
Fast algorithm for VQ codebook design

Sin-Horng Chen
W.M. Hsieh

Indexing terms: Binary codeword splitting, Image coding, LBG algorithm, Vector quantisation

Abstract: The paper presents a fast codebook
training algorithm for vector quantisation. It uses
an elimination rule, based on triangular inequality
criteria, as well as the partial distortion elimi-
nation method, to relieve the computational
burden of a conventional codebook training algo-
rithm, including a binary codeword splitting algo-
rithm for the initial codebook and the LBG
recursive algorithm. Over 95% savings in both
multiplication and addition operations were
achieved in the simulation of a VQ codebook
training of a ‘Lena’ image using 16-dimensional
vectors.

1 Introduction

Recently, vector quantisation (VQ) is a widely used tech-
nique in data compression. A fundamental result of
Shannon’s rate-distortion theory is that better per-
formance can always be achieved by coding vectors
rather than scalars [l, 23. A complete description of a
vector quantisation process includes three phases, namely
training, encoding, and decoding. The training phase is a
codebook design procedure which tries to find the best
set of representatives (i.e. codewords) from a large set of
training vectors. The encoding phase finds the best
matched codeword for a test vector and uses the index of
the codeword to represent it. In principle, a full codebook
search could be used in an encoder of vector quantisation
to find the codeword which is the nearest neighbour to
the test vector. The decoding phase is simply a table
look-up procedure which uses the received index to
deduce the reproduction codeword. The particularly
simple table look-up decoding procedure makes VQ an
attractive method of data compression in practice.
However, both the training and encoding phases are
computation-intensive procedures. This limits the appli-
cability of VQ. To solve this problem, many fast algo-
rithms [3-131 have been proposed in recent years for the
encoding search. But few [e.g. 7, 111 have dealt with the
training procedure. In this paper, the conventional train-
ing algorithm, including the codeword splitting for the
initial codebook, and the well-known LBG recursive
algorithm will be analysed and a fast algorithm pro-
posed.

A generalised Lloyd‘s algorithm was developed by
Linde, Buzo and Gray [2] for VQ codebook training. It
is the most popular codebook training method and is

Paper 81191 (E5). received 12th March 1990
The authors are with the Department of Communication Engineering,
National Chiao Tung University, Hsinchu, Taiwan 30039, Republic of
China

IEE PROCEEDINGS-/ , Vol. 138, No . 5 , OCTOBER 1991

referred to as the LBG algorithm. A distortion measure D
must be assigned to assess the cost D(X, C) of repro-
ducing an input vector X as the reproduction codeword
C before the LBG algorithm can be applied. Usually the
squared error distortion measure is used. Furthermore,
an initial codebook with the correct size should be given
at the start of the LBG algorithm run. The LBG algo-
rithm recursively uses two steps: first, it partitions the set
of training vectors into disjoint sets using the current
codebook, and then it finds the centroids of these disjoint
sets and takes them as the new codewords. The overall
averaged distortion is theoretically proved to be grad-
ually improved by recursively applying these two steps.
This means that the codebook improves as more iter-
ations are taken. Actually, the LBG algorithm will
always converge to a local optimum codebook which is
not necessarily a global one. Iterations are usually ter-
minated when the decreasing rate of the overall averaged
distortion is negligible.

In each iteration of the LBG algorithm, the partition-
ing of the training set can be accomplished by encoding
all training vectors using the current codebook. Full
codebook search with a nearest-neighbour decision rule
are used in these encodings. Because the conventional
full-search algorithm is a very time-consuming process
and the number of vectors in the training set is in general
very large, the computational complexity of partitioning
the training set in each iteration of the LBG algorithm is
very high. On the other hand, the computational com-
plexity of finding the centroids of the disjoint partitioned
sets is relatively low. Based on the above analysis, it can
be seen why almost all training procedures of practical
VQ-based applications are performed off-line. One dis-
advantage of performing the codebook design off-line,
however, is that a fixed codebook must be used. This
limits the applicability of vector quantisation, especially
in those cases where on-line adjustment of the codebook
is necessary to adapt the changing environment. VQ-
based TV picture coding is an example where the code-
book should be updated every few frames.

Another component of a codebook training algorithm
is the method of initial codebook generation. Two basic
approaches have been developed for generating an initial
codebook [l]. The first technique uses some simple code-
book of the correct size. Randomly selecting the first N
vectors in the training sequence as the initial codebook is
a typical example of this approach. The second technique
starts with a simple small codebook and recursively con-
structs a larger one. Binary codeword splitting is the
most popular example of this approach. In this, the cen-
troid of the entire training sequence is first found, and
this single codeword is then slightly perturbed and split
into two codewords. The first-level initial codebook is
obtained by first partitioning the training set using these
two codewords and then finding the centroids of the two

357

partitioned sets. The algorithm continues until an initial
codebook of the correct size is obtained.

The computational complexity of both the LBG algo-
rithm and the binary codeword splitting approach can be
greatly reduced if an efficient full codebook search can be
applied to the partitioning of the training set. To reduce
the computational complexity of a full codebook search,
many methods have been studied in recent years [3-13].
Fukunaga and Narendar [3] proposed a branch-and-
bound (BAB) algorithm for computating k nearest neigh-
bours. A BAB algorithm [3-61 is a tree search algorithm
using a hierarchical decomposition of the sample set of
known patterns. It uses the criterion of triangular
inequality to develop rules to eliminate the distance com-
putation in the tree classifier. Bei and Gray [7] proposed
an elimination algorithm to compress the computation
time, using the same idea as the 'partial distance method'.
Vidal [SI presented the approximating and eliminating
search algorithm (AESA) in which the computation time
is approximately constant for a codeword search in a
codebook of large size. Chen and Pan 1131 employed
triangular inequality elimination on VQ-based isolated-
word recognition to take advantage of the high corre-
lation relationship between feature vectors of adjacent
speech frames. There are many other high-speed search
algorithms for vector quantisation [9-121.

In this paper, a fast training algorithm for vector
quantisation is proposed. The conventional full-search
encoding method used in the partitioning steps of both
the binary codeword splitting and LBG algorithms is
modified in this algorithm to speed up the training
process. It first uses an elimination rule based on triangu-
lar inequality criteria to eliminate all unnecessary distor-
tion computations associated with matching an encoding
vector with wildly mismatched codewords. It then applies
the partial distortion elimination method to the compu-
tations for matching these surviving codewords. An
advantage of applying the triangular inequality elimi-
nation before using the partial distortion method is that,
in general, very small minimum distortion exists after
applying the triangular inequality elimination and there-
fore the partial distortion method can be applied with
high efficiency.

2 Fast VQ training algorithm

2.1 Triangular inequality elimination
Because the computational complexity of a conventional
full codebook search is very high, many methods have
been proposed for compressing the distortion computa-
tions of codeword matching. Among them, the elimi-
nation rule based on triangular inequality criteria is the
most popular. One form of the triangular inequality
elimination rule is presented below.

Let Dis(X, C ,) be the distance between the encoding
vector X and codeword C , . If Dis (C , , C,) > 2 Dis(X,
C,) , then eliminate the computation of Dis (X, C,)
because it is always greater than Dis (X, C ,) . For squared
error distortion measure, the condition of elimination is
changed to Dis (C , , C ,) z 4 Dis (X, C,) .

An advantage of using the squared error distortion
measure is that the square root operation in Dis (' , .) is
not needed.

Although many other triangular inequality elimination
rules exist [3-6, 81, the one stated above is the simplest
and is very efficient if initially a codeword which has
small distortion (distance) to the encoding vector can be

358

identified. This is because many distortion computations
can then be eliminated. In the partitioning step of the
LBG algorithm, an intuitive choice of the codeword to be
used as the first matching codeword for an encoding
vector is the one associated with the disjoint partitioned
set that this encoding vector belonged to in the previous
iteration. In the steady state (i.e. the number of iterations
in the LBG algorithm approaches infinity), almost every
training vector will be encoded to the codeword associ-
ated with the disjoint partitioned set to which it belonged
in the previous iteration. Therefore, it is the best code-
word to be found that has minimum distortion to an
encoding vector at this iteration. For the first iteration,
the method of initial codebook generation using binary
codeword splitting provides the cue to apply the triangu-
lar inequality elimination. Because the last step of the
codeword splitting method is the same as an iteration of
the LBG algorithm, each codeword in the initial code-
book is associated with a disjoint partitioned set of the
training vectors, and the triangular inequality elimination
can therefore be directly applied to the LBG algorithm.
Similar considerations indicate that the triangular
inequality elimination can be employed for the binary
codeword splitting in the fast training algorithm.

Multiple use of the triangular inequality elimination in
the encoding of a vector is possible. Codewords that have
small distortion to the first selected codeword can be
used for the successive triangular inequality eliminations.
But simulation results in Section 3 show that little com-
putational advantage is gained as more than one tnangu-
lar inequality elimination is required. Therefore, a single
triangular inequality elimination is used in the proposed
fast training algorithm.

In the realisation of the triangular inequality elimi-
nation, a table showing the distortion between any pair
of codewords is needed, and every row of this table must
be sorted in increasing order so that the triangular
inequality elimination can be efficiently applied. Con-
structing the distortion table from a codebook is the
overhead that must be paid for applying triangular
inequality elimination. For a codebook of size N , the
number of operations for establishing the distortion table
is analysed as follows:

N (N - 1)M
2

Multiplication =

N (N - 1N2M - 1)

N (N - 1" - 2)
2

2
Addition =

Comparison =

Here M is the dimension of the codewor , and bul:
sort is used for sorting the distortion table.

2.2 Partial distortion elimination

e

Partial distortion elimination [7] has been proposed to
reduce the computation load of the codeword search in a
codebook. It first calculates the distortion between the
encoding vector and an arbitrary codeword and takes
this as the current minimum distortion. It then contin-
uously compares the cumulative partial distortion
between the encoding vector and a candidate codeword
with the current minimum distortion. Based on the result
of this comparison, it decides whether or not to eliminate
the remaining partial distortion computation. In the
meantime, if a total distortion is obtained, it updates the
current minimum distortion by choosing the minimum of

IEE PROCEEDINGS-I, Vol. 138, No . 5 , OCTOBER 1991

the current minimum distortion and the calculated total
distortion. The eficiency of applying partial distortion
elimination depends on whether or not the current
minimum distortion i s small enough. If it is not, then
partial distortion elimination is of little use. On the other
hand, a very small current minimum distortion obtained
at the beginning of the full codebook search for an
encoding vector can eliminate most unnecessary compu-
tations and shows the full capability of this elimination
method. In the LBG algorithm, the codeword (centroid)
of the disjoint partitioned set to which the current encod-
ing vector belongs is a good candidate for initial match-
ing. Its distortion can be used as the current minimum
distortion for the partial distortion elimination. Actually,
in the following fast training algorithm, this distortion is
first used in the triangular inequality elimination to com-
press unnecessary codeword matchings and then used in
the partial distortion elimination to reduce the number of
computations in matching all surviving codewords.

2.3 Fast VQ training algorithm
A fast VQ training algorithm can be obtained by incor-
porating the triangular inequality elimination and the
partial distortion elimination in the conventional code-
book training algorithm which includes the binary code-
word splitting and LBG algorithms. The procedure is as
follows.

Binary codeword splitting
Step I : Initialisation. Given a set of training vectors

S = {Xi; i = 1 , 2, . . ., L } , the size of codebook N , and an
initial partition P’ = { S } , let j = 1.

Step 2: Centroid calculation. Find the centroids C, of
all P i E from

1
C, = - 1 X , for k = 1, ..., j

Lk 1 = 1

where L, is the number of vectors in P i and X , E Pi. If j
equals N, go to Step 6 ; otherwise, continue.

Step 3 : Codeword splitting. Split each C , into two by
letting

BZk-1 = C, + 6
and

B,, = C, - 6
for k = I , . . . , j . Here d is a small perturbation vector. Let
j = 2j.

Step 4: Distortion table construction. Construct a dis-
tortion table for the codebook Ej = { E , ; k = 1, . . . , j } ,by
calculating distortions for all codeword pairs and sorting
each row in increasing order using the bubble sort.

Step 5 : Training set partitioning. Partition the training
set into disjoint sets by encoding all training vectors
using the codebook Ej. The encoding of a training vector
Xi includes the following sub-steps:

Step 5.1: Calculate the distortions, D , and D , , of
matching X i with B2, - , and B,, split from C, associ-
ated with the partitioned set Pi’2 in Pji2 to which Xi
previously belonged. Choose the minimum of D , and
D , , denote it as D,, , and take the index of the code-
word associated with it as lmin.

Step 5.2: Compare all elements in the I,,-th row of
the distortion table with 4D,,, . Eliminate all matching
computations of codewords which have larger distor-
tions than the codeword in the above compari-
sons.

IEE PROCEEDINGS-I, Vol. 138, No. 5, OCTOBER 1991

Step 5.3: Calculate the distortions of matching Xi
with all surviving codewords by using a full-search
method with partial distortion elimination. Update I , ,
and Dmin when a smaller total distortion is obtained.

Step 5.4: The codeword BlmLn associated with D,, is
the encoded result. Put Xi in the set P/m,n.

After encoding all training vectors, a partition of S, P’ =

{ P i , P i , . . . , P j } , is obtained. Go to Step 2.

LBG algorithm
Step 6 : Initialisation of the LBG algorithm. Let CO =

{CE; C; = C,, for k = 1, _.., N } be the initial codebook,
Po = {PE; PE = P f , for k = 1, . .., N } be the initial parti-
tion of S, j = 0 and 0:” = CO.

Step 7 : Distortion table construction. Construct the dis-
tortion table D’ for codebook c’.

Step 8: Training set partitioning. Partition the training
set into disjoint sets by encoding all training vectors Xi
using the codebook C’. The encoding of X i includes the
following sub-steps:

Step 8.1: Calculate the distortion of matching Xi
with codeword Ci associated with the set Pi that X i
belonged to and denote it as Dmin. Let lmi, be the index

Step 8.2: Apply the triangular inequality elimi-
nation rule to eliminate all unnecessary codeword
matchings. Here the distortion table D’ and the
current minimum distortion Dmi, are used.

Step 8.3: Calculate the distortions between X i and
all surviving codewords by using the full-search
method with partial distortion elimination. Update lmin
and Dmin when a smaller total distortion is obtained.

Step 8.4: The codeword CL,., associated with D,,, is
the encoded result. Put Xi in PimTnl and accumulate the
overall encoding distortion.

After obtaining the partition P’+ calculate the overall
averaged distortion ’.

Step 9 : Centroid calculation. Let j = j + 1 and find
centroids of all disjoint partitioned sets in PJ from

of c: .

where L, is the number of vectors in P’, and X , E P i .

ing rate of the overall averaged distortion from
Step 10: Termination checking. Calculate the decreas-

AD = D;;’ - Diu
If AD is less than E, then go to Step 11; otherwise go to
Step 7. Here E is a predetermined small threshold.

Step 11: Termination. Take the codebook C’ as the
final codebook and terminate the algorithm.

3 Simulation

The efficiency of the proposed fast training algorithm was
examined by simulation on VQ-based image coding. A
512 x 512 image (‘Lena’ image) is used in all the follow-
ing simulations. The image is first divided into 4 x 4 sub-
images such that the training group contains 16384
16-dimensional vectors. Several codebooks of different
sizes are trained from the same training set.

First, the effectiveness of applying triangular inequality
elimination (TIE) and partial distortion elimination
(PDE) in the binary codeword splitting algorithm was
tested. Figs. I and 2 show the elimination efficiencies of
TIE and PDE, respectively. The average percentage of

359

eliminated codeword matchings using TIE is shown in
Fig. 1. The efficiency of applying TIE steadily increases as
the size of the initial codebook increases. The average
number of calculated components for a vector in the
matching computation using PDE is shown in Fig. 2.
Only about one half of the vector components are used in

100-

IO :"i 0 4 8 16 32 64 128 256 512

codeword number

Fig. 1
T I E in the binary codeword splitting algorithm

Average percentage of eliminated codeword matchings using

0 !! 4 8 16 codeword 32 number 64 128 256 512

Ll

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7
iteration

b

Fig. 2
matching computations with codewords surviving after T I E
(I Binary codeword splitting
h LBG algorithm (codeword number 256)

Average number of calculated components for U vector in the

the matching computations of a vector whose codewords
survived after applying TIE. The computational efficiency
of applying both TIE and PDE in binary codeword split-
ting is shown in Table 1. The savings in both multiplica-
tions and additions increase from about 48% when the
initial codebook size is 4 to about 95% when it is 512.

A codebook of size 256 was generated to test the effec-
tiveness of applying TIE in the LBG algorithm. In each

360

iteration, TIE is applied one to five times for the encod-
ing of each training vector. Then, full-search methods
with and without PDE are employed to match the
encoding vector with all surviving codewords. Table 2
shows the average number of eliminated codeword

Table 1 :Computational efficiency of applying TIE and PDE
in the binary codeword splitting algorithm

Initial Fast algorithm Conventional algorithm
codebook
size mult. add. comD. mult. add. comp.
-

4

8

16

32

64

128

256

51 2

~~

33.9
(53.0)
36.6

(28.6)
44.6

(1 7.4)
63.9

(12.5)
101.8

(9.9)
160.4

(7.8)
251.1

(6.1)
437.4

(5.3)

63.6
(51.3)
66.1

(26.7)
73.2

(14.8)
90.5
(9.1)

125.2
(6.3)

182.5
(4.6)

285.7
(3.6)

547.6
(3.5)

4.1
(1 34.7)

7.2
(1 02.6)

16.1
(1 07.2)

38.1
(1 23.0)

85.8
(136.2)
200.4

(157.8)
720.6

(282.6)
4391.3
(859.4)

64

128

256

51 2

1024

2048

4096

81 92

124 3

248 7

496 15

992 31

1984 63

3968 127

7936 255

15872 511

Values in parentheses denote the percentage ratio of operations to
the conventional algorithm.

Table 2: Average number of eliminated codeword match-
ings for the encoding of a training vector by the first five
TIE onerations in an iteration of the LEG algorithm

Number of TIE 1 2 3 4 5
~

Average number 242.0 0.44 0.38 0.23 0.17
eliminated "4 94.9 0.17 0.15 0.09 0.07
codeword
matchings

matchings for the encoding of a training vector by the
first five TIE operations in an iteration. The results
obtained are very impressive in that, an average, about
242 out of 255 codeword matchings are eliminated when
the first TIE operation is applied. Successive TIE oper-
ations are of little use. This result confirms that, in apply-
ing TIE in the LBG algorithm, the codeword associated
with the partitioned set that the encoding vector belongs
to is a good choice for initial calculation. Fig. 3 shows the
relationship between the efficiency of codeword elimi-
nation and the overall average distortion. It shows that,
as the number of iterations increases, the efficiency of
codeword elimination increases, while the overall average
distortion decreases. Table 3 lists the average number of
operations for a training vector in one iteration. Note
that the overhead of constructing the distortion table is
included in Table 3. When PDE is not applied, it trades
multiplications and additions against comparisons as
more TIE operations are used. But, when PDE is used,
more than one TIE operation is shown to be inefficient.
Using only one TIE operation, both multiplications and
additions are drastically reduced at the cost of a small
increase in comparisons. From the above discussion, it is
seen that the strategy of choosing the first matching
codeword in the fast training algorithm makes both TIE
and PDE very efficeint.

Finally, the computational complexity of the fast
training algorithm was examined by generating code-
books of different sizes from the same image data. Table
4 lists the simulation results for codebooks of levels from
6 to 9. Note that the computations of centroids are not

I E 6 PROCEEDINGS-I, Vol. 138, No . 5 , OCTOBER 1991

included in Table 4. Compared with the conventional
full-search training algorithm, about 85% and 95%
savings in both multiplications and additions are
achieved for the level-6 codebook training in binary
codeword splitting and the LBG algorithm, respectively.
This increases to about 94% and 97% savings respec-

" " " " - " " . - - - - -

::I , , , , , , , , , , , , , , , , ,
0
0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7

iteration
a

1100

1OOOL

5 700
4 600
& 500

400

200
100 300t 0 0 1 2 3 4 5 6 7 iteration 8 9 1011 1 2 1 3 1 4 1 5 1 6 1 7

b

Fig. 3
distribution (codeword number: 256)
U Elimination clliciency
b Overall average distortion

Relationship between elimination efficiency and overall average

Table 3: Average number of operations for a training vector
in an iteration of the LEG algorithm

Number of Average number
TI E of operations

mult. add. comp.

TIE 1 256.0 496.0 533.0
only 2 248.9 482.3 544.4

3 242.8 470.5 554.6
4 239.2 463.4 563.8
5 236.5 458.2 572.2

TIE 1 136.5 168.4 608.7
and 2 140.7 188.3 610.4
PDE 3 145.2 207.6 611.9

4 150.3 225.5 614.6
5 154.9 240.8 617.9

Full- 4096 7936 255
search

tively for a level-9 codebook. The increase in compari-
sons is not serious, considering the great savings in both
multiplications and additions. For a level-8 codebook
training, the average computations needed for a training
vector in the fast training algorithm is shown in Table 5 .
Over 96% savings in both multiplications and additions

IEE PROCEEDINGS-I, Vol. 138, No. 5 , OCTOBER I991

are obtained, but only about 2.36 times the number of
comparisons are needed compared with the conventional
training algorithm. These results show that the fast train-
ing algorithm is a very efficient one.

Table 4: Average number of operations in a the binary code-
word splitting and b the LEG algorithm for a training vector
using the fast training algorithm to generate codebooks of
levels from 6 to 9.

Codebook Fast algorithm Conventional
size algorithm ______

mult add comp ~

mult add comp

64 3 1 2 8 4806 1523 2016 3906 120

128 i:,","' 6631 3527 4064 7874 247

256 7243 9488 10733 8160 15810 502

512 1161 8 14963 54648 16352 31682 1013

(123) (1269)

(116) (84) (1428)

(8 9) (60) (2138)

(7 1) (4 7) (5395)

a

Codebook Fast algorithm Conventional
size algorithm ~

mult add comp ~

mult add comp

64 5 5 7 665 5 0 5 1024 1984 63

128 81 6 9 5 8 1294 2048 3967 127

256 136 5 1684 6087 4096 7936 255

51 2 2740 3 8 9 0 4223 0 8192 15872 511

(5 4) (3 4) (802)

(4 0) (2 4) (101 9)

(33) (2 1) (2387)

(3 3) (2 5) (8264)

b

Values in parentheses denote the percentage ratio of operations to
the conventional algorithm

Table 5: Average number of operations for a training vector
using the fast training algorithm to generate a codebook of
level 8

Fast algorithm Conventional
algorithm

mult. add. comD.
mult. add. comp.

8maw 7243 9577 10733 8160 1581897 502
codeword (8 9) (6 1) (2138)
splitting
LEG 24571 30486 109558 73728 1428657 4590
algorithm (3 3) (2 1) (2387)
(18 iteration)
Total 3181 5 4006 4 12029 1 81888 1586847 5092

(3 9) (2 5) (2362)

Values in parentheses denote the percentage ratio of operations to
the conventional algorithm

4 Conclusions

A fast training algorithm has been presented in this
paper. It efficiently incorporates the triangular inequality
elimination rule and the partial distortion elimination
method into the conventional VQ training algorithm.
Over 96% computation savings in both multiplication
and addition operations are achieved with little increase
in the number of comparison operations.

The same idea can be extended to other VQ-based
applications if a method of finding a suitable codeword
for initial matching exists. In some applications such as
image coding, speech coding, and speech recognition, the
high correlation relationship existing between adjacent
vectors provides a clue to finding such a suitable candi-
date for the first codeword to be matched. Applying TIE
and PDE to these areas is being studied.

361

5 References

1 GRAY, R.M.: ‘Vector quantisation’, IEEE ASSP Mag., April 1984,

2 LINDE, Y., BUZO, A., and GRAY, R.M.: ’An algorithm for vector
quantiser design’, IEEE Trans., 1980, COM-28, pp. 84-95

3 FUKUNAGA, K., and NARENDRA, P.M.: ‘A branch and bound
algorithm for computing k-nearest neighbors’, IEEE Trans., 1975,

4 KAMGAR-PARSI, B., and KANAL, L.N.: ‘An improved branch
and bound algorithm for computing k-nearest neighbours’, Pattern
Recognit. Lett., 1985,3, pp. 7-12

5 LARSEN, S., and KANAL, L.N.: ‘Analysis of k-nearest neighbor
branch and bound rules, Pattern Recognit. Left . , 1986,4, pp. 71-77

6 NIEMANN, H., and GOPPERT, R.: ‘An eficient branch-and-
bound nearest neighbour classifier’, Pattern Recognit. Lett., 1988, I,
pp. 67-72

7 BEI, C.-D., and GRAY, R.M.: ‘An improvement of the minimum
distortion encoding algorithm for vector quantisation’, IEEE Trans.,
1985,COM-33, pp. 1132-1133

pp. 4 2 8

c-24, pp. 7 5 s 7 5 3

8 VIDAL, E.: ’An algorithm for finding nearest neighbours in
(approximately) constant average time’, Pattern Recognit. Lett.,
1986.4, pp. 145-157

9 CHENG, D.-Y., GERSHO, A., RAMAMURTHI, B., and
SHOHAM, Y.: ‘Fast search algorithms for vector quantisation and
pattern matching’. IEEE Int. Conf. Acoust. Speech Signal Process.,
1984, pp. 9.11.14

10 CHENG, D.-Y., and GERSHO, A.: ‘A fast codebook search algo-
rithm for nearest-neighbor pattern matching’. IEEE Int. Conf.
Acoust. Speech Signal Process., 1986, pp. 6.14.14

1 1 SOLEYMANI, M.R., and MORGERAI, S . D.: ‘A high-speed search
algorithm for vector quantisation’. IEEE Int. Conf. Acoust. Speech
Signal Process., 1987, pp. 45.6.1-3

12 FISCHER, F.P., and PATRICK, E.A.: ‘A preprocessing algorithm
for nearest neighbor decision rules’. Proceedings of the National
Electroncs Conference, 1970,26, pp. 481485

13 CHEN, S.H., and PAN, J.S.: ‘A fast algorithm for VQ-based
recognition of isolated words’, IEE Proc. I, Commun., Speech &
Vision, 1989, 136, (6), pp. 391-396

362 IEE PROCEEDINGS-I, Vol. 138, No. 5, OCTOBER 1991

