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1. uction 

In many applications, the network designer may 
want to know which edges in the network are most 
important to him. If these edges are removed from 
the network, there will be a great decrease in its 
performance. Such edges are called the most vital 
edges in a network. Several papers [1,2] have been 
presented to find the most vital edges. However, 
they are only concerned with the effect of the 
maximum flow or the shortest path in the net- 
work. In this paper, we will consider the effect of 
a minimum spanning tree in the network. 

Most graph-theoretic terms used in this paper 
are standard (e.g., [3]). Here, we limit ourselves to 
defining the most commonly used terms and those 
that may produce confusion. G = (V, E) is called 
a graph if V is a finite set and E is a subset of 

((0, b) I a f b9 (a, W is an unordered pair of I/’ }. 
We say V is the vertex set of G, E is the edge set 
of G. Let p=(VI and q=IEJ. Let E be a 
subset of E. We use G - E to denote the graph 
G’ = (V, E - E). In particular, we use G - e and 
G + e to denote the graph G - (e} and G + {e}, 
respectively. Craph H = (V ‘, E ‘) is called a sub- 

graph of G if V’ G V and E’c En (V’x V’). A 
subgraph H = ( V ‘, E ‘) of G with V’ = V is called 
a spanning subgraph of G. A spanning tree of G is 
a connected spanning subgraph of G that contains 
no cycles. 

A weighted graph is a graph G = (V, E) with a 
weight w(e) assigned to every edge e in E. The 
weight of a spanning tree T, w(T), is defined to be 
the summation of w(e) for all e in T. A spanning 
tree T in G is called a minimum spanning tree if 
w(T) < w(T’) for all spanning trees T’ in G. 
Minimum spanning trees have many applications 
in network design, VLSI, geometric optimization 
and so on. There are two best-known algorithms 
used in finding the minimum spamning tree in a 
weighted graph. One is Kniskal’s algorithm [4] 
and the other is Prim’s algorithm [5]. It is known 
that Kruskal’s algorithm takes O(q log q) time 
whereas Prim’s algorithm takes Q( p2) time. 

Let g(G) denote the weight of a minimum 
spanning tree of G if G is connected; otherwise, 
g(G) = 00. An edge e is called a most vital edge 
(MVE) in G if g(G-e)>,g(G-e’) for every 
edge e’ of 6. The problem of finding such an 
edge is called the I-MVE problem. Two al- 
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gorithms with time complexities O(q log 4) and 
0( p2) are presented for solving the l-MVE prob- 
lem in this paper. 

2. Some interesting pro 

Throughout this paper, we assume that the 
costs of edges in G are different. With this as- 
sumption, the minimum spanning tree in G is 
unique. A naive way to find the most vital edge in 
G is finding g(G - e) for each edge e in E bv 
applying Kruskal’s algorithm. The most vital edge 
in G is thus easily obtained. However, this method 
takes 0(q2 log 4) time. We may reduce the time 
to 0( pq log q) once we have the following lemma: 

mma 1. Let TG be the minimum spanning tree of 
G. Then, the most vital edge of G is one of the edges 
in TG. 

oaf. It is clear that g(G - e) > g(G) if the edge 
e is in TG. Let e * be the most vital edge. If e* is 
not in TG, then To is a spanning tree of G - e *. 
This implies that g( G - e * ) = g(G). There is a 
contradiction. Hence, the most vital edge of G 
must be one of the edges in TG. 0 

With Lemma 1, the most vital edge of G is in 
its minimum spanning tree To. Thus, only 1 TG 1 = 
p - 1 edges are considered and the time complex- 
ity of the above naive method can be reduced to 
0( pq log q). We need the following discussion to 
further reduce the time complexity. 

Let &? be the set of all edges in TG and B = E - 
3. Let e = (c, b) be an edge in B and a = 

vO, v],..., vk = b be the path with endpoints a and 
b in To. For each Y = (a, b), we define an edge set 
R, that contains all edges in path a = vo, v,, . . . , 
ok = b. Then for e’ E &!, we define the edge sets 
R,p as containing all edges e such that e’ E R,. 
Let f (e’), where e’ E 52, be the edge e in B such 
that w(e) = min{ w(e” j 1 err E 8.f). For example, 

Fig. 1. Graph G. 

the bold edges in Fig. 2 show the minimum span- 
ning tree of the graph G given in Fig. 1. Then, 

R(1.2, = ((2, 3), (3,6), (6, l)} 3 

R (3.4) = ((39 a (69 99 (59 4)), 

R (2.4) = ((2, 3), (3, 6), (6, 5), (5, 4>}, 

R (3.5) = ((39 a (69 w 

and 

R (4.6)= (t4, 5), c5, 6)>- 

Since (2, 3) E Ro2, and R(2,4,, the edge set R,,,, 
= {(1,2), (2, 4)). Obviously, f((2, 3)) = (1, 2). 

mma 2. If e is in L?, then TG_e= TG- e +f(e). 
Hence w(T,_,> = w(T,) - w(e) + w(f(e)). 

oaf. The proof is obtained by applying Kruskal’s 
algorithm on G and G - e. Without loss of gener- 
ality, w(e,) < w(e,) < l . . < w(e,) is assumed. 
Kruskal’s algorithm [4] initializes the spanning 

Fig. 2. Minimum spanning tree of the graph G in Fig. 1. 
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forest FO of G with no edge. At each iteration i, 
check if E__, U { e, } is acyclic or not. If e_ 1 U 
{ e, } is acyclic, then set 6 = F, _ 1 U { e, }. Qther- 
wise, set 6 = I;;_,. 

Let E and El_’ be the intermediate spanning 
forests obtained by applying Kruskal’s algorithm 
on G and G - e, respectively Let e = ej and f(e) 
= eh. Then j c h, otherwise eh is an edge of To. 
Thus, F’ = Fk if k <j. Since ek is the edge with 
w( e,) = min{ w( e”) 1 e” E R,}, we have F’ = 
F,-e,if j<k<h-1; and Fk)=Fk-e+f(e)if 
kzh-1. Hence TG_e=TG-e+f(e). •I 

The edge f(e) is called the entering edge with 
respect to the leaving edge e. With Lemma 2, we 
may easily compute the most vital edge once we 
know the entering edge f(e), for every e E C& In 
the following, there are some properties about the 
trees that will be used later. Let T be a spanning 
tree of G. We may pick any vertex of T as a root 
and label the vertices of T from 1 to p in post- 
order. Thus, each vertex can be identified by its 
postordered number. All edges of T can be written 
as ( u, p( u)), where v is a nonroot node and p(u) 
is the parent of u. Let us regard every vertex as a 
descendant of itself. Then, we have Lemma 3. 

Lemma 3. If e = ( u, p( 0)) is an edge of T, then 
f ( e ) must be an edge joining a vertex of a descen- 
dant of v to a nondescendant of v. 

3. An O(q log q) time algoait for the 
problem 

The main idea of the algorithm presented in 
this section is to find the leaving edge set f - ‘(e ‘) 
for every e’EE- 1(2. Then, we apply Lemma 2 to 
compute the most vital edge in G. 

lgorithm 1 

Step 1. Apply Kruskal’s algorithm to find the 
minimum spanning tree TG of G = (V, E). 
Let Q be the set of edges in TG. Sort the 
edges in set B= E-L?= {e,, e2 ,..., 

eq-p+l } in terms of their weights and 

w(e,) < w(e2) < -- < w(eq_+,) is as- 
sumed. Let ( v.~, u,) = e,. 

Step 2. Find the leaving edge set f -‘(e,y), f - ‘(e,) 
c I& for entering edges e,, s = 1. 2,. . . , 
q - p + 1, as follows. 
2.1. Let F, = 0. Let R,$ be the set of all 

edges in the unique path from the 
vertex u, to u, in TG. 

Step 3. 

2.2. Set f-‘(e,)=R,, - F,_, and F,= 
F,_,Uf-‘(e,),s=l,2 ,..., q-p+l. 

For each edge e in TG, compute w(T~_~) 
= w(TG) - w(e) + w(f(e)). Find the 
edge e* such that w(T,_,*j = 
max{ w(TG_e) lthe edge e is in TG}. 

By Lemma 2, it is clear that f(e) = e, for all 
edges e in the unique path from the vertex ui to 
u1 in TG. In general, f(e) = e, for all edges e in 
the unique path from the vertex u, to u, but not in 
lJf=\ f -‘( ej). Thus, Step 2 finds f -‘( e,) correctly. 
We illustrate Algorithm 1 via the example in Fig. 
1. Step I finds the minimum spanning 
shown in Fig. 2. In Step 2, we find the 
edge sets f ‘( e,), for entering edges 

(e,, e2 ,...,e4-p+l ) 

= ((1, 2), (3,4), (2,4), (3, 5), (476)) 

as follows: 

f -‘((l, 2)) = ((2,3), (3,6), (1,6))9 

f -‘((3,4)) = ((4, 5), (5,6)), 

f -‘((2,4)) =o, 

f -‘((3,5)) =o, 

and 

f -‘((4,6)) =fl. 

Step 3 computes 

( ( w 7&2.3Jr w(TG-(3.6J, w(G-~l.6J. 

4 TG-(4.5) ), w(T,-f5.6, 0 

= (125,110,115,110,130) 

and then finds the l!NE e* = (5, 6). 

tree Tc 
leaving 

Now, we describe the time complexity of Al- 
gorithm 1. Obviously, Steps 1 and 3 take 
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0( 4 log q) and O(p) time, respectively. At Step 
2.1, the unique path from vertex u, to u,~ can be 
determined as follows. Let vertex q be the root of 
T(-. Define the depth of a vertex c, denoted as 
l(u), in TG is the distance of v from the root v,. 
(All edges have distance 1.) Search from vertex I-J* 
and u, to root v,, respectively. Start with the 
greater depth vertex and stop when a common 
ancestor vk is found. Then the unique path from 
the vertex u.~ to u, is obtained. With this imple- 
mentation, Step 2 takes 0( pq) time. Thus, the 
total time for Algorithm 1 is 0( pq). However, we 
may use the data structure UNION-and-FIND [6] 
on disjoint sets to reduce the time to O(q log q). 

Step 2 of Algorithm 1 can be modified as 
follows by introducing the operations FIND(i) 
and UNION( i, j). The operation of FIND(i) is 
to determine the root of the tree containing ele- 
ment i. UNION(i, j) requires two trees with roots 
i and j to be joined and assigns the vertex with 
the smaller depth among i and j as the root of the 
resultant tree. 

Step 2. For s = 1, 2,. . . , q - p + 1, use the follow- 
ing procedure to find the leaving edge set 

f -‘w 
2.1. 

2.2. 

2.3. 

Let (Q, u,) = e,. Let x = FIND( v,) 
and y = FIND( ~1,). 
(Search from vertex x and JJ to root 
u respectively. Start with greater 
depth vertex.) If I(x) > I( ~9, then set 
u = z. Otherwise set u =y. Set z = 
p(u). Assign the edge (u, z) to edge 
set f -‘(es). Set z, = FIND(z) and 
process UNION(z,, u). If Z(x) > 
I( J), then set z, = x. Otherwise, set 
z, =y. 
(Stop when a common ancestor uA- is 
found.) If x =y, then a common 
ancestor is found and go to Step 2 for 
next s. Otherwise, go to Step 2.2. 

or 

In this section, we present an 
gorithm to find the most vital ed 
graph. The input form is the 

]w(i, _iN ,.., =I.2 . . . . . p- We assume w(i, j) = 00 if 
there is no edge to connect vertexes i and j, and 
also assume w(i, i) = 00 for all i. 

Step 1. 

Step 2. 

Step 3. 

Apply Prim’s algorithm to find the mini- 
mum spanning tree TG of G. Then, for all 
edges (i, j) in TG, set w(i, j) = co. 

Pick any vertex u as the root of TG. Let 
tree T, denote the subtree of TG with root 
i. Process the following procedure for each 
vertex i of ;4;; in postorder. 
2.1. If vertex i is a leaf node, then set 

c(i, j) = w(i, j), j = 1, 2,. . . , p. 
2.2. If vertex i is not a leaf node with 

child nodes i,, i,, . . . , i,, then set 
c( i, j) = min{ hp( i, j), c(i,, j), c(i,, 

j),..., c(i,, j)>, j = 1, 2,.. ., p. 
2.3. Find c( i, j* ) = min{ c( i, j) 1 vertex 

j is not in subtree q } and set f((i, 

p(i)))=(j*, k), with w(j*, k)= 
c(i, j*). 

For each edge e in TG, compute w( TG_e) 

= w(TG) - w(e) + w(f(e)). Find the 
edge e* such that w(T,_,,) = 
max{ w(TG_J 1 the edge e is in TG}. 

Obviously, Algorithm 2 correctly computes f(e) 
for every edge e in TG. Hence, we can easily 
compute the most vital edge in G. We also il- 
lustrate Algorithm 2 by using the example in Fig. 
1. The input matrix is 

Observe that it takes O(q) number of UNI 
and O(q) number of FIND in the procedure tree- 
expansion. The total time complexity in Step 2 is 
O( q - a( p, q)). Thus it takes 0( q log q) time in 
the modified Algorithm I. 

cc 30 00 00 oc 20 
30 00 10 45 00 00 
00 10 00 40 50 25 
Cc 45 40 00 35 55 

2”o 00 00 50 25 55 35 15 00 15 00 

280 



Volume 39, Number 5 INFORMAT’ION PROCESSING LETTERS 13 September 1991 

Step 1 finds the minimum spanning tree TG shown 
in Fig. 2 and updates the weighted matrix as 
follows: 

oc 30 00 00 00 00 
30 00 00 45 00 00 
00 00 00 40 50 00 
00 45 40 00 00 55 
00 00 50 00 00 00 
00 00 00 55 00 00 

In Step 2, we pick vertex 6 as the root and find the 
entering edges f((i, p(i))), i = 1, 2,. . . ,5. For ex- 
ample, vertex 1 is a leaf node and then 

(~(1, l), c(l,2),...,c(l, 6)) 

= (00,30,00,0o, 00,oo). 

Thus, ~(1, 2) = min{ c(1, l), ~(1, 2), . . . , ~(1, 6)) 
and f((1, p(l))) =f((l: 6)) = (1, 2). Similarly, we 

find f ((2, 3)) = (2, l), f ((3. 6)) = (2, I), f ((4 5)) 
= (4, 3), and f ((5,6)) = (4, 2). Step 3 is the same 
as that in Algorithm 1. 

It is known that it takes O(p*) and O(p) in 
Steps 1 and 3, respectively. Let dj be the degree 

for vertex i in TG. Note that it takes O( ~(1 + d,)) 
to find f (( i, p(i))). The total time in Step 2 is 

Hence the time complexity for Algorithm 2 is 

0( P2). 
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