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A steady-state solution that describes pulse propagation in inhomogeneously broadening two-level atoms embed-
ded in a dispersive and nonlinear Kerr lossless host medium has been found. The solution is of an unchirped
hyperbolic-secant form with a linear spatial phase delay. The features of the solution are (i) the group velocity,
the amplitude, and the width of the pulse are uniquely determined for given parameters of the medium and the
carrier frequency; (ii) the group velocity is independent of the density of the resonant atoms; and (iii) the solu-
tion can exist in the positive dispersion region.

Self-induced transparency was first investigated by
McCall and Hahn,' who found that a short light
pulse above a critical input energy can propagate
through resonant atoms without loss and distortion.
Eberly and Matulic2 extended McCall and Hahn's
theory to include the Kerr effect in the host medium.
They found that an undistorted lossless single pulse
is still possible, but the pulse is necessarily chirped.
On the other hand, Hasegawa and Tappert3 have
proposed the utilization of the nonlinear dependence
of the index of refraction on intensity to overcome
the dispersive spreading, so that it is possible to
have a distortionless optical pulse propagating in
fibers. In this Letter we consider the pulse propa-
gation in resonant atoms embedded in a dispersive
and nonlinear Kerr host, i.e., a composite medium
with combined characteristics considered previously.
We have found that the steady-state solution is an
unchirped hyperbolic-secant form with linear spa-
tial phase delay. Its amplitude, pulse width, and
propagation velocity are determined uniquely if the
medium parameter value is given.

The electric field of the optical pulse propagating
along the z direction in such a medium is assumed
to be linearly polarized in the x direction and can be
expressed as

E(z, t) = x1 2q(z, t)exp{i[koz - coot + /(z, t)]} + c.c.,

(1)

where q(z, t) and O(z, t) are the amplitude and phase,
respectively, Co is the carrier frequency, and ko is
the wave number at coo. The macroscopic polariza-
tion due to the resonant atoms is taken to be

Pr(Z t) = 2 [U(z, t) + iV(z, t)]

x exp{i[koz - toot + O(z, t)]} + c.c., (2)

where U and V correspond to the dispersion (in phase)
and the absorption (in quadrature) components, re-
spectively. The wave equation for this problem can
be written as

a2 E (a2D,
aZ2 = 1 at2

+ at2 +a2p+ at2, (3)

where D, is the linear displacement and D, =
n2(co)eoE, with n(co) the refractive index of the dis-
persive medium; Dfl is the nonlinear displacement
for the nonresonant host and Dn1 = 2n2noElElE2E,
with no = n(co), Eo and Ao denote the permittivity
and permeability in a vacuum, respectively, and n2
is the Kerr coefficient. The resonant atom is con-
sidered to have two energy levels with transition
frequency cor. If we define Aco = cOr - No, the
macroscopic polarization components contributed
from atoms of the whole range of Aco are

U(z, t) = f u(Aco, z, t)g(AN)d(Aco),fco

V(z, t) = fJ v(AN, z, t)g(Aw)d(lAw),

(4a)

(4b)

where g(Aco) is the inhomogeneous broadening nor-
malized line-shape function with I '. g(AcN)d(AcN) = 1,
and u and v are the polarization components of the
atoms with frequency ANC detuned from coo. Follow-
ing the same procedure of Ref. 4 for derivation of
the a2D,/at2 term, using the slowly varying envelope
approximation for the a2 Dn,/at2 and a2Pr/at2 terms,
and making the coordinate transformation t = z,
T = t - z/vg, we can obtain from Eqs. (1)-(4) the fol-
lowing differential equations:

-qao + aq-dg af
+ a q _q()2] + rq3

= -S f u(A, ,r)g(AN)dAw, (5a)

aq -aq _____ ' + qa.
g- a sr 7 v((2 Ad Ad d o aT2(

= -S f .V(AW,f,T)g(AN)dAN@, (5b)
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ko"'= 2 a

P = 2 - koko- ko 2) 2ko,

s = /ocoo2 /2ko.

The equations of motion of u and v and the popula-
tion difference w are Bloch equations,'

an (a_

+ A@o),

av = -(u + AO) + qw,

aw Aaw= - Nu,

cA 2f (Aco))W = Wo - C2 2(z) q~rA) (12)2(h)2 ( 2
In what follows, we consider the solution of distor-

tionless amplitude, i.e., q is independent of e but
the phase 0 is allowed to depend on r and f. With
this assumption, we can write aq/ar = dq/dr = q
a2 q/ar2 = d2q/dr 2 = q, and aq/la = 0. By substitut-
ing wi(,,r), v,(g,ir), and ui(g,1-) as functions of q(r-)
derived above into Eq. (11), we have

d2q [ a2 (a 2 C 2(h)C2d 72[= 1 Cla + k- q - )2q . (13)

(6a) From Eq. (13) we know that a4k/ar is a function of r
only; from Eq. (6a) for distortionless propagation, it
is seen that acf/ga is also a function of r only. Since

(6b) a2'oaraf = (a/ar) (a4/a°) = (a/da) (a4/ar) = 0, which
implies that acf/a6 must be a constant, we write
ak/at = Ako. For the distortionless amplitude solu-

(6c) tion, Eqs. (5a) and (5b) reduce to

where w is in the unit of A per unit volume and A. is
the dipole matrix element of the individual atom.
Here we assume that phenomenological relaxation
times are long compared with the pulse duration
and may be ignored.

In order to obtain the analytic solution, we assume
that v(Aco, z, t) is in a factorized form

v(Aco,z,t) = v((7,T)f(O),

where f(Aco) is known as the dipole spectra response
function' and is normalized as f(O) = 1. Integrat-
ing Eq. (6a), we have

U(A)o, 6,T) = [Ul(6,T) + u2(g,T)A&)]f(A&o), (8)

where u, and U2 are defined by aul/la = vi(ao/ar)
and a/l-2/la = vi, respectively. Similarly, by inte-
grating Eq. (6c), we obtain

w(Aco, g,T) = Wo - Wi(~,)f(AcO), (9)

where wi(e,) is defined by aw,/aT = ( 1I./h)qv, and
wo is the initial population difference and is as-
sumed in the ground state, i.e., wo = NoA, with No
the density of the resonant atoms. Substituting
Eqs. (7)-(9) into Eq. (6b), we have

do /J o
av, = -iA,.. 2 alo 'A& + qlf (A &Ai

-al hqwl. (10)
aT [ -T h u ~ 2 a ~ w ~ i

The terms in the square brackets in Eq. (10) should
be independent of ACo because the other terms in
Eq. (10) are independent of Aco). Therefore, we have
f(AcA) = (1 + ClAtt + C2 Ac 2)-', ul = c,(two/h)q -
u2(aO/ar), and U2 = c2(btwo/h)q, where cl and c2 are
constants to be determined. Then Eq. (10) reduces to

a = (wo - wi)q - ul -
a~r -(w a1 -

(11)

The population difference can be found by substitut-
ing vl = (au2 /ar) and U2 = c2(1.two/h)q into Eq. (6c),

-Akoq + aq-a + G[d 2q _ qa(p 2 + rq 3

= -s [I (c1 -C2 d+

-a q + ,j2dq ab
d \ dr ar + qad)

+ c I,] !LW q (14a)

/SLwO dq
h dr

(14b)

where

I,= E f(Aco)g(Ato)d(Aco),

2 I= 7 A&)f(Aw)g(Aco)d(A&)).

Integrating Eq. (14b), we obtain ao/ar = f + diq-2,
where fl and di are constants. By using this rela-
tion and substituting Eq. (13) into Eq. (14a), Eq. (14a)
becomes a polynomial equation including only the
terms q 3, q-1, q1, and q3. This polynomial equation
is valid only when the coefficient of each term is
zero. These conditions give the following results:

(i) di = 0, i.e.,

(15a)
aT

This means that the carrier frequency of the pulse is
shifted to co = coo - f and the pulse is unchirped.

(ii) f(1 - 2c2) = (Ako - al + 3f12)c2

- s(fIl + 12)- C2 .
h

(15b)

Here we have used the relation c, = 2Mc2, which
can be obtained by definitions of al and U2.

(iii) r = 2(h)2 (15c)

From Eq. (15c), the pulse propagation group velocity

where

k =ak

aoea = - '
Vg

C

(7)
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is given by

vg = [4n2C6o(h)2ko + k0 ,2 + koko"].
x (a

(16)

To2 = O 2t {[1 + ko (ko" + ke")] -_1

+ 2 ) '
The group velocity is uniquely determined by the
parameters of the medium and the carrier fre-
quency, and it is independent of the density of the
resonant atoms. This is different from McCall and
Hahn's finding that the group velocity varies with
the pulse width and depends on the density of the
resonant atoms. In a recent paper, Brains et al.5

have found that the group velocities of the self-
induced transparency beyond the slowly varying en-
velope approximation in a linear host medium form
a discrete set. In our system, only a single velocity
is allowed. From Eq. (16), we know that it is pos-
sible to have distortionless propagation at ko" > 0;
this is different from the soliton propagation in opti-
cal fibers, for which only dark solitons can exist in
the positive dispersion region.6 From Eqs. (14b)
and (15a), we have

-a + 2pfl + - c2swOI1 = 0. (17)

The constants Ako and c2 can be determined from
Eqs. (15b) and (17). The solution of the electric
field can be obtained from Eq. (13),

E(z, t) =2 sech ( Z/ exp{i[(ko + Ako)z

- coot + M(t - z/vg)]}, (18)

where To= (1/c 2 - fl)-1 1 2 is the pulse width. We
can substitute Eq. (18) into expressions for u, v, and
w and obtain

u(Aco, z, t) =

V(Ac, Z, t) = -

W (A)C, z, t) =

f(Aco) (fl + Aco) T0(T0-2 + Q2)

x sechQ To )'

2No+ t
f(Ac) T0

2(T 0-
2 + n2)'

(sech tanh ) - Z/V

wO - f(A)) T02(T-2 + n2)

x sech2(t Tz/o )

where

f(Aco) =1 + 2 f(To 2 + Q2 )Aco + (To-2 + fQ2)A0)2

For simplicity, we consider the case of fl = 0 and
Lorentzian line shape inhomogeneous broadening,
i.e., g(Aco) = (Acoa/2'rT)/[A0c2 + (AC a/2)2], where AC),a
is the FWHM of g(Aco). Then from Eqs. (15)-(17)
we have

where

cot = 2kohko( t ) 1

and

Ako = 2n 2 c0o(h)2

A2 cTo 2

4n2e Co(h)2
ke'= 2

(20b)

There exists a minimum ko" = -ke" such that when
ko"t < ke", the steady-state pulse cannot exist. The
existence of a soliton solution in the positive disper-
sion region can be seen from the term 1(4 _ 4q2)
in Eq. (14a), where /3 > 0 when ko0 > -ke" and

-(q _ 42) is equivalent to the negative dispersion
term although ko" is positive. Eberly and Mutalic2

have found that a distortionless pulse is possible
in a nonlinear, nondispersive medium, but the
pulse is necessarily chirped. The case considered
by them is a special case of ours when ko" = 0.
When ko" = 0, we still have an unchirped solu-
tion. The difference is because they have neglected
the 8(4 - 4q2) term, which is important in our
treatment.

For the case a+/ar = f • 0 and homogeneous
broadening, we can obtain the pulse width To as

To=

{[1 + ko/ko'2(ko"l + ke )]/ 2 -_fke"/ko' - 1 }

(21)

In summary, we have found a steady-state solution
for the pulse propagating in resonant atoms embed-
ded in a dispersive and nonlinear Kerr host medium.

(19a) The pulse is of an unchirped hyperbolic-secant form
with a linear spatial phase delay. There are several
salient features in this solution that are different
from the results obtained previously. First, for
the given parameters of the medium and carrier
frequency, the group velocity, the amplitude, and the
pulse width are uniquely determined. Second,

(19b) the group velocity is independent of the density of
the resonant atoms. Third, the solution exists in
the positive dispersion region, which is different
from solitons in fibers.
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