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In this article, a new collision-avoidance scheme is proposed for autonomous land 
vehicle (ALV) navigation in indoor corridors. The goal is to conduct indoor collision- 
free navigation of a three-wheel ALV among static obstacles with no a priori position 
information as well as moving obstacles with unknown trajectories. Based on the pre- 
dicted positions of obstacles, a local collision-free path is computed by the use of a 
modified version of the least-mean-square-error (LMSE) classifier in pattern recogni- 
tion. Wall and obstacle boundaries are sampled as a set of 2D coordinates, which are 
then viewed as feature points. Different weights are assigned to different feature points 
according to the distances of the feature points to the ALV location to reflect the 
locality of path planning. The trajectory of each obstacle is predicted by a real-time 
LMSE estimation method. And the maneuvering board technique used for nautical 
navigation is employed to determine the speed of the ALV for each navigation cycle. 
Smooth collision-free paths found in the simulation results are presented to show the 
feasibility of the proposed approach. 
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1. INTRODUCTION 

Research and development of autonomous land vehicles (ALVs) have re- 
cently attracted widespread interest. l4 Planning a collision-free path is one of 
the fundamental requirements for ALV navigation. Many previous works were 
concerned with methods for generating a path in a known environment5-I0 or 
among unknown static  obstacle^.'^-'^ However, obstacles are not always static. 
Some studies deal with path planning among obstacles that move along known 
t r a j e ~ t o r i e s . ' ~ , ~ ~  In a real situation, an ALV may face unexpected moving obsta- 
cles such as human beings. Failure to consider possible intrusion of previously 
unknown moving obstacles prohibits flexible ALV navigation. 

There exist several techniques for path planning in the presence of unknown 
moving obstacles. Tychonievich et al. l6 extended the maneuvering board 
method commonly used for nautical navigation to find a collision-free path 
through a field of moving obstacles, from a starting point to a goal point, where 
the goal point can itself be in motion. It is assumed that the instantaneous 
velocities and positions of the obstacles are known in advance but may be 
uncertain. Kehtarnavaz and Li" introduced an estimation approach to predict 
the future positions of obstacles using an autoregressive model. For each obsta- 
cle, a collision region around the obstacle path from its current position to the 
predicted position is defined. By drawing tangent lines between these regions, 
the shortest collision-free path between the current and a desired location of 
the vehicle can be obtained. Steele and StarrI8 decomposed the path planning 
process of a robot into two supporting processes: (1) using a graph search 
method to plan a path for avoiding all known static obstacles, and (2) using a 
field potential approach to control the motion of the robot when unexpected 
obstacles are encountered. 

Static obstacles with no a priovi position information, as well as moving 
obstacles with unknown trajectories, are considered in this study for ALV 
navigation. The goal is to achieve obstacle avoidance in a corridor. The global 
path for normal ALV navigation in a corridor is assumed to be known in 
advance. But the corridor environment might change due to obstacle intrusion 

' 
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in every navigation cycle. Therefore, a local navigation path should be recalcu- 
lated in every navigation cycle. The obstacles, both static (e.g., walls) and 
moving (e.g., human beings), and the corridor walls are sensed as sets of 
sampled 2D points. The trajectories of moving obstacles are first predicted by a 
real-time LMSE estimation algorithm. I9 A local collision-free navigation path 
for an ALV is then computed by a modified version of the LMSE classifier in 
pattern recognition.20 Different weights are assigned to different 2D points 
according to the distances of the points to the ALV to emphasize the locality of 
path planning, and the speed value of the ALV is determined by the maneuver- 
ing board technique used for nautical navigation. l6 Integration of the three 
techniques provides a simple, fast, and intuitive approach to collision avoid- 
ance for local path planning. 

In the remainder of this article, the LMSE classification method used for 
classifying patterns in pattern recognition, and the modified version of it for 
guiding an ALV in an obstacle-free corridor, are introduced in section 2. In 
section 3, the modified LMSE classification method is applied to ALV naviga- 
tion in a corridor with unknown moving or static obsiacles. The trajectory 
prediction of the obstacles and the speed control of the ALV for obstacle 
avoidance are also described. Simulation results are presented in both sections. 
Conclusions appear in the last section. 

2. ALV NAVIGATION IN A CORRIDOR BY A MODIFIED LMSE 
CLASSIFICATION SCHEME 

The LMSE classification method used in pattern recognitionz0 to classify two 
different classes of patterns is modified in this study for conducting ALV navi- 
gation in a corridor. Assume that the wall on the left of the ALV has been 
sampled as a class of point patterns, and that on the right of the ALV as another 
class of point patterns. Part of the decision boundary between the two classes 
of patterns obtained from the modified LMSE classifier in the vicinity of the 
ALV is then used as the local navigation path of the ALV. Collision of the ALV 
with the walls is avoided automatically in this way. The remainder of this 
section includes a detailed description of the approach, followed by some simu- 
lation results. 

2.1. Use of a Modified LMSE Classification Scheme for Finding Local 
ALV Navigation Paths in a Corridor 

Given two classes of discrete point patterns, o1 and w 2 ,  we can use the 
LMSE classifier to determine a linear decision boundary, g(x) = wry, between 
w1 and w 2 ,  where y = [x, 11' with x being a feature vector. To get w, it is 
assumed first that 

w'y = + 1 if x is from class w1 ; and 

wry = - 1  if x is from class w 2 .  
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The problem is to minimize the mean of the squared errors 

1 
n X j E W l  X,EW 

- [ c (W'Yj - 1)2 + (W'Yj + 1 4  

where n is the total number of point patterns. The solution w can be provenz0 to 
be 

w = K-Ypi - pz) 

where 

To fit the need of local path planning for ALV navigation in a corridor, a 
modification of the LMSE classifier is used in this study, in which different 
weights are used to place different degrees of emphasis on the squared errors. 
The problem becomes the minimization of the weighted squared error 

where the weights have the following properties: 

with nl and nz being the numbers of patterns in w1 and 0 2 ,  respectively. The 
solution w can be derived to be 

where 

K = Ki + K 2 ,  
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The equation of the decision boundary is g(x) = 0. 
Shown in Figures 1 and 2 are two illustrative examples of using the modified 

LMSE classifier to separate two classes of patterns, where each class of pat- 
terns denotes a set of sampled points of a partial Corridor wall. Intuitively, the 
point patterns that are closer to the ALV location should be given larger 
weights. Therefore, the weights may be taken to be inversely proportional to 
the distances between the point patterns and the ALV. Figure 1 shows the 
result of applying the classifier to part of a straight corridor, and Figure 2 shows 
that of applying the classifier to a right-angle turning in a corridor. The portion 
of the decision boundary between the left and right walls in the vicinity of the 
ALV can be used to determine a collision-free local path for ALV navigation in 
the corridor. This indicates the feasibility of using the modified LMSE classifier 
for local path computation and collision avoidance in indoor environments. 

2.2. Simulation Results 

A three-wheel, rectangular-shaped ALV is considered in the simulation, 
where the front wheel has driving power and the two rear wheels are free. A 
criterion for adjusting the front wheel direction is required so as to keep the 
ALV free from collision with the walls. Once the local navigation path (i.e., the 
portion of the decision boundary between the left and right walls in the vicinity 
of the ALV) is determined, the ALV will first turn and then move toward the 
path if the ALV is not right on the path. A table look-up control strategy 
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Figure 1. Use of the modified LMSE classifier to find a decision boundary between the 
left and the right walls in a corridor. 
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Figure 2. 
pair of right-angle-turn walls in a corridor. 

Use of the modified LMSE classifier to find a decision boundary between a 

derived in ref. 21 is employed to obtain the front wheel direction of the ALV 
after the local navigation path is computed in each navigation cycle. 

Figure 3 shows the top view of the walls of a corridor, including a right-angle 
turning. The rectangle in the figure denotes an ALV that travels along the 
corridor with a constant speed. The corridor wall model is stored in advance in 

Figure 3. The top view of the corridor in a building. 
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the ALV. In addition, a global path is needed for the ALV to travel in the 
corridor. Otherwise, it will not be able to decide whether to turn left or right 
when a turning corner is faced. Attached to each line segment (corresponding 
to the top view of a wall) in the model is a flag to indicate whether the ALV 
should be on the left or right side of the line segment while the ALV is traveling 
along the part of the corridor represented by the line segment. Together, these 
flags indicate a global path for the ALV in the corridor. 

In each navigation cycle, the left and right walls in the vicinity of the ALV 
are imaged, extracted, and sampled as two classes of point patterns. The point 
patterns that are closer to the current ALV location are given larger weights (in 
proportion to the inverse of the point distance to the ALV location). And the 
computed decision boundary is used as the local navigation path of the ALV. 
Figure 4 shows simulated snapshots of the ALV at four different positions in 
the corridor, where the boldfaced line segments representing the wall portions 
around the ALV are used to determine the local navigation path. The continu- 
ous navigation trajectory of the ALV in the corridor is shown in Figure 5. The 
trajectory is seen to be well away from the walls. On an average, the computa- 
tion time for determining the local navigation path in each navigation cycle is 
about 0.2 s, using a PC/AT computer with an 80386-33 CPU. 

3. ALV NAVIGATION AMONG MOVING OR STATIC OBSTACLES 

In a real situation, when the ALV travels in the corridor, there may appear 
some unknown moving obstacles, e.g., human beings, which may collide with 
the ALV. To handle such a situation, the trajectories of the moving obstacles 
must be predicted first, and a safe local navigation path of the ALV is then 
computed according to the predicted trajectories of the obstacles and the envi- 
ronment of the corridor. It is desired that the prediction process be as accurate 
as possible without expensive computation. Linear prediction models usually 
given simple but effective solutions, especially for local collision-free path 
computation. The real-time LMSE estimation a lg~r i thm '~  is thus employed in 
this study to approximate and predict the trajectories of moving obstacles. The 
modified LMSE classifier is then used again to determine the local navigation 
path of the ALV. 

3.1. A Review on the Real-Time LMSE Estimation Algorithm 

Let x be a variable related linearly to a time variable t ,  that is, let 

x = a t + b  (1) 

where a and b are two unknown constant parameters to be estimated by a 
sequence of m observations xi on x at m different time instants ti, i = 1, 2, . . . , 
m. The m observation data provide the following set of m linear equations: 

x i = a t i + b  i = l , 2  , . . . ,  rn, 
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4a 

4b 

Figure 4. Simulated snapshots of an ALV at four different positions in the corridor of 
Figure 3. (a) An ALV is running along a straight corridor. (b) The ALV is approaching a 
right-angle turning in the corridor. (c) The ALV is turning left in the corridor. (d) The 
ALV has turned left in the corridor. 
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Fig. 4 Continued 



686 Journal of Robotic Systems-1991 

I 
r 

H 

1 
Figure 5. The continuous trajectory of the ALV navigation shown in Figure 4. 

which can be arranged into a simple form 

X ,  = T,A, 

where 

x, = 

Define an error vector Em = (el, e2, . . . , em)t for each inexact solution A ,  
such that 

Em = X ,  - T,A,. 
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Let the optimal solution, A m ,  be defined as the one such that the criterion 
function Jm 

m 

J, = C e? 
i= I 

is minimized. A, can be solved19 to be 

When fresh experimental data are continuously supplied, it is desired to 
improve the parameter estimates by making use of the new information. If a 
recursive formula can be obtained, the estimates can be updated step by step 
without repeatedly computing the solution of eq. (2). For this, first define 
matrix P, as 

Pm = (TkT, ) - l .  

Then it can be provenI9 that the solution Am+, for the (rn + 1)th time instant can 
be computed from that of the rnth time instant, A m ,  as follows; 

Am+, = Am + Yrn+lPrntrn+l{Xrn+l-t;+lam), 

where 

The real-time LMSE estimation algorithm is a simple modification of the 
above least-squares estimation algorithm in which an exponential weighting 
scheme is used to place heavier emphasis on more recent data. Such a type of 
data emphasis is appropriate for the locality property of collision-free path 
planning studied in this research. In the algorithm, the error function is defined 
as 

in which the squared errors coming from more recent data are given larger 
weights than those from earlier ones. The smaller the A value, the heavier the 
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weights assigned to more recent data. P ,  is defined as 

where 

To apply the above real-time LMSE estimation algorithm to local obstacle 
trajectory prediction, assume that a sequence of m observations on the position 
of an obstacle have been made at m different time instants. By the following 
two sets of linear equations 

xi = ari + b 

yi = cri + d 

i = 1, 2, . . . , m 

i = 1, 2, . . . , m 
(4) 

where (xi, yi) denote coordinates of the position of the obstacle at time instant 
ti, we can use the formulas in eq. (3) to estimate and update parameters a ,  b,  c ,  
and d using the fresh observation on the position of the obstacle obtained in 
each navigation cycle. Then we can predict the positions of the obstacle in the 
next cycles using these estimated parameters and the equations in (4). 

3.2. Use of the Modified LMSE Classification Scheme for ALV 
Navigation Among Moving Obstacles 

The modified LMSE classifier can also be used to plan a local collision-free 
path for an ALV in a corridor or in a planar workspace populated with obsta- 
cles. Again, the left and right corridor walls around the ALV are imaged, 
extracted, and sampled as two classes of patterns. For a moving obstacle, its 
current position and three-step-ahead predicted positions are regarded as a 
third class of patterns. The decision boundary between the left corridor wall 
and the obstacle and that between the right corridor wall and the obstacle are 
found by the modified LMSE classifier. For each decision boundary, the turn- 
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ing direction of the ALV is computed by the table look-up control strategy 
found in ref. 21. The decision boundary that results in the smallest turning angle 
for the ALV to adjust is selected as the local navigation path in the next 
navigation cycle so that the ALV will deviate as little as possible from its 
current location, while still being able to avoid collision with the obstacles. 

3.3. Determination of ALV Speed 

Once the local navigation path is determined, the turning direction of the 
ALV is computed by the table look-up control strategy found in ref. 21. If we 
can dynamically vary the speed of the ALV, the probability of collision will 
decrease. In the following, the maneuvering board technique used in nautical 
navigation16 is employed to determine the speed of the ALV. 

The basic maneuvering board technique is illustrated in Figures 6 and 7 ,  in 
which obstacles are represented as enlarged circles such that the ALV can be 
represented as a point. Figure 6 shows the avoidance cone for a static obstacle, 
which is defined by two tangent lines from the ALV to the circle representing 
the obstacle. The movement direction of the ALV from one position to the next 
and its speed value form a velocity vector. A velocity vector is represented as 

Figure 7. The avoidance cone for a moving obstacle. 

vehicle 
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an arrow in Figures 6 and 7. A vector is said to fall within an area if the vector 
head is located in the area. Clearly, any velocity vector V that falls within the 
avoidance cone will result in a collision of the ALV with the obstacle. 

The avoidance cone for a moving obstacle is shown in Figure 7 (consisting of 
the solid lines). Any velocity vector V of the ALV falling within this cone 
represents a collision course with the moving obstacle. The reason is that any 
such velocity vector V is the vector sum of a velocity vector V ' ,  which repre- 
sents a collision vector if the obstacle were static, and another velocity vector 
O r ,  which is the velocity vector 0 of the obstacle translated to the ALV loca- 
tion. That is, if the ALV runs with the direction of the vector V and at a speed 
between JVIJ and JV,J, as shown in Figure 7, the ALV will collide with the 
obstacle. Here, the lVll and IV2J values are called the boundary speeds. 

For the ALV, we set a default speed value. In each navigation cycle, after 
the turning direction of the ALV is determined and the corresponding boundary 
speeds are computed, we can check if the default speed lies between the two 
boundary speeds. If not, the default speed is used as the ALV speed in the next 
navigation cycle. Otherwise, the boundary speed, which is closer to the current 
ALV speed, is used. 

3.4. Static Obstacle Avoidance 

The previous scheme proposed for moving obstacle avoidance can also be 
applied to static obstacles. In this case, just regard the predicted positions of a 
static obstacle to be all the same as the current object position, and consider the 
current object position as a single-pattern class. In fact, it is not necessary to 
distinguish static obstacles from moving ones in the proposed collision-avoid- 
ance scheme. 

3.5. Simulation Results of Moving or Static Obstacle Avoidance 

An example illustrating how an ALV avoids collision with an unknown mov- 
ing obstacle in a corridor is first given. Shown in Figure 8 are several simulated 
snapshots of an ALV and a moving obstacle at different positions, where the 
unfilled rectangle represents the ALV, the four small black rectangles denote 
the current position and the predicted obstacle positions of three steps ahead, 
and the circle denotes the current position of the obstacle. Figure 9 gives the 
top views of the continuous motions of the ALV and the obstacle at four time 
instants, illustrating the computed collision-free trajectory of the ALV. Shown 
in Figures 10 and 1 1  are two examples illustrating how an ALV avoids a static 
obstacle in a corridor. On average, the computation time for determining the 
local navigation path in each cycle is about 0.4 s in the case of avoiding a 
moving obstacle. 

4. CONCLUSION 

Several techniques have been integrated in this study to provide a collision 
avoidance scheme for ALV navigation. The real-time LMSE estimation algo- 
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8a 

8b 

Figure 8. Simulated snapshots of an ALV and a moving obstacle at six different 
positions. (a) An ALV and an obstacle encounter in the corridor. (b) The ALV is 
approaching the obstacle. (c) The ALV has avoided the obstacle. (d) The ALV is going 
to turn left. (e) The ALV is turning left. (f) The ALV has turned left. 
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8d 

Fig. 8 Continued 
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Fig. 8 Continued 
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Figure 9. Continuous trajectories of the ALV navigation and the obstacle movement of 
Figure 8. (a) In the first 6 navigation cycles. (b) In the first 11 navigation cycles. (c) In 
the first 13 navigation cycles. (d) In the first 29 navigation cycles. 
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I Fig. 9 Continued 
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Figure 10. Continuous trajectory of an ALV having avoided a static obstacle (case 1) .  

rithm has been employed to predict the motions of obstacles. A modified ver- 
sion of the LMSE classifier used in pattern recognition has been employed to 
plan a collision-free local path among obstacles. The maneuvering board tech- 
nique, used for nautical navigation, has been used to determine the speed of the 
ALV. In addition, a realistic control strategy on the translation and rotation of 

Figure 11. Continuous trajectory of an ALV having avoided a static obstacle (case 2). 
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a three-wheel ALV has been considered in the simulation. Combination of 
these techniques provides a feasible collision-avoidance scheme for guiding an 
ALV in a corridor to avoid unknown moving or static obstacles, as shown by 
the simulation results. 

Further research may be directed to practically implementing the proposed 
approach on an experimental autonomous vehicle. Some urgent responses of 
the vehicle must also be considered when the computed collision-free path is 
too narrow for the vehicle to pass or when the vehicle is too close to the 
obstacle. 

This work was supported by the Nationai Science Council, Republic of China under 
Grant NSC79-0404-EO09- 18. 
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