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SUMMARY

The use of the Holly—Preissmann two-point scheme has been very popular for the calculation of the
dispersion equation. The key to this scheme is to use the characteristics method incorporating the Hermite
cubic interpolation technique to approximate the trajectory foot of the characteristics. This method can
avoid the excessive numerical damping and oscillation associated with most finite difference schemes for
advection computation. On the basis of the fundamental idea of the Holly—Preissmann two-point scheme,
a new technique is introduced herein for the computation of the two-dimensional dispersion equation. This
new scheme allows the characteristics projecting back several time steps to fall on the spatial or temporal
axis, while the characteristics foot is still solved by the Holly-Preissmann two-point method. The diffusion
portion of the dispersion equation is solved by the commonly used Crank—Nicholson method. The
calculation for these two processes consisting of advection and diffusion is carried out separately but
consecutively in one time step, a method known as the split operator algorithm. A hypothetical model was
constructed to demonstrate the applicability of this new technique for the calculation of the pure advection
and dispersion equation in two dimensions.

KEY WORDS Two dimension Dispersion Characteristics method

INTRODUCTION

A variety of numerical methods are available for the approximate solution of the dispersion
equation and many are in use at the present time. However, no one method yet known is
considered to be fully satisfactory. The primary difficulty arises from the combined hyperbolic
(advection) and parabolic (diffusion) nature. To solve the dispersion problem in one- and
two-dimensional flow by using numerical simulation, one has to be very careful to avoid possible
numerical damping and oscillation problems. In order to tackle the numerical oscillation
problem, several upwind-type finite difference methods have been proposed and investigated.! 3
In addition, the upstream finite element method* was proposed and applied to solve the
dispersion equation. Yeh® has also introduced a Lagrangian—Eulerian method with the use of
a zoomable hidden fine-mesh approach which can give very convincing results in solving the
advection-diffusion equation. However, each method has its own characteristics and limitations
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with respect to elimination of the numerical oscillation problem. Some of them may induce
excessive numerical damping and may therefore mask the real physical diffusion processes. Some
can only reduce the numerical oscillation problem under certain conditions of Courant number
and Peclet number.

Among all these methods, it has been known that for the computation of pollutant dispersion
along a river channel or coastal area, the Holly—Preissmann two-point method (H-P method) is
one of the best and can give simulation results with few numerical oscillation and damping
problems. The H-P method has also been extensively studied and applied to many hydraulic
computation problems by many researchers.®~!?

The H-P method is based on the fact that the higher-order interpolating polynomials are
constructed from pairs of adjacent points on the spatial axis. In particular, for the case of
transport in a coastal area where the transport phenomenon is dominated by advection rather
than diffusion, with the use of the H-P method the numerical damping can be minimized.

In fact, the H-P method is a kind of characteristics method, although only one characteristic is
considered. When one looks through the unsteady flow problems solved by the characteristics
method, one finds many investigators who have improved the characteristics method to give it
various better and attractive features. Some extend the characteristics outwards in distance;*® 13
others extend the characteristics backwards in time.'® !” Each extension has its accompanying
improvements and merits. In this paper a similar concept of projecting the characteristics
backwards in space and time with integration of the H-P method has been applied to solve the
advection equation.

Two methods based on the fundamental concept of Holly and Preissmann’s idea are intro-
duced, which will be denoted as the Holly—Preissmann reach-back method (HPRB) and the
Holly—Preissmann time-line interpolation method (HPTLI). The HPRB method allows the
characteristics to project back several time steps beyond the present time level and fall on the
spatial axis. The HPTLI method allows the characteristics to project several time steps beyond
the present time level and fall on the temporal axis. In fact, the H-P method is a special case of the
HPRB method where no reach-back characteristics are considered.

Stability analyses for the HPRB and HPTLI methods have been carried out for the one-
dimensional advection equation by Yang and Hsu.!%'!! These authors have pointed out that the
solution accuracy can be greatly improved by allowing the characteristics to project back beyond
one time step with the use of either the spatial (HPPB) or the temporal interpolation (HPTLI)
technique.

For the advection—diffusion (i.e. dispersion) problem the split operator algorithm is used to
compute the advection and diffusion separately but consecutively in one time step. The advection
portion will be computed by the HPRB or HPTLI method. For the diffusion portion the
well-known Crank—Nicholson method is used. A hypothetical model is constructed for inves-
tigating the applicability of these new methods for the two-dimensional advection and dispersion
equations through comparison with the original H-P method and the analytical solution.

GOVERNING EQUATIONS

The equation of 2D conservation of contaminant can be written as® '3

O(hC} O(huC) o(hwC) 0 oC 0 oC 0 oC\ 0 ocC
—+ _— —— — — —_ — —_— i
o TTax T ay Cax\Muge Jtal\ ey, o\ g g ey ) @
in which x and y are horizontal Cartesian co-ordinates, ¢ is time, h(x, y, t) is the water depth,
C(x, y,t) is the depth-averaged contaminant concentration, u(x,y,t) and v(x, y,t) are the
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depth-averaged velocities in the x- and y-directions respectively and ¢;,(x, y, t), £12(x, ¥, t} and
£22(x, y, t) are components of the diffusion tensor &. When the streamlines are aligned with the x-
or y-axis, the term ¢,, disappears.

The velocities and depths are assumed to be known quantities furnished by a previous

mathematical or physical model study or even field measurement. Equation (1) can be simplified
as

oC oC 6C18h oC 1ahac 1ah ac lﬁh oC 2

6’;4‘”‘&4‘1)@—%&( €11 é;)'f"h‘a( €12 —a;)-l_‘}—l@( €12 5;)-}-;5( E22 5—)}—) ( )
Equation (2) is a linear, second-order, parabolic partial differential equation. A variety of
numerical methods are available for the solution of (2). In this paper the split operator strategy is
applied to compute the advection and the diffusion separately but consecutively in one time step.
The HPRB or HPTLI method is used to solve the advection portion. The diffusion portion is

solved by the Crank—Nicholson method. The solution algorithms are described in the following
sections.

REVIEW OF HOLLY-PREISSMANN METHOD

From (2) the two-dimensional advection portion can be written as

oCc  oC  oC
E+u$+05§_0' 3)
Equation (3) can be recognized as a total derivative form
DC
= 4
Dt 0 @
along
dx dy
‘d_t_u(x, Y, t)’ d_t_‘v(x: y’ t) (5)
Integration of (4) and (5) yields
C,=C; (6)
along
tn
x,,——xézj u(x, y, t)dt, N
4]
ty
yq—y§=f v(x, y, t)dt. (8)
I

A schematic diagram of the characteristics trajectory is shown in Figure 1. C, is the unknown
concentration for grid point # at time level # which is to be solved. C; is the concentration for
point & at time level n—1 in which concentrations for all grid points are known.

Holly and Preissmann? used the concentration, its first derivatives and cross-derivatives at the
neighbouring grid points to construct an interpolating polynomial to estimate C,. It is clear from
Figure 1 that this interpolating polynomial is constructed by the values of C, Cx=0C/ox,
Cy=0C/dy and Cxy=02C/dxdy at the four neighbouring nodes (i, ), (i—1,j), (i,j—1) and
(i—1, j—1). By following Holly and Preissmann’s idea, C; can be calculated by the relation

3 3
C«ARx,Ry)= Y 3 a,(Rx)?(Ry)4, ©)

p=04=0
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Figure 1. Schematic grid diagram for H-P method

where Rx =u At/Ax and Ry =v At/Ay. Once the nodal values C,(C}' ;) have thus been determined,
the new nodal values of the derivatives, Cx", Cy™ and Cxy", must also be determined before the
subsequent time step can be initiated. This is accomplished by differentiating (3) with respect to
x and then y, yielding

DC
—D—tx~=—uxCx—vny, (10)
DC
Hx=—uny—vyCy, (11)

in which D/Dt denotes the total derivative along the trajectory, u, = 0u/0x, v, = 0v/0x, u, = 0u/0y
and v,=0dv/0y.

The values of u,, u,, v, and v, can be obtained from the known velocity field; the system of
equations (10) and (11) can be integrated from the foot of the trajectory (point ). The trapezoidal
rule is used to integrate (10) and (11). In this manner Cx" and Cy" are therefore calculated for each
node (i,j). Cxy" can be solved by cross-differentiating (3):

DCxy
Dt

=1, Cxx — 0, Cyy — g, Cx — 0, Cy —(u, +v,) Cxy. (12)

The solution of this ordinary differential equation requires not only the cross-derivatives u,, and
v, but also the second derivatives Cxx and Cyy and cross-derivatives (Cxy), and (Cxy), for the
interpolation of Cxy at point £. This closure problem is avoided by estimating Cxy at each node
(i,j) by the divided difference just before each advection time step:

Cxy! .=£ (Cx{:j+1—cxi?:j—1)+l (CY?H,,'—CY?—LJ') (13)
"2 Yi+1—Vi-1 2 Xiv1—Xi—1 '

The above procedures complete the computation of the advection portion in one time step.

DESCRIPTION OF NEW METHODS

The HPTLI method

The HPTLI method is to let the characteristics project back beyond the present time level to
intercept on the time plane (i.e. x—t or y—¢ plane) between time levels "™ and "™~ ! as shown in
Figure 2, in which m denotes the reach-back number. The characteristics can fall on the x—t or y—¢
plane, and the justification is made on the basis of comparison of Rx and Ry. When Rx is greater
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Figure 2. Schematic grid diagram for HPTLI method

than Ry, the characteristics fall on the y—t plane. When Ry is greater than Rx, the characteristics
fall on the x—t plane. If Rx is equal to Ry, the characteristics fall on the intercepting line of the x—t
and y—t planes between time levels :"™™ and ¢" "™~ . The trajectory foot C; can be evaluated by
a cubic time-line interpolation polynomial. A similar technique has been described by Yang and
Hsu!! for calculation of the one-dimensional dispersion equation. For the 2D problem the
interpolating polynomial will be a function of concentration C, temporal derivative Ct, spatial
derivative Cx or Cy and cross-derivative Cxt=02C/dx 0t or Cyt=0*C/dyot. The selection of Cx,
Cxt or Cy, Cyt is dependent on the values of Rx and Ry as stated previously. Similar to (9), C, can
be derived as

Co(Rxt, Ryt)= Z Z bp(Rxt)P(Ryt)", (14)

p=04=0
in which Rxt and Ryt are interpolation parameters. The relation between Rxt, Ryt and Rx, Ry for
the linear case can be summarized as follows.

1. If Ry<Rx<1, then Rxt=1/Rx—m and Ryt=Rx/mRy, where m is the integer portion of
1/Rx.

2. If Rx<Ry<, then Rxt=Ry/mRx and Ryt=1/Ry—m, where m is the integer portion of
1/Ry.

3. If Rx=Ry, then one can select either the x—t or the y—t plane. If the x—t plane is used, then
Rxt=1 and Ryt=1/Ry—m. On the other hand, if the y — ¢ plane is selected, then Ryt =1 and
Rxt=1/Rx—m.

When point £ is on the x—t plane, (14) can also be rewritten as
C:(Rxt, Ryt)=b, C{=["7. 1 +b,CE o1+ b CRID typ,CP )
+bhsCx! i + b OXP M jm 1+ b, Cx] 5T P+ by XY
+bho CtE 7 + by CtE T+ b CyE T b1 Cyl 3
+bi3CxtPT 1 b Cxt T+ by s Cxt] ;I 4+ by 6 Cxt] T (15)
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When point £ is on the y—t plane, a relation for C, similar to (15) can be derived. The difference
will only be the independent variables and the coefficients.

Once the nodal values C, (C!;) have thus been determined, the new nodal values of the
derivatives, Ct", Cx", Cy" and Cxt" or Cyt", must also be determined. This is accomplished by
differentiating (4) with respect to x, y and t. When the characteristics fall on the x—t plane, one has
to solve two further equations:

DC

Dtx= —-u,Cx—v,Cy, (16)
DCt

Ft=—u,Cx—u,Cy, (17

where Cx and Ct can be estimated by equations similar to (14) and (15). Cy and Cxt" are
evaluated by

Cliv1—Cl i
Cylj=—rm 2, (18)
Vit+1—=Yj-1
Ctlyy ;—Ctr
Cxtf j=——rd——2d (19)
Xi+1—Xi—1
Similarly, when the characteristics fall on the y—¢ plane, two more equations are needed.
DCy
Ez —uny—vyCy, (20)
DCt
TD—t~=—u,Cx—v,Cy, (21)

where Cy and Ct can also be estimated by equations similar to (14) and (15). Cx and Cyt can be
evaluated by the discrete forms

Cley j—Cly
Cxpyj=—tt10 LI 2

Xi+1—Xi-1

Ax

Ay Cy

(I_LJ) / ("J) n—-2 m=2
7

G~1,j-1 GJ-D

Figure 3. Schematic grid diagram for HPRB method
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C1]+1 Ctl] 1

Cyt." L=
e y1+1 y] 1

(23)
Equations (14)-(23) complete the calculation of the advection portion.

The HPRB method

The HPRB method is to let the characteristics project back beyond the present time level for
the space domain interpolation. A schematic diagram of the characteristics trajectory is shown in
Figure 3. When the reach-back number m=1, the HPRB method is identical to the original H-P
method.

The interpolation polynomial is similar to the H-P technique. On the basis of (9), the following
relation for C, can be obtained:

Ce(Rx, Ry)=a, CI3% g j—p -1+ a2 P+ a3 G- o
+a, CIl i +asOXP i a6 CXP % s
+a7Cx{ -y +ag CXP T+ @ CYr ™y jr—1
+a0Cyit e+ an Oy -1 + a0 Oy,
+a13CxyI i1+ OXPI T s
+a1scx)’: kyj~r— 1+016cxy1 k,j—r> (24)

where Rx and Ry are the decimal portions of mRx and mRy respectively, k is the integer portion
of mRx and r is the integer portion of mRy. If m=1, then k, r=0 and this technique is exactly the
H-P method.

The procedures for the transport of Cx, Cy and Cxy along the trajectory are identical to those
performed for the H-P method.®

SOLUTION FOR DISPERSION EQUATION

The dispersion equation (1) can be rewritten as
DC 10 oc\ 1o oCN\ 10 oCy\ 10 aC
aﬁa(”eua)*m("ma ) ¥ (" 2 5% ) 73y ("Sﬂa ) 25)

dx dy
da de

along

Equation (25) can be solved by decomposition into pure advection and pure diffusion. It has been
described previously that the advection can be solved by the HPRB or HPTLI method. The
diffusion will be computed by the Crank—Nicholson method. The solution algorithms are as
follows.

When HPRB method used for advection portion

Once the new advected concentration values C' ; at each node have been obtained as described
in the previous section, this new concentration field must be allowed to diffuse for the same time
period of advection. However, in the advection scheme two additional unknowns Cx and Cy have
been added; they must also be diffused to be consistent. This is accomplished by differentiating (3)
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with respect to x and y to obtain dispersion equations for Cx and Cy. By using the symbol ¥ for
the dependent variables C, Cx and Cy, the three dispersion equations for C, Cx and Cy can be
written as a single expression

Dy o oy i) oy

in which z=x or y, w=y or x and ¢=¢g,; Or &,.

The problem then becomes one of solving (26) along each line y =constant to allow x-diffusion
of the advected y-values, and solving (26) along each line x=constant to allow y-diffusion of the
x-diffused y-values. This must be done independently for ¥ =C, y =Cx and = Cy. Using the
Crank—Nicholson method (26) is discretized as

h Wx"'—w?: 20 (hi+ 5i+('/’in+1_l/’in)_hi~8i_ ('//in—l//i"—l)>

At Ziv1—Zi-1 Ziy17Z; Zi—Zij-

+ 2(1-6) (hi+8i+(‘/’i"+_11“‘/’i"_l)_hi_ﬁi—(‘//i —1_4,?_—11))

Zi+1 72 Zi—2Zi—

2 + AN NEIAY
+2——i+1*2i—1 |:hi (e12)i (%); —hi (e12)i (%) ]’ 27

in which ;' has been obtained by using the HPRB method for advection computation, At is the
time step, 6 is a weighting factor i is the index of computational points along z, ie. x or y,
hi* =(h;+h;+1)/2, similarly for &' and (6y/ow)}, and h;” =(h;+h;_)/2, similarly for ¢ and
(Oy/ow); . If the flow direction coincides with the x- or y-axis, then &;, =0 and the last term of (27)
disappears.

The evaluation of cross-derivatives dyr/ow can best be explained with reference to Table I,
which shows that for the diffusion of the concentration, = C, the cross-term éy/0w is just Cx or
Cy. Since Cx and Cy are part of the advection solution, they are known at all nodes at the end of
the advection step and thus the last term of (27) can be solved explicitly. When ¢ = Cx or Cy, Cxy
appear, the cross derivatives can be evaluated by using the divided difference approximation of
(13). The remaining two terms Cxx and Cyy can be estimated by the following divided difference
procedure at the end of the advection step:

Cyy; :(Ci-f“_ci,i_ci,i“ci,j—l> 1
Y Yie1— Vi Yi—Yi-1
Equation (27) can be solved by the tridiagonal matrix (double-sweep) method. The solutions for

C, Cx and Cy along any given line can be carried out in parallel using the same influence
coefficients, since only the free term changes from one case to another.

Ziv1 —Zi-1

(28)

Zi+1—Zi—1

Table 1
oy /o
Calculation Perpendicular wiow
direction (z) direction (w) v=C ¢y=Cx y=Cy
x y Cy Cxy Cyy

y x Cx Cxx Cxy
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Table IT
oY/
Calculation Perpendicular viow
direction (z) direction (w) Yy=C yYy=Cx Yy=Cy y=Ct
x y Cy Cxy Cyy Cyt
y x Cx Cxx Cxy Cxt

When HPTLI method used for advection portion

When the HPTLI method is used to compute the advection portion, (27) has to be rewritten as

h. lpi""l//?= 20 (hi+8i+(¢in+1_‘//in)__hi_si_(l//in_l/’in—l)>

At Zit1—Zi-1 Zi+1— 2 Zi—2Zi—

2(1-9) (hi+8i+(l//i"+_1m—’ ") h si_(lﬁ{'_"'ﬂ//,-"—‘{"))

Zi+1 —Zi-1 Ziv1—Z; Zi—Zi—1

2 e (N ()
+Zi+1—Zi-1[hi (812); (%‘)l —hi (e12); <5W>i ]’ (29)

in which ¢{ has been obtained during the advection computation and ¢ "™ denotes the y-value
at time level n—m.

The computation of 0y//0w can be explained with reference to Table II. On the x—t plane, ¥ =C,
the cross-term /0w is just Cx or Cy. Cx appearing in the last term of (27) can be evaluated
explicitly. Cy can be treated by using the discrete form of (18). ¥ = Ct can be evaluated by using
the discrete form of (19) and (23). For ¢ = Cx the cross-term dy/0w is Cxy or Cxx. Cxy can be
estimated by using the same type of divided differerice approximation as (13). Cxx can be
evaluated by using the same type of approximation as (28). The computation of dy/dw on the y—t
plane is the same as that on the x—¢ plane described above.

DEMONSTRATION AND EVALUATION

Calculation of pure advection

The pure advection of a Gaussian concentration distribution for various Courant numbers Cr
with constant Ax and Ay has been computed. The distribution of mean position x=2200 m,
y=2200 m and standard deviation 6,=0,=264 m is defined on a regular grid Ax=Ay=200 m.
The velocities u and v are assumed to be 0-5 ms ~! and therefore the term &, , disappears in (3). In
such a situation the analytical solution exists. The weighting factor =05 is fixed for all test cases.
For the downstream boundary condition it is assumed that C and its derivatives are equal to zero.
Cases with Courant numbers Rx=Ry=Cr=0-1,0-25, 0-5 and 0-75 for time steps At =40, 100, 200
and 300 s are tested. The initial distribution is transported for time 7=9600 s. Another scheme
may be needed to set up the initial condition when one applies the HPRB or HPTLI method for
computing the advection portion. For the cases studied herein the original H-P method is used to
establish the initial condition. In the following comparison figures the analytical solution is
denoted Exact, the solution from the HPTLI method is denoted HPTLI and the solution from
the HPRB method is denoted HPRB.
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Figures 4(a)-4(d) show the simulated concentration distributions along one flow direction for
various Courant numbers. In each figure, four simulations for reach-back numbers m=1, 2, 3 and
4 were performed. It is obvious that the results get closer to the exact solution as the reach-back
number increases. In Figure 4(b) the simulation result with m =4 is identical to the exact solution.
This occurs because the characteristics fall exactly on the grid node. Similarly, for the case of
Cr=05 the characteristics will fall on the grid node when m=2 is used. This again can be
observed in Figure 4(c). The same result has also been obtained for the computation of the 1D
dispersion equation by Yang and Hsu.!!

From Figures 4(b) and 4(c) for Cr=0-25 and 0-5 one can see that the HPTLI method gives very
good results which are almost consistent with the exact solution. However, when Cr is too small,

104 @
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00000 mm=4
seses Exact

L

-1
5000 6000 7000 8000 9000 10000
Distance(m)

SN |
cee= m=2
c = = m=3
20090 Mm=4
seeese HPTL
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-1 T —T- 7 T
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Figure 4. Comparison of analytical and numerical solutions for advection equation: (a) Cr=0-1; (b) Cr=025;
{c) Cr=050; (d) Cr=075
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Figure 4. (Continued)

e.g. Cr=01, the large value of reach-back number required may create difficulties in setting up
the initial condition. Therefore no results computed by the HPTLI method for the case of Cr=0-1
are shown herein. In addition, the programme coding will become more complex and require
a large memory. Therefore, when Cr is too small, say less than 0-25, the HPTLI method will not
be appropriate for the advection computation.

Calculation of dispersion equation

The advection—diffusion of a hypothetical Gaussian distribution under different velocity fields
has been tested. The mass of the contaminant is assumed to be 36 100 units. The distribution of
mean position x=2200m, y=2200m and standard deviation ¢,=0,=300m is defined on
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regular grid Ax=Ay=200 m. For the downstream boundary condition it is again assumed that
the concentration and its derivatives are equal to zero. Diffusivities &;; = &,, =01 m?s~ ! are used
for this case.

The results along one flow direction for all the test cases with various Courant numbers are
shown in Figures 5(a)-5(d). Again, the same conclusions as for the calculation of 1D advection
and 1D advection—diffusion problems described by Yang and Hsu'% ! are observed. The reach-
back number m plays a significant role in the solution accuracy. A better solution can be obtained
with a larger value of m when the HPRB method is used to compute the advection portion. It can
also be observed that the results computed by the HPTLI method are quite convincing.

.
5000 6000 7000 8000 9000 10000
Distance(m)

-1 R T 1 {
5000 6000 7000 8000 9000 10000
Distance(m)

Figure 5. Comparison of analytical and numerical solutions for dispersion equation: (a) Cr=01; (b} Cr=025;
(€) Cr=0-50; (d) Cr=075
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Figure 5. (Continued)

CONCLUSIONS

On the basis of the main framework of the Holly—Preissmann two-point method, a new
interpolation technique incorporating consideration of the reach-back characteristics has been
introduced for 2D advection—diffusion computation. From the demonstrated cases, whether for
the computation of the pure advection or the advection—diffusion problem, one can conclude that
the better simulation results can always be obtained with an increase of reach-back number
m when the HPRB method is used for the advection computation. Furthermore, as long as the
Courant number is not too small, the solution from the HPTLI method is also very convincing.
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APPENDIX: NOTATION

ay,...,016 HPRB method concentration interpolation coefficients
by,....bis  HPTLI (x—¢ plane) concentration interpolation coefficients
C concentration

Ct dc/ot

Cx 0C/ox

Cxt 82C/ox 0t

Cxx 8%C/ox?

Cxy 0%C/oxdy

Cy oC/dy

Cyy 02CJoy*?

Cyt 02CJoyot

h water depth

m reach-back number

Rx ult/Ax

Ry vAt/Ay

Rxt if Rx<Ry<1, Rxt=Ry/mRx; if Ry<Rx<1, Rxt=1/Rx—m
Ryt if Ry<Rx <1, Ryt=Rx/mRy; if Rx<Ry<1, Ryt=1/Ry—m
t time

u x-direction velocity

u, du/ot

Uy ou/0x

u, Ou/dy

Uy, 0%u/oxdy

v y-direction velocity

v, dv/ot

Dy dv/ox

v, ov/dy

Vry 0%v/0x Oy

Ax x-direction space increment
Ay y-direction space increment
At time increment

0 weighting factor

¥ dependent variables

n characteristics head position
4 characteristics foot position
£ diffusivity tensor
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