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Abstract: The paper presents a fast codebook 
training algorithm for vector quantisation. It uses 
an elimination rule, based on triangular inequality 
criteria, as well as the partial distortion elimi- 
nation method, to relieve the computational 
burden of a conventional codebook training algo- 
rithm, including a binary codeword splitting algo- 
rithm for the initial codebook and the LBG 
recursive algorithm. Over 95% savings in both 
multiplication and addition operations were 
achieved in the simulation of a VQ codebook 
training of a ‘Lena’ image using 16-dimensional 
vectors. 

1 Introduction 

Recently, vector quantisation (VQ) is a widely used tech- 
nique in data compression. A fundamental result of 
Shannon’s rate-distortion theory is that better per- 
formance can always be achieved by coding vectors 
rather than scalars [l, 23. A complete description of a 
vector quantisation process includes three phases, namely 
training, encoding, and decoding. The training phase is a 
codebook design procedure which tries to find the best 
set of representatives (i.e. codewords) from a large set of 
training vectors. The encoding phase finds the best 
matched codeword for a test vector and uses the index of 
the codeword to represent it. In principle, a full codebook 
search could be used in an encoder of vector quantisation 
to find the codeword which is the nearest neighbour to 
the test vector. The decoding phase is simply a table 
look-up procedure which uses the received index to 
deduce the reproduction codeword. The particularly 
simple table look-up decoding procedure makes VQ an 
attractive method of data compression in practice. 
However, both the training and encoding phases are 
computation-intensive procedures. This limits the appli- 
cability of VQ. To solve this problem, many fast algo- 
rithms [3-131 have been proposed in recent years for the 
encoding search. But few [e.g. 7, 111 have dealt with the 
training procedure. In this paper, the conventional train- 
ing algorithm, including the codeword splitting for the 
initial codebook, and the well-known LBG recursive 
algorithm will be analysed and a fast algorithm pro- 
posed. 

A generalised Lloyd‘s algorithm was developed by 
Linde, Buzo and Gray [2] for VQ codebook training. It 
is the most popular codebook training method and is 
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referred to as the LBG algorithm. A distortion measure D 
must be assigned to assess the cost D(X,  C) of repro- 
ducing an input vector X as the reproduction codeword 
C before the LBG algorithm can be applied. Usually the 
squared error distortion measure is used. Furthermore, 
an initial codebook with the correct size should be given 
at the start of the LBG algorithm run. The LBG algo- 
rithm recursively uses two steps: first, it partitions the set 
of training vectors into disjoint sets using the current 
codebook, and then it finds the centroids of these disjoint 
sets and takes them as the new codewords. The overall 
averaged distortion is theoretically proved to be grad- 
ually improved by recursively applying these two steps. 
This means that the codebook improves as more iter- 
ations are taken. Actually, the LBG algorithm will 
always converge to a local optimum codebook which is 
not necessarily a global one. Iterations are usually ter- 
minated when the decreasing rate of the overall averaged 
distortion is negligible. 

In each iteration of the LBG algorithm, the partition- 
ing of the training set can be accomplished by encoding 
all training vectors using the current codebook. Full 
codebook search with a nearest-neighbour decision rule 
are used in these encodings. Because the conventional 
full-search algorithm is a very time-consuming process 
and the number of vectors in the training set is in general 
very large, the computational complexity of partitioning 
the training set in each iteration of the LBG algorithm is 
very high. On the other hand, the computational com- 
plexity of finding the centroids of the disjoint partitioned 
sets is relatively low. Based on the above analysis, it can 
be seen why almost all training procedures of practical 
VQ-based applications are performed off-line. One dis- 
advantage of performing the codebook design off-line, 
however, is that a fixed codebook must be used. This 
limits the applicability of vector quantisation, especially 
in those cases where on-line adjustment of the codebook 
is necessary to adapt the changing environment. VQ- 
based TV picture coding is an example where the code- 
book should be updated every few frames. 

Another component of a codebook training algorithm 
is the method of initial codebook generation. Two basic 
approaches have been developed for generating an initial 
codebook [l]. The first technique uses some simple code- 
book of the correct size. Randomly selecting the first N 
vectors in the training sequence as the initial codebook is 
a typical example of this approach. The second technique 
starts with a simple small codebook and recursively con- 
structs a larger one. Binary codeword splitting is the 
most popular example of this approach. In this, the cen- 
troid of the entire training sequence is first found, and 
this single codeword is then slightly perturbed and split 
into two codewords. The first-level initial codebook is 
obtained by first partitioning the training set using these 
two codewords and then finding the centroids of the two 
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partitioned sets. The algorithm continues until an initial 
codebook of the correct size is obtained. 

The computational complexity of both the LBG algo- 
rithm and the binary codeword splitting approach can be 
greatly reduced if an efficient full codebook search can be 
applied to the partitioning of the training set. To reduce 
the computational complexity of a full codebook search, 
many methods have been studied in recent years [3-13]. 
Fukunaga and Narendar [3] proposed a branch-and- 
bound (BAB) algorithm for computating k nearest neigh- 
bours. A BAB algorithm [3-61 is a tree search algorithm 
using a hierarchical decomposition of the sample set of 
known patterns. It uses the criterion of triangular 
inequality to develop rules to eliminate the distance com- 
putation in the tree classifier. Bei and Gray [7] proposed 
an elimination algorithm to compress the computation 
time, using the same idea as the 'partial distance method'. 
Vidal [SI presented the approximating and eliminating 
search algorithm (AESA) in which the computation time 
is approximately constant for a codeword search in a 
codebook of large size. Chen and Pan 1131 employed 
triangular inequality elimination on VQ-based isolated- 
word recognition to take advantage of the high corre- 
lation relationship between feature vectors of adjacent 
speech frames. There are many other high-speed search 
algorithms for vector quantisation [9-121. 

In this paper, a fast training algorithm for vector 
quantisation is proposed. The conventional full-search 
encoding method used in the partitioning steps of both 
the binary codeword splitting and LBG algorithms is 
modified in this algorithm to speed up the training 
process. It first uses an elimination rule based on triangu- 
lar inequality criteria to eliminate all unnecessary distor- 
tion computations associated with matching an encoding 
vector with wildly mismatched codewords. It then applies 
the partial distortion elimination method to the compu- 
tations for matching these surviving codewords. An 
advantage of applying the triangular inequality elimi- 
nation before using the partial distortion method is that, 
in general, very small minimum distortion exists after 
applying the triangular inequality elimination and there- 
fore the partial distortion method can be applied with 
high efficiency. 

2 Fast VQ training algorithm 

2.1 Triangular inequality elimination 
Because the computational complexity of a conventional 
full codebook search is very high, many methods have 
been proposed for compressing the distortion computa- 
tions of codeword matching. Among them, the elimi- 
nation rule based on triangular inequality criteria is the 
most popular. One form of the triangular inequality 
elimination rule is presented below. 

Let Dis(X, C , )  be the distance between the encoding 
vector X and codeword C , .  If Dis ( C , ,  C,) > 2 Dis(X, 
C,) ,  then eliminate the computation of Dis (X, C,)  
because it is always greater than Dis (X, C , ) .  For squared 
error distortion measure, the condition of elimination is 
changed to Dis ( C , ,  C , )  z 4 Dis (X, C,) .  

An advantage of using the squared error distortion 
measure is that the square root operation in Dis ( ' ,  .) is 
not needed. 

Although many other triangular inequality elimination 
rules exist [3-6, 81, the one stated above is the simplest 
and is very efficient if initially a codeword which has 
small distortion (distance) to the encoding vector can be 
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identified. This is because many distortion computations 
can then be eliminated. In the partitioning step of the 
LBG algorithm, an intuitive choice of the codeword to be 
used as the first matching codeword for an encoding 
vector is the one associated with the disjoint partitioned 
set that this encoding vector belonged to in the previous 
iteration. In the steady state (i.e. the number of iterations 
in the LBG algorithm approaches infinity), almost every 
training vector will be encoded to the codeword associ- 
ated with the disjoint partitioned set to which it belonged 
in the previous iteration. Therefore, it is the best code- 
word to be found that has minimum distortion to an 
encoding vector at this iteration. For the first iteration, 
the method of initial codebook generation using binary 
codeword splitting provides the cue to apply the triangu- 
lar inequality elimination. Because the last step of the 
codeword splitting method is the same as an iteration of 
the LBG algorithm, each codeword in the initial code- 
book is associated with a disjoint partitioned set of the 
training vectors, and the triangular inequality elimination 
can therefore be directly applied to the LBG algorithm. 
Similar considerations indicate that the triangular 
inequality elimination can be employed for the binary 
codeword splitting in the fast training algorithm. 

Multiple use of the triangular inequality elimination in 
the encoding of a vector is possible. Codewords that have 
small distortion to the first selected codeword can be 
used for the successive triangular inequality eliminations. 
But simulation results in Section 3 show that little com- 
putational advantage is gained as more than one tnangu- 
lar inequality elimination is required. Therefore, a single 
triangular inequality elimination is used in the proposed 
fast training algorithm. 

In the realisation of the triangular inequality elimi- 
nation, a table showing the distortion between any pair 
of codewords is needed, and every row of this table must 
be sorted in increasing order so that the triangular 
inequality elimination can be efficiently applied. Con- 
structing the distortion table from a codebook is the 
overhead that must be paid for applying triangular 
inequality elimination. For a codebook of size N ,  the 
number of operations for establishing the distortion table 
is analysed as follows: 

N ( N  - 1)M 
2 

Multiplication = 

N ( N  - 1N2M - 1) 

N ( N  - 1" - 2) 
2 

2 
Addition = 

Comparison = 

Here M is the dimension of the codewor , and bul: 
sort is used for sorting the distortion table. 

2.2 Partial distortion elimination 

e 

Partial distortion elimination [7] has been proposed to 
reduce the computation load of the codeword search in a 
codebook. It first calculates the distortion between the 
encoding vector and an arbitrary codeword and takes 
this as the current minimum distortion. It then contin- 
uously compares the cumulative partial distortion 
between the encoding vector and a candidate codeword 
with the current minimum distortion. Based on the result 
of this comparison, it decides whether or not to eliminate 
the remaining partial distortion computation. In the 
meantime, if a total distortion is obtained, it updates the 
current minimum distortion by choosing the minimum of 
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the current minimum distortion and the calculated total 
distortion. The eficiency of applying partial distortion 
elimination depends on whether or not the current 
minimum distortion i s  small enough. If it is not, then 
partial distortion elimination is of little use. On the other 
hand, a very small current minimum distortion obtained 
at the beginning of the full codebook search for an 
encoding vector can eliminate most unnecessary compu- 
tations and shows the full capability of this elimination 
method. In the LBG algorithm, the codeword (centroid) 
of the disjoint partitioned set to which the current encod- 
ing vector belongs is a good candidate for initial match- 
ing. Its distortion can be used as the current minimum 
distortion for the partial distortion elimination. Actually, 
in the following fast training algorithm, this distortion is 
first used in the triangular inequality elimination to com- 
press unnecessary codeword matchings and then used in 
the partial distortion elimination to reduce the number of 
computations in matching all surviving codewords. 

2.3 Fast VQ training algorithm 
A fast VQ training algorithm can be obtained by incor- 
porating the triangular inequality elimination and the 
partial distortion elimination in the conventional code- 
book training algorithm which includes the binary code- 
word splitting and LBG algorithms. The procedure is as 
follows. 

Binary codeword splitting 
Step I :  Initialisation. Given a set of training vectors 

S = {Xi; i = 1 ,  2,  . . ., L } ,  the size of codebook N ,  and an 
initial partition P’ = { S } ,  let j = 1. 

Step 2: Centroid calculation. Find the centroids C, of 
all P i  E from 

1 
C, = - 1 X ,  for k = 1, ..., j 

Lk 1 = 1  

where L,  is the number of vectors in P i  and X ,  E Pi. If j 
equals N, go to Step 6 ;  otherwise, continue. 

Step 3 :  Codeword splitting. Split each C ,  into two by 
letting 

BZk-1 = C, + 6 
and 

B,, = C, - 6 
for k = I ,  . . . , j .  Here d is a small perturbation vector. Let 
j = 2j. 

Step 4:  Distortion table construction. Construct a dis- 
tortion table for the codebook Ej = { E , ;  k = 1, . . . , j }  ,by 
calculating distortions for all codeword pairs and sorting 
each row in increasing order using the bubble sort. 

Step 5 :  Training set partitioning. Partition the training 
set into disjoint sets by encoding all training vectors 
using the codebook Ej.  The encoding of a training vector 
Xi includes the following sub-steps: 

Step 5.1: Calculate the distortions, D ,  and D , ,  of 
matching X i  with B2, - ,  and B,, split from C, associ- 
ated with the partitioned set Pi’2 in Pji2 to which Xi 
previously belonged. Choose the minimum of D ,  and 
D ,  , denote it as D,, , and take the index of the code- 
word associated with it as lmin. 

Step 5.2: Compare all elements in the I,,-th row of 
the distortion table with 4D,,, . Eliminate all matching 
computations of codewords which have larger distor- 
tions than the codeword in the above compari- 
sons. 
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Step 5.3: Calculate the distortions of matching Xi 
with all surviving codewords by using a full-search 
method with partial distortion elimination. Update I , ,  
and Dmin when a smaller total distortion is obtained. 

Step 5.4: The codeword BlmLn associated with D,, is 
the encoded result. Put Xi in the set P/m,n. 

After encoding all training vectors, a partition of S, P’ = 

{ P i ,  P i , .  . . , P j } ,  is obtained. Go to Step 2. 

LBG algorithm 
Step 6 :  Initialisation of the LBG algorithm. Let CO = 

{CE; C; = C,, for k = 1, _.., N }  be the initial codebook, 
Po = {PE; PE = P f ,  for k = 1, . .., N }  be the initial parti- 
tion of S, j = 0 and 0:” = CO. 

Step 7 :  Distortion table construction. Construct the dis- 
tortion table D’ for codebook c’. 

Step 8: Training set partitioning. Partition the training 
set into disjoint sets by encoding all training vectors Xi 
using the codebook C’. The encoding of X i  includes the 
following sub-steps: 

Step 8.1: Calculate the distortion of matching Xi 
with codeword Ci associated with the set Pi  that X i  
belonged to and denote it as Dmin.  Let lmi, be the index 

Step 8.2: Apply the triangular inequality elimi- 
nation rule to eliminate all unnecessary codeword 
matchings. Here the distortion table D’ and the 
current minimum distortion Dmi, are used. 

Step 8.3: Calculate the distortions between X i  and 
all surviving codewords by using the full-search 
method with partial distortion elimination. Update lmin 
and Dmin when a smaller total distortion is obtained. 

Step 8.4: The codeword CL,., associated with D,,, is 
the encoded result. Put Xi in PimTnl and accumulate the 
overall encoding distortion. 

After obtaining the partition P’+ calculate the overall 
averaged distortion ’. 

Step 9 :  Centroid calculation. Let j = j + 1 and find 
centroids of all disjoint partitioned sets in PJ from 

of c: . 

where L, is the number of vectors in P’, and X ,  E P i .  

ing rate of the overall averaged distortion from 
Step 10: Termination checking. Calculate the decreas- 

AD = D;;’ - Diu 
If AD is less than E,  then go to Step 11; otherwise go to 
Step 7. Here E is a predetermined small threshold. 

Step 11: Termination. Take the codebook C’ as the 
final codebook and terminate the algorithm. 

3 Simulation 

The efficiency of the proposed fast training algorithm was 
examined by simulation on VQ-based image coding. A 
512 x 512 image (‘Lena’ image) is used in all the follow- 
ing simulations. The image is first divided into 4 x 4 sub- 
images such that the training group contains 16384 
16-dimensional vectors. Several codebooks of different 
sizes are trained from the same training set. 

First, the effectiveness of applying triangular inequality 
elimination (TIE) and partial distortion elimination 
(PDE) in the binary codeword splitting algorithm was 
tested. Figs. I and 2 show the elimination efficiencies of 
TIE and PDE, respectively. The average percentage of 
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eliminated codeword matchings using TIE is shown in 
Fig. 1. The efficiency of applying TIE steadily increases as 
the size of the initial codebook increases. The average 
number of calculated components for a vector in the 
matching computation using PDE is shown in Fig. 2. 
Only about one half of the vector components are used in 

100- 

IO :"i 0 4 8 16 32 64 128 256 512 

codeword number 

Fig. 1 
T I E  in the binary codeword splitting algorithm 

Average percentage of eliminated codeword matchings using 

0 !! 4 8 16 codeword 32 number 64 128 256 512 

Ll 

0 1  2 3 4 5 6  7 8  9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7  
iteration 

b 

Fig. 2 
matching computations with codewords surviving after T I E  
(I Binary codeword splitting 
h LBG algorithm (codeword number 256) 

Average number of calculated components for  U vector in the 

the matching computations of a vector whose codewords 
survived after applying TIE. The computational efficiency 
of applying both TIE and PDE in binary codeword split- 
ting is shown in Table 1. The savings in both multiplica- 
tions and additions increase from about 48% when the 
initial codebook size is 4 to about 95% when it is 512. 

A codebook of size 256 was generated to test the effec- 
tiveness of applying TIE in the LBG algorithm. In each 
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iteration, TIE is applied one to five times for the encod- 
ing of each training vector. Then, full-search methods 
with and without PDE are employed to match the 
encoding vector with all surviving codewords. Table 2 
shows the average number of eliminated codeword 

Table 1 :Computational efficiency of applying TIE and PDE 
in the binary codeword splitting algorithm 

Initial Fast algorithm Conventional algorithm 
codebook 
size mult. add. comD. mult. add. comp. 
- 

4 

8 

16 

32 

64 

128 

256 

51 2 

~~ 

33.9 
(53.0) 
36.6 

(28.6) 
44.6 

(1 7.4) 
63.9 

(12.5) 
101.8 

(9.9) 
160.4 

(7.8) 
251.1 

(6.1) 
437.4 

(5.3) 

63.6 
(51.3) 
66.1 

(26.7) 
73.2 

(14.8) 
90.5 
(9.1) 

125.2 
(6.3) 

182.5 
(4.6) 

285.7 
(3.6) 

547.6 
(3.5) 

4.1 
(1 34.7) 

7.2 
(1 02.6) 

16.1 
(1 07.2) 

38.1 
(1 23.0) 

85.8 
(136.2) 
200.4 

(157.8) 
720.6 

(282.6) 
4391.3 
(859.4) 

64 

128 

256 

51 2 

1024 

2048 

4096 

81 92 

124 3 

248 7 

496 15 

992 31 

1984 63 

3968 127 

7936 255 

15872 511 

Values in parentheses denote the percentage ratio of operations to 
the conventional algorithm. 

Table 2: Average number of eliminated codeword match- 
ings for the encoding of a training vector by the first five 
TIE onerations in an iteration of the LEG algorithm 

Number of TIE 1 2 3 4 5  
~ 

Average number 242.0 0.44 0.38 0.23 0.17 
eliminated "4 94.9 0.17 0.15 0.09 0.07 
codeword 
matchings 

matchings for the encoding of a training vector by the 
first five TIE operations in an iteration. The results 
obtained are very impressive in that, an average, about 
242 out of 255 codeword matchings are eliminated when 
the first TIE operation is applied. Successive TIE oper- 
ations are of little use. This result confirms that, in apply- 
ing TIE in the LBG algorithm, the codeword associated 
with the partitioned set that the encoding vector belongs 
to is a good choice for initial calculation. Fig. 3 shows the 
relationship between the efficiency of codeword elimi- 
nation and the overall average distortion. It shows that, 
as the number of iterations increases, the efficiency of 
codeword elimination increases, while the overall average 
distortion decreases. Table 3 lists the average number of 
operations for a training vector in one iteration. Note 
that the overhead of constructing the distortion table is 
included in Table 3. When PDE is not applied, it trades 
multiplications and additions against comparisons as 
more TIE operations are used. But, when PDE is used, 
more than one TIE operation is shown to be inefficient. 
Using only one TIE operation, both multiplications and 
additions are drastically reduced at the cost of a small 
increase in comparisons. From the above discussion, it is 
seen that the strategy of choosing the first matching 
codeword in the fast training algorithm makes both TIE 
and PDE very efficeint. 

Finally, the computational complexity of the fast 
training algorithm was examined by generating code- 
books of different sizes from the same image data. Table 
4 lists the simulation results for codebooks of levels from 
6 to 9. Note that the computations of centroids are not 
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included in Table 4. Compared with the conventional 
full-search training algorithm, about 85% and 95% 
savings in both multiplications and additions are 
achieved for the level-6 codebook training in binary 
codeword splitting and the LBG algorithm, respectively. 
This increases to about 94% and 97% savings respec- 

" " "  " - " "  . - - - - -  

::I , , , , , , , , , , , , , , , , , 
0 
0 1 2 3 4 5 6 7 8 9 1 0 1 1  1 2 1 3 1 4 1 5 1 6 1 7  

iteration 
a 

1100 

1OOOL 

5 700 
4 600 
& 500 

400 

200 
100 300t 0 0 1 2 3 4 5 6 7 iteration 8 9 1011 1 2 1 3 1 4 1 5 1 6 1 7  

b 

Fig. 3 
distribution (codeword number: 256) 
U Elimination clliciency 
b Overall average distortion 

Relationship between elimination efficiency and overall average 

Table 3: Average number of operations for a training vector 
in an iteration of the LEG algorithm 

Number of Average number 
TI E of operations 

mult. add. comp. 

TIE 1 256.0 496.0 533.0 
only 2 248.9 482.3 544.4 

3 242.8 470.5 554.6 
4 239.2 463.4 563.8 
5 236.5 458.2 572.2 

TIE 1 136.5 168.4 608.7 
and 2 140.7 188.3 610.4 
PDE 3 145.2 207.6 611.9 

4 150.3 225.5 614.6 
5 154.9 240.8 617.9 

Full- 4096 7936 255 
search 

tively for a level-9 codebook. The increase in compari- 
sons is not serious, considering the great savings in both 
multiplications and additions. For a level-8 codebook 
training, the average computations needed for a training 
vector in the fast training algorithm is shown in Table 5 .  
Over 96% savings in both multiplications and additions 
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are obtained, but only about 2.36 times the number of 
comparisons are needed compared with the conventional 
training algorithm. These results show that the fast train- 
ing algorithm is a very efficient one. 

Table 4: Average number of operations in a the binary code- 
word splitting and b the LEG algorithm for a training vector 
using the fast training algorithm to generate codebooks of 
levels from 6 to 9. 

Codebook Fast algorithm Conventional 
size algorithm ______ 

mult add comp ~ 

mult add comp 

64 3 1 2 8  4806 1523 2016 3906 120 

128 i:,","' 6631 3527 4064 7874 247 

256 7243 9488 10733 8160 15810 502 

512 1161 8 14963 54648 16352 31682 1013 

(123)  (1269) 

(116)  (84)  (1428) 

( 8 9 )  (60 )  (2138) 

(7 1) ( 4 7 )  (5395) 

a 

Codebook Fast algorithm Conventional 
size algorithm ~ 

mult add comp ~ 

mult add comp 

64 5 5 7  665  5 0 5  1024 1984 63 

128 81 6 9 5 8  1294 2048 3967 127 

256 136 5 1684 6087 4096 7936 255 

51 2 2740 3 8 9 0  4223 0 8192 15872 511 

( 5 4 )  ( 3 4 )  (802)  

( 4 0 )  ( 2 4 )  (101 9) 

(33)  ( 2 1 )  (2387) 

(3 3) (2 5 )  (8264) 

b 

Values in parentheses denote the percentage ratio of operations to 
the conventional algorithm 

Table 5: Average number of operations for a training vector 
using the fast training algorithm to generate a codebook of 
level 8 

Fast algorithm Conventional 
algorithm 

mult. add. comD. 
mult. add. comp. 

8maw 7243 9577 10733 8160 1581897 502 
codeword ( 8 9 )  (6 1) (2138) 
splitting 
LEG 24571 30486 109558 73728 1428657 4590 
algorithm (3 3) (2 1) (2387) 
(18 iteration) 
Total 3181 5 4006 4 12029 1 81888 1586847 5092 

(3 9) (2 5 )  (2362) 

Values in parentheses denote the percentage ratio of operations to 
the conventional algorithm 

4 Conclusions 

A fast training algorithm has been presented in this 
paper. It efficiently incorporates the triangular inequality 
elimination rule and the partial distortion elimination 
method into the conventional VQ training algorithm. 
Over 96% computation savings in both multiplication 
and addition operations are achieved with little increase 
in the number of comparison operations. 

The same idea can be extended to other VQ-based 
applications if a method of finding a suitable codeword 
for initial matching exists. In some applications such as 
image coding, speech coding, and speech recognition, the 
high correlation relationship existing between adjacent 
vectors provides a clue to finding such a suitable candi- 
date for the first codeword to be matched. Applying TIE 
and PDE to these areas is being studied. 
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