq 11 acquires the form 

Q ( s )  = -- 
x-h 

On substituting eq 9 into eq 12, one obtains 

exp( $) csch (qh) (13) 
PoDK9 

Q ( s )  = - 
S2 

In general, the total release Q(r) in a linear diffusion system 
subject to an infinite constant supply and sink condition consists 
of two parts: ( 1 )  The transient part, which decays with time 
eventually to zero, is a linear combination of terms in the form 
of exp(-Xit), where the As’s are the eigenvalues of the Sturm- 
Liouville differential equation associated with the method of 
separation of variables9 (2) The long-time asymptotic limit, which 
depends linearly on time, defines the permeability P and lag time 
L, respectively, as the slope of the asymptote and its intercept with 
the time axis. A combination of these two parts together gives 
Q(t)  in terms P and L as 

(14) 

To obtain explicit expressions for P and L, we take the Laplace 

DD 

Q(t )  = POP(? - L )  + E c i  exp(-Xit) 
i= I 

transformation of Q ( t )  in eq 14: 

Equations 13 and 15 are different expressions for the same entity. 
Equation I3 contains the parameters D, u, and K to characterize 
the convective-reactive diffusion, while eq 15 contains P and L 
to characterize its asymptotic behavior. Thus one can deduce 
relations of P and L-with D, u, and K from the following consid- 
eration. Note that Q(s) possesses a pole at s = 0, and an infinite 
number of poles a t  s = -Xi. The pole a t  s = 0 is of second order 
and accounts for the asymptotic part. The rest of the poles, on 
the other hand, account for the transient part. To obtain ex- 
pressions for P and L, the singularity a t  s = 0 is removed by 
multiplying eq 18 by s2 to obtain - s2ci 

+IS + Xi 
s2Q(s) = pop - p0PLs + c- (16) 

In the infinitesimal neighbor_hood around s = 0, where the as- 
ymptotic part dominates, s*Q(s) acquires the form of a Taylor 
series (instead of a Laurent expansion as in eq 15). Accordingly 

pop = Iim s2&) (17) 
S-0 

On substituting eq 13 into eqs 17 and 18, one obtains 
P =  

(20) 
Thus, we have derived expressions for P and L in convective- 
reactive diffusion without resorting to any solutions in forms of 
infinite series. All manipulations were performed in closed form. 
The advantage of using a Laplace transform in the formulation 
of P and L results from the fact that the asymptotic part corre- 

sponding to the singularity of order 2 a t  s = 0 can be singled out 
from the transient part. 

Change-of-Variables Approach 
In this section we introduce a change of variables to transform 

eq 1 into a form containing only terms of first and second de- 
rivatives of the distribution function. The resulting equation is 
then compared with the governing equation for a heterogeneous 
diffusion system to obtain an expression for position-dependent 
partition coefficient in terms of D, u, k, and K in eqs 1-4. Such 
a relation will enable us to formulate permeability and lag time 
for convective-reactive diffusion system simply by transcription 
from their previously derived counterparts in heterogeneous 
diffusion. To this end, p(x,t) is factored into a purely position- 
dependent part and position- and time-dependent part, namely 

p ( x 4  = A x )  flx,t) (21) 
Substitution of eq 21 into eq 1 results in 

Up to this point, the functional forms of f(x,t) and g(x) are 
unspecified. If g(x) is set to satisfy the differential equation 

(23) 
a 2  a 

D&x) - u,,g(x) - Kg(X) = 0 

then eq 22 reduces to 

ax 
For conciseness, we refer henceforth to a diffusant whose 

distributionflx,?) obeys eq 24 ‘asfdiffusant, and, correspondingly, 
to one that follows eq 1 and eq 23, respectively, as p and g dif- 
fusants. Note that in view of eq 30 the diffusivity remains un- 
changed on transformation from p diffusant to f diffusant. 

Now, imagine an f diffusant undergoing heterogeneous diffusion 
characterized by a constant diffusivity D and a position-dependent 
partition coefficient K(x). The diffusion equation for such a 
heterogeneous diffusion system is14*1s*18 

T-(x, t )  a = D&( K(x)& (25) 

or upon expansion 
a 
$x,t) = 

On comparing eq 24 with eq 26 term by term, one obtains 
a a u - ax In K(x) = -2- ax In g(x) + - D 

a 2  - ax2 In K(x) = 0 

The solution for K(x) in eqs 27 and 28 is 

(29) 
exp(ux/ D) 

[dX)l2 
K(x) = B 

where B is a constant to be determined. A combination of eqs 
27 and 28 gives 

The solution of both eqs 23 and 30 has the form 
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V - d G  
d x )  = A ~ X P (  20 x )  (31) 

where A is a constant to be determined. Without loss of generality, 
we set A = 1, which, in turn, implies that the boundary conditions 
for g(x) in eq 23 are 

g(0) = 1 (32) 

On substituting the boundary conditions (32) and (33) into eqs 
2-4, one sees that f(x,r) in eq 24 possesses the same initial and 
boundary conditions as p(x,r). Specifically 

f(X,O) = 0 (34) 

f (0J )  = KPO (35) 

f ( h , t )  = 0 (36) 
Substitution of g(x )  in eq 31 with A = 1 into eq 29 yields 

K ( x )  = Bexp ITXI (37) 

At the interface x = 0, the partition coefficient K is given by eq 
35 and, thus, from eq 37, B = K. As a result, the partition 
coefficient for the f diffusant in heterogeneous diffusion takes on 
the position-dependent form 

K(x) = Kexp( d C D  x) (38) 

To obtain relations for the permeability and lag time in con- 
vective-reactive diffusion, we compare the time development of 
the total diffusant released into the receiver in the long-time limit 
for a p diffusant, Q ( P ) ( t ) ,  with that of an f diffusant, @ ( t ) .  This 
yields 

where the boundary condition (4) is used and J’P)(x,t) denotes 
the diffusion flux (at location x and time t). Substitution of eq 
21 into eq 39, with the help of eq 36, yields then 

This simple proportionality relationship between Q(P)(t) and 
Q @ ( t )  holds for any t > 0. Specifically, in the long-time limit, 
we have 
Iim Q ( p ) ( t )  = poP(P)(t  - L ( p ) )  = 
I-- 

U - d G  
~ X P (  20 h )  !iy Q@(4 = 

which indicates that 

L(P) = La (43) 
Expressions for the permeability and lag time in heterogeneous 

diffusion, in which both the diffusivity and partition coefficient 
are position dependent, have been derived previo~sly.’~*’~*l* For 
constant diffusivity the expressions are 

(44) 

On substitution of eq 38 for K(x) into eqs 44 and 45 one obtains 
for the permeability for the f diffusant and lag time for thefand 
p diffusants 

= 1 -exp(- d z  h ) )  -I (46) 

pf’ = L(P) = 

(47) 
Substitution of eq 46 into eq 42 results then in 

p(P) = - ~ K D  X 2 0  exP 

E[exp( h &h)( d m h )  csch ( d m h ) /  

As expected, P and L obtained through the change of variables 
are identical to those resulting from Laplace transform, eq 20. 

Discussion 
The system dealt with above represents a prototype interplay 

between convection, reaction, and diffusion processes, of which 
convective diffusion, reactive diffusion, and simple diffusion 
systems are special cases. Hence, P and L for each subsystem 
should be derivable from our general expressions. For reactive 
diffusion, with u = 0 eqs 48 and 47 respectively give 

Equation 50 was derived earlier by Leypoldt and GoughZs using 
a finite Fourier transform. 

For convective diffusion, we chose, for comparison, an ionto- 
phoresis (electrodiffusion) system, in which an constant external 
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electrical field E is applied to enhance the permeability for ions. 
The convection velocity in this case is 

v = DZFE/RT (51)  

where Z is the valence of the ions, F the Faraday constant, R the 
universal gas constant, and T the absolute temperature. Sub- 
stitution of eq 51 into eqs 48 and 47 with K = 0 results in the 
solution obtained by Keister and Kasting:26 

P = "I( h @h) csch ( z h ) l  (52) 

ZFE 

With respect to simple diffusion, which corresponds to v = 0 
and K = 0, both eqs 47 and 48 yield indeterminate forms of O/O. 
This difficulty, however, can be removed by applying the following 
series expansion:28 

x 7x3 
6 360 "' 

xcsch X =  1 - - + - - (54) 

(55) 
x2 x4 
3 45 

x coth x = 1 + - - - + ... 
with 

Substitution of eq 54 into eq 48 and eq 55 into eq 47, respectively, 
and taking the limit x - 0, the well-known expressions P = KD/h  
and L = h2 /6D are recovered. 

As revealed by eq 47, L is symmetric with respect to the di- 
rection (or the sign) of the convection velocity u and is independent 
of the partition coefficient K. The reciprocity of the lag time in 
a general convective-reactive diffusion has been proved mathe- 
matically in terms of the symmetry of the related Green's function 
with respect to the exchange of coordinate variables.29 On the 
other hand, according to eq 48, P is proportional to K and dis- 
symmetric with respect to the direction of u. Thus the permea- 
bilities for forward and reverse direction, pC+) and PC-) can be 
related as 

(28) Spiegel, M. R. Mathematical Handbook, Schaum's Outline Series; 

(29) Chen, J .  S.; Rosenberger, F. Chem. Eng. Commun., in press. 
McGraw-Hill: New York, 1978. 

In (fi+)/p-)) = v h / D  (57) 
which results from eq 48 on altering the sign of u. In the ion- 
tophoresis experiment, eq 57 can be transformed with eq 5 1 to 

This relation can be used to determine the thickness of the 
membrane from the measurement of pC+) and pC-). 

Siege130 also used a Laplace transform, though in a different 
approach, to derive a lag time expression for a diffusion system 
governed by a linear equation with source terms. He obtained, 
written in our notation 

(59) 

where Jsjs the steady-state diffusion flux. With J, = pOp and 
J(s )  = sQ(s), eq 59 is essentially identical to our eq 18. 

The expression for lag time in eq 47 also reveals an interesting 
formal similarity between diffusion lag time and electric polar- 
ization. With eq 56, eq 47 can be rewritten to 

where L b )  is the Langevin function encountered in the theory 
of induced electric polarization. Though the connection between 
these two physical entities may be remote, eq 60 is still useful for 
mnemonic purposes. 

In conclusion, we have obtained closed form solutions for the 
permeability and lag time of a diffusion system with convection 
and reaction. The Laplace transform and change-of-variables 
techniques have the advantage over earlier approaches that involve 
explicitly solving the relevant diffusion equation and manipulating 
the solution (usually in the form of infinite series) into a closed 
form. However, there is no guarantee that closed forms for lag 
time can be extracted from such infinite series solutions.29 
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