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Exciton binding energy in a GaAs/Al„Ga& „As quantum well with uniform electric field
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The efFects of a uniform electric field on the binding energies of excitons and the subband energies in a
GaAs/Al Gal As quantum well are studied by a perturbative variational approach. Our calculation is
based on an e8'ective-width infinite-well model. The eftective-mass mismatch is also taken into account.
Our results show that the electric field causes a large shift of the subband energy and exciton peak posi-
tion. The calculated results are compared with the data observed from an optical-absorption experi-
ment. Satisfactory agreement is obtained.

I. INTRQDUCTIQN

Recently, growth of alternately thin-layered semicon-
ductor heterostructures with controlled thicknesses and
relatively sharp interfaces has become possible. More re-
cently, much effort has been devoted to the study of the
exciton states in these one-dimensional periodic struc-
tures and quantum wells. ' ' A knowledge of the exci-
ton binding energy is crucial to the interpretation of the
photoluminescence spectra and photoluminescence exci-
tation spectra, which are used to determine the electronic
properties of heterostructures. The exciton binding ener-

gy is also important because it is now possible to make
the layers so thin that some quantum-confinement effects
of electrons and holes can readily be seen. For example,
in bulk GaAs, the exciton resonances can be observed
only at low temperature. At room temperature, excitonic
resonances are very weak and thus nonresolvable. How-
ever, in multiple quantum wells, one remarkable
phenomenon happens —the exciton resonances can be
clearly observed at room temperature. When the electric
field was applied in the direction perpendicular to the lay-
ers of molecular-beam-epitaxy- (MBE-) grown multiple-
quantum wells in a p-i-n doped structure, the field-
induced absorption was observed to have a large shift to
lower energies accompanied by some broadening. '

This exceptional quantum-confinement Stark efFect has
received a lot of attention for devices because it is a very
large electroabsorption effect even at room temperature.
This efFect makes possible the fabrication of low-energy
optical modulators and switches. Many authors '

have devoted their efforts to studying the mechanism of
the quantum-confinement. Stark effect. Most of the
theoretical works are usually based on the application of
the conventional perturbation method, the traditional
variation principle, Monte Carlo techniques, and exact
numerical approaches. A method based on the Monte
Carlo technique and variation principle was developed by
Singh ' and Singh and Hong to study the ground-state
problem in an arbitrary quantum well. An extensive cal-
culation on several variants of the single-subband model
of the infinite and finite wells with interwell Coulomb
effects were reported recently by Mo and Sung. Gal-
braith and Duggan ' reported a variational calculation of

the external-field efFect on the exciton binding energy in a
double-quantum-well model. Zhu investigated the
effects of the heavy- and light-hole mixing on the exciton
spectra of a quantum well in the presence of the electric
field by taking account the different exciton spinor com-
ponents. The agreements with the experimental data of
these theoretical works are, in general, only qualitative.
It is, therefore, interesting to employ different theoretical
treatments to study the exciton binding energy of a GaAs
quantum well with uniform electric field.

In the present work, we propose a simple but much
more efficient approximation method to study the bind-
ing energy of the exciton in a type-I heterostructure with
an electric -field. For the purpose of illustration, numeri-
cal calculation will be performed only for the GaAs quan-
tum well. This is because the experimental data for the
GaAs/Al„Ga& As quantum well is abundant.

II. THKGRY

We consider a Wannier exciton in a GaAs quantum
well sandwiched between two semi-infinite Al Ga& As
slabs in the presence of a uniform electric field I' along
the positive z direction (i.e., perpendicular to the material
layers). The origins of distance and of electrostatic po-
tential are chosen at the center of the well. To write
down the Schrodinger equation, it is convenient to retain
the z-direction-motion Hamiltonian but transform the
in-plane motion Hamiltonian into plane-relative coordi-
nates: x =x, —xl, and y =y, —y&. This is because the ex-
citon in-plane (x,y) motion is free except for the
Coulomb potential. Then under the effective-mass ap-
proximation and by dropping the plane center-of-mass-
coordinates part, the Schrodinger equation can be ex-
pressed as

where the exciton Hamiltonian H is
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The H, or HI, are Hamiltonians for an electron or a hole
in a one-dimensional confinement potential well acting
under a uniform electric field. The H „ is the Hamiltoni-
an for a two-dimensional hydrogen atom. The
Schrodinger equations for H„Hh, and H „can be solved
separately.

For H „,the eigenfunctions can be solved exactly as

2
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where +, , is the exciton envelope wave function, E,„, is
the exciton energy and Eg p is the band-gap energy of the
material that forms the well, and
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is the in-plane reduced mass. Eg p
will be assumed to

remain constant under the electric field. The variable
r, (rh ) is the electron (hole) position vector, m,*, (ml*, , )

is the electron (hole) effective mass along the z axis,
m,*~ (m&~ ) is the electron (hole) x,y plane effective mass.
These masses, are, in general, different in the wells and in
the barriers, hence they are z dependent. The kinetic en-
ergy has been written, for z-dependent masses, in a way
which restores the Hermitian character of the Hamiltoni-
an. V, ( Vh ) is the barrier height confining the electron
(hole). B(x) is the unit step function: B(x)=0 for x (0,
B(x)=1 for x )0, and L is the well width. The dielectric
constant k contained in the electron-hole Coulomb in-
teraction term is assumed to be z independent. We shall
neglect image effects to simplify the problem.

Equation (2) cannot be solved exactly; the usual
method for solving this problem is the variational ap-
proach. ' Here, we shall employ a different approxi-
mation approach, namely, the perturbative variational
method (denoted as PVM} to study this problem. This
method has been successfully applied to calculate the im-
purity level ofboth isotropic and anisotropic semi-
conductors. Following the treatment of the PVM, a term
of —

A,e /k(x +y )' is now added and subtracted from
H. H is then divided into three terms:

with n =0, 1,2, 3, . . . and m =0,+1,+2, +3, . . . and X„
is the normalization constant

2
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The eigenenergies for H„are
pyA, e

v 2k2g2(n + 1 )2
2
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where R *=p~e /2k A' is the eff'ective Rydberg calculat-
ed with transverse effective reduced mass p~.

For the Hamiltonians H, and H&, one can see that the
potential-energy term in Eqs. (4a) and (4b) tends to + ao

as z goes to + ~, so that the solutions of the Schrodinger
equation are restricted by a boundary condition that re-
quires the wave function to vanish at infinity. On the
other hand, the potential tends to —~ as z goes to —~,
so that the system does not, strictly speaking, have true
bound states. ' In other words, the carrier initially
confined in a well can always lower its potential energy
by tunneling out the well when the field is not zero.
However, provided the electric field is not too strong, we
still expect to see resonances associated with the so-called
"quasiband" states. ' Although the actual state of an
isolated quantum well with an electric field is quasibound,
it may be approximated by a bound state if the applied
field is not too strong so that the lifetime ~ of the carrier
in the well is long enough. Thus one can neglect the es-
cape of the carrier outside the quantum well. ' ' We
will use the bound-state approximation to study the sub-
band energies in a quantum well. For the
GaAs/Ga, Al As superlattice, the conduction-band-
edge offset Vo is about 85% of the band-gap difference
between GaAs and Ga& Al„As, thus electrons in the
conduction band of GaAs are located, in general, in a
quantum well with finite barrier height Vo.

Therefore, for our problem the Schrodinger equation
for subband energies of the electric (or the hole) in a
finite-barrier-height quantum well with a uniform electric
field can be expressed as
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where

We shall employ a simple perturbation approach pro-
posed by Lee and Mei ' to solve Eq. (6). The main idea of
this approach is to treat the finite-height-barrier
potential-well problem as the approximation of the corre-
sponding infinite-height-barrier potential-well problem
with a broadened well width L +25, where 5 is the
penetration depth.

To find out the penetration depth, let us first assume
the electric field is so weak that the bound-state approxi-
mation holds. Then the wave function inside the quan-
tum well can be approximated as

PF(z)=c exp j K(z)dz (7a)

0 for —L/2 —5L ~z ~L/2+5~
V otherwise . (9c)

The solution of Eqs. (6a) and (9c) can be expressed as

P„(z)=a„Ai(rl„)+P„Bi(g„)

with the boundary conditions

Nn (z) ~z =L/2+5& Nn(z) ~z = L/2 —s&—

(10a)

(10b)

where Ai(g„) and Bi(g„) are Airy functions; a„,I3„are
normalization constants and

If we now move the well walls at —L/2 and L/2 to
and L/2+5+, then outside the new well

walls the probability for finding the electrons are rather
small. This is equivalent to saying that for the first-order
approximation one can replace the finite-well problem
with well walls located at L/2—and L /2 by an infinite-
well problem with well walls located at L/2 ——5L and
L/2+5~, as shown in Fig. 1. Thus, our problem corre-
sponds to solving Eq. (6a) with Vz defined as

K(z) =
1/2

2m~
( Vo qFz Ez )— — (7b)

2m

(efiF )

1/3

(E„z+qFz) . (10c)

The integral contained in Eq. (7a) can be evaluated easily.
One gets

Equation (10b) yields

Ai(g„+ )Bi(g„)—Ai(g„)Bi(il„+) =0, (10d)

2
P (z)= c expF 3qF

X
3qF

(V E )3/2

( Vo qFz Ez )— —(7c)

where rI„+ or r)„ is given by Eq. (10c) with z =L/2+5~
or —L/2 —6L and the eigenvalues E„can be obtained by
solving Eq. (10d) numerically.

The Ez contained in Eqs. (9a) and (9b) is the total
eigenenergy for the finite-well problem [Eqs. (6a) and (6c)]
and is actn ally unknown. In the first-order-

The first derivative of PF(z) can be expressed as

1/2
d P~(z) 2m,"=4 (z) ( Vo qFz Fz)—

dz

Therefore, the penetration depth at the boundary
z= L /21s

dyF(z)
F

Z = —L/2
—1/2

2m
( Vo —qFL /2 Fz)—(9a)

—L/2-s

I

/2 L~2+ ~zR

In a similar procedure, the penetration depth at the
boundary z =L /2 can be obtained as

FIG. 1. A finite-height quantum we11 acted on by an electric
field and its equivalent case of an infinite-height potential we11.
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approximation calculation, the Ez is approximated by
the eigenenergy Ez ' of the corresponding infinite-
barrier-height quantum well. The value of q contained in
Eqs. (9a) and (9b) is —e for the electron, and e for the
hole. One can define the effective well width for the elec-
tron (v=e) or hole (v=h) as

'11',„,'(z„zl„p,B,A, ) =N„ (p, 6, A, )P,„(z)gl,„(z), (12)

where @„(p,B,A. ) and P „(z) (v=e for the electron and
v=h for the hole) are eigenfunctions obtained in Eqs. (5a)
and (10a), respectively. The first-order energy correction
is defined as

+effv ~ +~vL +~vR

Now from the above discussion, the solution for total
unperturbed Hamiltonian Ho can be expressed as

correction to the unperturbed energy

E,"„',(X)=E.,„(X)+E„+E„,+E„„
where

E„„(A,)=-
(n + —,')

is the eigenenergy for the two-dimensional hydrogen
atom; E, , (El, , ) is the eigenenergy for the electron (hole)
in a finite quantum well with a uniform electric field ap-
plied in the direction perpendicular to the well walls; and
E, is the band-gap energy of the well-acting material.
Therefore, the total eigenenergy for the total Hamiltoni-
an His

EE,'„",(A)=(e' '(A)IH'(A)le' '(A)) . (13) E (A) E y (A)+E +El, +Es p+bE l(A) (14)

Since the second-order perturbation correction is in gen-
eral much smaller than the first-order correction, the ex-
pression in Eq. (13) can be treated as the total-energy

I

For the ground state, the energy correction b,E,'„",(A, ) can
be evaluated as

4g 2 L/2+5 RaE'.„".,(X)= '„ f, , ; dz, ly„(z)I'

L/2+6 ao
X f dzl, lpga, F(z)l' ' + lz, —

zl, I

——lz, —
zp, I

H
hL

4A, IZ, —z„ I

ao

4xlz, —z„ I

ao
(15)

and

m„= (%,„,lm,",(z, ) lq, „,)

In the practical calculation, the wave function 4,„,con-
tained in m, ~ or m&~ is replaced by the unperturbed wave
function 4',„,'(z, ) or 4',„,'(zl, ), respectively. The parame-
ter A, contained in Eq. (14) can be determined by requir-
ing the fast convergence of the perturbation series, and is
equivalent to setting

aE,'„",(X)=0 . (16)

After obtaining X from the above equation, one can sub-
stitute this A, into Eq. (14) to get the total eigenenergy of
exciton E,„,(A. ) and the binding energy of the exciton:
Ell =E,i+El( +Es,p

—E,„„where E,l (E~l ) is the
confinement energy of the first electron (hole) subband.

where Hi(x) and N, (x) are the Struve and Neumann
functions of order 1. The effective Bohr radius
ao=kA' /pie and effective Rydberg R =pie /(2k A'2)

are related with the in-plane reduced mass:
pi=m, iml, i/(m, i+mal, i), where the equivalent in-plane
effective masses m, ~ and m&~ are defined as follows:

III. RESULTS AND DISCUSSIONS

+ 3

4m hh, z

1

4m 1h, z
m1h

(17a)

mhh, l
1

4mhh, .+ 3
4m 1h,

Mhh, i=

1 3

4M. .+
4M-. ,

1 3

4M...+
4M...

(17b)

The Eg p
for GaAs and Al„Ga1 As are assumed to be

1.424 eV and 1.424+ 1.247x eV, respectively. If one uses
the 65%—35/o rule ' to share the difference between
GaAs and Al„Ga1 As band gaps, then one can obtain

The values of the physical parameters used in this
work are taken from some previous works. ' ' The
effective masses for the electron, light hole, and heavy
hole inside the well are m, , =0.0665m o,
m1h, =0.088mo, and mhh, =0.45mo, where mo is the
electron rest mass. Those in the barrier are M, ,
=(0.0665+0.0835x)mo, Mll, ,=(0.088+0.049x)mo,
and Ml,„,=(0.45+0.31x)mo, where x is the Al compo-
sition which is taken as x =0.32. The effective mass of
the holes are anisotropic. In the plane motion, they are

—1



TAI SHIHUU AN& +ER.-SAN CH

t0'

E

8058

I~ 4

lU

2—
ppA

Ii

~OQ T20
ELp ( kv/c~)

80'
«E~TRr C

I

20 gQ

f the heavykV/cm) dePe
ell width&:

ndence o
'

-geld (in
foUI we

Electn -"
(in me» oding en f

sition x =OO

1.- xclton bin
250 A (Al compo]50,

200 and 2500 A..1.=95,
.

rgy de-
ell widths:

he binding energ
l for our

fi Ure that thefrom th gu
field streng

0 e can note
the electrlc-as ng

lectric fie
ses for»cre

nt valu
re sjgnlfican

a constan
.

Ch mo e
oac

ease 1s m
n bin inhea~y- o

corn
h calcUlatfol g

d to decl
larger

e c

r exten-
ies we« fou

the excito»
energ
increases an

t m we&&.

ln
l ger quansion»

250o+

C

LLl

~ &00

F50

95ACL

t00

I

~00&0
)F IEL

I

20
50

ce of the meandepende
ll;dths:

eld (gn kV/
o

) f ~ foUr w
Elect -

tension (in
=p. 32).

FI .
-e&cqton

osition x =
heavy-hole-eplane e -e

L, =95, 150, 2

~ tric consta nt 1S0 14. eV
~a&s)

The dielec r
and

26 eV a"d "
k =1

b

rounelectro g .
fi ]d stre g

~

s exac t cal-
of the e

ested by p
energy d-

iect,rlc
a rev'o

e-

fun ' n
t rs as sugge

electron en
r

P . 16 Our re
h electric e

hen the

hyslcal pa
ult shows

.
fi ld increase '«o»ca»y ". 'd

by Ref-
h s that

latlon
Rs the e

l6 even w
ses mono

btal
hjs show

result agr .
Strong as 2

f r a st«nge.
field» a

ble even
e]ectrlc

t. n ls fe].la
th " .

fi t

roxjIna lo
d the first

.
Rn jn nl

feld ~e a so
l 2 Rnd 3 o

l trlc field pe p

0
0

fir
e z)0 regl

so that they
ld,

though
till has a larg .

for the ho

the e ec
amp 1

le, an
excl d s ate s

0 regionor t e z
te ls stl

r the electro
the third sta

for
energy shift for t

. f the elec-

the
d region

~

well. wl ths o
ated Rs

nger
f the egect

re calcUl
he var)at o

hole (L~tr, h

L 95 A
) and t"

d, trength fo
r sl;ghtly

tron (L eff' e

lectric-6e
ll idths are

a func tion of the
11'ective vve

25 (L —133
esults show

of Mille
It'ective wld

ases slight4'
1, the electri«e

err, h

s increaoft e electron
1 decrease

t n dePth er-

ho es
enetra

whl e
e le t- R

that «hea y
f h nd-side Pe

the decreases
e,

eases more
th ~, - n

becau~~ t
e rapidly

y the case
tron inc

tion deP
f the cas0

of the elect .
ical with resp

direction
n er symm '

ihe negative .
for ihe hole

no long . ~

Shj ft ln t
d ctjon or

osltlon
ltlve-z

su an

have P
~ ~

the pOSshift 'n
ll ag'ect the carr

electron
h. ft of I, & WlSitlon»

ron, lig ht

hese Po

f the ~lect
r les.

and ene g1- les 0
~

ecrease
sUbb

h t these en ger les
e calc

hole sho w t R

S nce the e e
and hea y

field increases.
f the electron

he electric
than those o

bband

as t e
is larger

lower sua,n
energy than

the energies
h l becomes

field 1s large, '
hat of heavy

the absorption
ole are p

shifts of ene gy
t the excjton P

These large
an expect t

fie]d ln-

tive.
tra of ex '

energy
ton, so we ca

as the e
spectra

h ft to lowel

of the

as a].arge s '

d d pendence o
reases.

the elect .
~RAS q

c
shows . r y ln a

rlC- fle
Uantum

Figure 2 .
blndlng ene gyh le excltonheavy

I

t&0



EXCITON BINDING ENERGY IN A GaAs/Al Ga& „As. . . 8059

$480—

1470—

E

C)~ t4$0

O
CL

o t450—

C)

t440

GaAs quantum well for several values of L and I. The
electric-field-induced increase of the exciton size in the
layer plane will make the exciton resonances weaken and
broaden. This is consistent with the observation of Wood
et al. ' Figure 4 presents a comparison between our cal-
culated values and the measurements of the Stark shift of
the heavy-hole-exciton and light-hole-exciton peak with
the electric field applied in the GaAs-Al GaI As quan-
tum well for x =0.32 and L =95 A. The agreement be-
tween theory and experiment is better for the heavy-
hole-exciton case. The discrepancy in the light-hole-
exciton case might be due to the overestimation of light-
hole subband energy. Since the light-hole efFective mass
is small, it has a larger ground-state energy; thus, the as-
sumption that the barrier height is much larger than the
carrier energy might not be very suitable for the case of
the light-hole exciton.

IV. SUMMARY

't430 l

20 40 60 80 100
ELECVRIC FrELO ( &V&cm)

FIG. 4. Variations of heavy-hole- (dotted line) and light-hole-
(solid line) exciton peak positions (in meV) with electric field (in
kV/cm) for temperature T =300 K, well width L =95 A, and
Al composition x =0.32). The experimental data are taken
from Ref. 37).

The subband states and the exciton binding energies
have been studied by an approximation method. The
variations of the exciton binding energies with the
electric-field strength and the well width are obtained.
The mean in-plane exciton extension is found to increase
with the electric-field strength. The excellent agreement
of our calculated heavy-hole-exciton peak position with
the experimental data shows that our bound-state as-
sumption is suitable for heavy holes.

The electric-field dependence of the exciton binding en-
ergy can also be understood by the variation of the mean
in-plane exciton extension (p) = (%',„,~p~%',„,). Figure 3
presents the well width and the electric-field dependence
of the mean in-plane heavy-hole-exciton extension in a
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