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Smoothed DPCM Codes 
Wen-Whei Chang, Member, IEEE, and Jerry D. Gibson, Senior Member, IEEE 

Abstract-Rate distortion theory promises that autoregressive 
sources can be encoded optimally at  small distortions (high rates) 
by a source coder with infinite encoding delay and zero delay 
at the decoder. However, for instrumentable systems with finite 
encoding delay and an unmatched code generator or for operation 
at low rates, decoding delay may provide a performance incre- 
ment. The alphabet constrained approach to data compression 
allows delay at both the encoder and the decoder, and Sethia and 
Anderson incorporate delay in a tree coder code generator by 
combining a weighted linear interpolation scheme with DPCM. 
This system, called interpolative DPCM (IDPCM), was shown 
to outperform DPCM at rate 1 b/sample for several synthetic 
source models. In the present work, we use minimum mean 
squared error (MMSE) fixed-lag smoothing in conjunction with 
DPCM to develop a code generator employing delayed decoding. 
This smoothed DPCM (SDPCM) code generator is compared to 
DPCM and IDPCM code generators at rates 1 and 2 b/sample 
for tree coding several synthetic sources and to a DPCM code 
generator at rate 2 b/sample for speech sources. The (M,L)  
algorithm, which retains only the M best paths to depth L, is used 
for tree searching, and SDPCM outperforms IDPCM and DPCM 
at rate 2 b/sample for the synthetic sources with M = 1, 4, 8, 
and 12, and at rate 1 b/sample with M 2 4. For speech, SDPCM 
provides a slight improvement in MSE over DPCM codes that 
is also evident in sound spectrograms and informal subjective 
listening tests. The models upon which the fixed-lag smoother 
is based must be chosen appropriately to achieve good SDPCM 
performance. 

I. INTRODUCTION 

HE use of encoding delay to improve the performance T of differential pulse code modulation (DPCM) systems 
was motivated by both rate distortion theory [1], [4] and 
intuition [2], [3] .  As noted by Sethia and Anderson [5], 
optimal encoding of autoregressive (AR) sources with small 
distortion can be achieved by a system with infinite delay at 
the encoder and no delay at the decoder [l]. However, for 
finite encoding delays, suboptimal code generators (such as 
DPCM), and larger distortions, delay at the decoder may prove 
useful. Gibson [6] proposed the incorporation of delay at the 
decoder, leaving the encoder code generator unchanged, and 
investigated the performance improvement available using a 
fixed-lag smoother for first-order AR sources. The alphabet 
constrained approach to data compression formulated by Gib- 
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son and Fischer [7] allows delay at both the encoder and 
decoder, and Sethia and Anderson [5] propose and evaluate 
one such system based upon DPCM. In particular, Sethia and 
Anderson [5] modify the code generator to take advantage 
of delay by using a weighted linear interpolation of nearby 
outputs, and evaluate the performance of these interpolated 
DPCM codes at rate 1 b/sample for various correlated source 
models. 

In the present paper we study delayed decoding by using 
a fixed-lag smoother in a code generator based upon DPCM, 
and investigate the performance of these codes for tree coding 
at rates 1 and 2 b/sample for synthetic sources and at rate 
2 b/sample for speech. The ( M ,  L )  tree search algorithm 
[4], the squared error distortion measure, and the incremental 
path map symbol release rule are employed exclusively. For 
synthetic sources, the performance indicator is segmental 
signal-to-noise ratio (SNRSEG), while for speech, we use 
SNRSEG, sound spectrograms, and informal subjective lis- 
tening tests. 

11. DPCM-BASED TREE CODES 

Block diagrams of a DPCM system transmitter and receiver 
are shown in Fig. 1. Classical DPCM systems operate without 
delay in the sense that for an input sample at time instant n., 
only data at times j 5 72 are used in the encoding process. 
Tree coders attempt to improve on DPCM by delaying the 
encoding decision for a few samples, say L,  which allows the 
input samples at time instants j 5 n + L to be used to encode 
the input sample at time R. Slight delays are often not critical 
to the operation of communication systems, and this delay 
allows all possible encoding sequences through time n + L to 
be examined for a best fit. Each different encoding sequence 
is called a path, and hence, tree coding is a multipath search 
procedure, whereas DPCM exhibits a single path search. 

That a DPCM system implements a single path search is 
evident from its mode of operation. From the source sample 
at time instant n, denoted x ( n ) ,  a DPCM system subtracts 
a predicted value i ( n  I n - 1) to generate the prediction 
error e(.). The prediction error is then quantized (by Q) 
to obtain e,(n),  which is converted to a binary sequence 
for transmission to the receiver. At the receiver, the binary 
sequence is decoded to produce e,(n), which is then used 
to generate the reconstructed output sample ?( i t )  by adding 
in the predicted value ?(n I n - 1). The same operations are 
performed at the transmitter. At both the transmitter and 
receiver, the {i(n)} sequence is used to obtain the next 
predicted value. A new source sample appears, and the process 
is duplicated. 
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Fig. 1. DPCM system block diagram 
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Fig. 2. Functional diagram of a tree coder. 

A functional block diagram of a tree coder (transmitter only) 
is shown in Fig. 2. The distortion between the source sequence 
and each possible reconstructed sequence to some depth L in 
the tree is calculated, and the path through the tree with the 
smallest distortion (to depth L )  is selected as the best path. 
Path map digits corresponding to this path (or some portion 
thereof) are then released as encoder output digits and sent 
to the decoder or receiver for reconstruction. The path map 
digits defining the minimum distortion path are also provided 
to the code generator at the encoder. The optimum or minimum 
distortion path is then extended to depth L,  and the process 
is repeated. The source sequence is reconstructed (to some 
fidelity) at the receiver by applying the encoder output digits 
to the code generator input. Design of a tree coder consists 
of selecting a code generator, a distortion measure, a tree 
search algorithm, and a path map symbol release rule. Here 
we describe a tree coder based upon DPCM. 

Although DPCM is a single path search procedure, a DPCM 
system can be used as the basis for a tree coder design. The 
part of a DPCM system transmitter which emulates the DPCM 
receiver can function as a code generator, and by delaying the 
transmission of e,(n), and basing the decision as to which 
e,(n) value to send on the distortion between x ( j )  and ? ( j ) ,  
j 5 R + L,  we obtain a tree coder. A DPCM based tree coder 
transmitter is illustrated in Fig. 3. The receiver is unmodified. 

The basic equations describing the code generator operation 
are 

and 
P 

?(R  I R - 1) = a i q n  - 2 ) .  
i=l 

The blocks labeled Q in Fig. 1 and "adaptive quantizer-based 
decoder" in Fig. 3 represent a quantizer with step size A(n),  
which together with (1) and ( 2 )  allow the reconstructed signal 
to be calculated from a given path map sequence. 

Fig. 3. Tree coder with a DPCM code generator. 

Other components of a tree coder are the distortion measure, 
the tree search algorithm, and the path map symbol release 
rule. Here we use the single letter, sum of the squared errors 
distortion measure given by 

. L  
d ( x , i )  = -L [.(2) - i ( 2 ) ] *  

i=l 
(3) 

where the x(2 )  and i ( i )  in (3) refer to the values currently 
at depth i in the tree. The tree search algorithm employed is 
the ( M .  L )  algorithm [4], [5], and the path map symbols are 
released according to the incremental, single symbol release 
rule. For given initial conditions, the ( M , L )  algorithm finds 
the M best paths to depth L and discards all of the other 
paths to this depth. For incremental, single symbol release, 
only the first symbol in the best path is sent, and the 111 
or fewer paths with this root node are again extended to 
depth L, and the process is repeated. This algorithm has a 
complexity proportional to MllCll, where IlCll is the number 
of symbols/sample (or branches/node), rather than IICIIL, as 
is the case for exhaustive searching of the tree. Specific values 
of the several tree coder parameters are described in Section V 
for each source of interest. 

111. INTERPOLATIVE DPCM 

Sethia and Anderson [5] proposed and studied interpolative 
DPCM (IDPCM) at rate 1 b/sample for several AR source 
models, including the McD( l), LAW(2), McD(3), and LAW(3) 
sources. The designations McD and LAW were used in [5] and 
are short for McDonald [14] and Law [15], respectively, the 
authors who first used these sources. We also investigate the 
BWH(3) source, which was constructed from the correlations 
of a two-pole Butterworth filter by Anderson and Bodie [4]. 
Given the standard DPCM system output sequence {?(n)},  
the IDPCM system calculates the code generator output as 
a weighted linear combination of local DPCM outputs or 
available previously interpolated values. In particular, for the 
McD(l), LAW(2), and McD(3) source models, the IDPCM 
code generator outputs {&(n I n + 1)) are calculated from 

?(R  + I )  = al?(n)  + aZ?(n - 1) + ~ ? ( n  - 2) + e4(n  + 1) 

(4) 
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TABLE I TABLE I1 
PREDICTOR AND INTERPOLATOR COEFFICIENTS: McD(I), LAW(2), McD(3) PREDICTOR AND INTERPOLATOR COEFFICIENTS: LAW(3), BWH(3) 

(0 1. (12. a,j ) ( h i .  b - I .  h-2.6-3) ( (11% “2 .  ( 1 3 )  ( h i  . bo. b- 1 .6-2 ) 

MCD(1), R = 1 (0.900, 0.000, 0.000) (0.497, 0.497, 0.000, 0.000) LAW(3), R = 1 (1.526, -0.773, 0.101) (0.3489, 0.5081, 0.1145, 0.0552) 
LAW(2), R = 1 (1.725, -0.781, 0.000) (0.429, 0.801, -0.221, 0.000) BWH(3), R = 1 (1.231, -0.625, 0.119) (0.3006, 0.6512, 0.0789, 0.0190) 
McD(3)- R = 1 (1.748, -1.222, 0.301) (0.443, 0.963, -0.454, 0.093) LAW(3), R = 2 (1.526, -0.773, 0.101) (0.1475, 0.7871, 0.0806, 0.0061) 

(0.1229, 0.8550, 0.0553, -0.001) BWH(3), R = 2 (1.231, -0.625, 0.119) 

and 

where the predictor { a , }  and interpolator {b , }  coefficients are 
listed in Table I [5] .  For the LAW(3) and BWH(3) source 
models, the IDPCM code generator equations are 

i ( 7 r  + 1) = al.i.(n) + az.i.(n - 1) + ~ . . i . ( n  - 2 )  + e,(n + 1) 

(6) 

and 

where the predictor and interpolator coefficients are as speci- 
fied in Table 11. This IDPCM code generator is a variation 
on those presented by Sethia and Anderson [ 5 ] ,  [8]. We 
leave further development of these source models and the 
description of the computation of the interpolator coefficients 
to the references [SI, [ 8 ] .  Note, however, from ( 5 )  and (7) that 
these are single lag interpolators based upon past interpolated 
values and a “future” DPCM output or simply based upon 
DPCM outputs, respectively. 

IV. SMOOTHED DPCM 
In our smoothed DPCM (SDPCM) system, we compute 

code generator outputs using minimum mean squared error 
(MMSE) fixed-lag smoothing algorithms based upon specified 
message and observation (or measurement) models. The fixed- 
lag smoothing algorithms are relatively straightforward but 
they are described briefly in Appendix A for completeness 
and notational purposes. 

To apply the fixed-lag smoothing algorithms in Appendix A 
to SDPCM, it is necessary to develop both the message 
and the measurement models which describe the dynamics 
of the source and the DPCM system. Consider a pth-order 
autoregressive source. Its current source sample ~ ( n , )  can be 
expressed as a weighted sum of past source samples plus 
an excitation term ~ ( n ) ,  where E(.) is a zero-mean, white 
Gaussian process with variance a:. Letting { a , }  denote the 
autoregression coefficients, which are the same as the short- 
term predictor coefficients used in the DPCM system, we have, 
for a third order AR(3)  source, the process model 

z ( n  + 1) = @(n).(n) + U(.) (8) 

where 

2(n  + 1) 
z(71-t 1) = [ ~ ( n )  ] U(.) = [ ‘y] 

x(n - 1) 

z (n)  = [ 2;?1)] @(n)  = [ 4:’ U’] (9) 2 ( ? 1  - 2 )  

and the excitation vector w(n) has the covariance matrix 

For a DPCM system, there always exists a distortion be- 
tween the source sample ~ ( n )  and the reconstruction sample 
?(n) by the amount of quantization noise q(n), i(n) = 
~ ( n , )  + q ( 7 1 ) .  Assuming that q(n.) is zero-mean, white noise 
with variance of, the corresponding measurement model is 

y ( n )  = c(n,)2(71) + q(n) (11) 

where 

c(71) = [ l  0 01. (12) 

Given the process and measurement models in (8)-(12), 
the Kalman filtering algorithm described in (AS)-(A.8) can 
be applied to obtain the filtered estimate vector 2 f ( n  1 n)  
given ?(n).  The resulting filtered estimate vector can then 
be used together with the preceding filtered estimate vector 
2 f ( n  - 1 1 n - 1) to calculate the smoothed estimate sample 
i .s(n - 1) from (A.9)-(A.11). 

The block diagram of a smoothed DPCM code generator is 
shown in Fig. 4. Fig. 5 shows the code tree generated by a 
smoothed DPCM system. It indicates that the SDPCM code 
tree in dashed lines follows the DPCM code tree in solid lines. 
The code tree of SDPCM can be viewed as constructed in two 
steps. First, the secondary code tree (solid line) is generated 
by conventional DPCM; then superimposed on it, the code 
tree (dashed line) populated by the output of the fixed-lag 
smoother. Note that each branch of the code tree in solid lines 
is associated with both the reconstruction sample i ( n )  and 
the filtered estimate vector 2 f ( n  I n) ,  while each branch of 
the code tree in dashed lines is populated with the smoothed 
estimate sample 2s(n).  It is evident that the SDPCM system 
with binary e4(n)  results in twice as many branches at each 
level of the tree as those generated by conventional DPCM, 
which is also true of IDPCM. 
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TABLE I11 
PERFORMANCE FOR AR SOURCES IN SNRSEG (dB): DPCM 

\I = 1 .\I = 1 .\I = s \I = 12 D R F  

McD(l), R = 1 8.40 f 0 . 1 4  8.75 f 0 . 1 4  8.75 50 .14  8.75 50 .14  13.23 
17.07 33.13 LAW(2), R = 1 14.53 f 0 . 1 3  16.98 k0.14 17.06 f0.14 

McD(3), R = 1 8.33 f O . l l  10.82 50 .09  10.86 50.09 10.88 50.09 14.3" 
LAW(3), R = 1 9.07 f O . l l  10.68 fO.10 10.74 f0.10 10.76 50 .10  
BWH(3), X = 1 6.26 50.07 7.29 f0.08 7.31 f0.08 7.31 1 0 . 0 8  11.19' 
LAW(3). R = 2 15.08 f 0 . 0 9  15.82 fO.10 15.85 fO.10 15.85 50 .10  21.45 
BWH(3), R = 2 11.31 f0.08 11.98 50 .08  12.01 50 .08  12.01 +n.ox 17.52 

'From [SI. 
'From [XI 

Fig. 4. SDPCM encoderidecoder. 
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Fig. 5. SDPCM code tree 

v. PERFORMANCE COMPARISONS FOR SYNTHETIC SOURCES 

We present comparative performance results for tree 
encoding of pth-order Gaussian autoregressive sources 
(AR(p) )  using DPCM, interpolative DPCM (IDPCM), and 
smoothed DPCM (SDPCM) as code generators at rates 1 and 
2 b/sample. The encoding performance is evaluated over a 
range of synthetic A@) sources in terms of the segmental 
SNR (SNRSEG) (see Appendix B) with 1000 samples per 
segment. The tree coder uses the squared error distortion 
measure, the (M, L )  search algorithm, and the single symbol 
release rule. The rate 1 b/symbol quantizer used here has 
an output step size of 1.8, which is in generally good 
agreement with the best choice in [5] ,  although the optimum 
value can vary with code parameters. At rate 2 b/symbol, 

we use a nonuniform quantizer designed to minimize the 
MSE for a memoryless Gaussianly-distributed input with 
variance (l.8)2. The resulting scale factor of 1.8 is a 
nominal value that provides good performance based on our 
experiments over a range of sources and codes. An AR(p) 
source r (n)  is generated by passing a zero-mean, unit- 
variance, white Gaussian excitation sequence E(.) through 
a coloring filter with transfer function 1/(1 - cy='=, CL,Z- ' )  

such that its successive samples satisfy the difference equation 
.r(n) = Cy=v=, u,.r(n - 1 )  + & ( T I ) .  We use 1000 samples per 
experiment, and each experiment is repeated 20 times, each 
time using an independent realization of ~ ( 7 1 ) .  

Tables 111-V show the performance in terms of segmental 
SNR (along with 68% confidence intervals) for tree coding 
of AR(p) sources using DPCM, IDPCM, and SDPCM code 
generators, respectively, all with search depth L = 10 and 
M = 1, 4, 8, and 12. The 68% confidence intervals indicate 
that the ensemble average segmental SNR values shown in 
these tables fall within i 6 / f i ,  where 6 = sample standard 
deviation and N = number of experiments, of the true SNR 
value with probability 0.68. The 68% confidence intervals are 
used for consistency with [5]. The SNR values corresponding 
to the distortion rate function (DRF) shown in the tables 
were taken from [5] and [SI, respectively, for the McD(3) 
source with R = 1 and the BWH(3) source with R = 1. 
The other three values presented were calculated using the 
approach of Bunin [16], which only holds for general AR 
sources when R 2 R,,,,,. The rate R,,,, is the minimum 
rate for which the rate distortion function of the AR source 
{.E(.)} equals the rate distortion function of the source driving 
term {E(.)} [l] ,  [16]. At rate R = 2 b/sample, both IDPCM 
and SDPCM substantially outperform DPCM for both sources 
and all Al .  The lower rate R = 1 results still indicate a 
performance advantage for IDPCM and SDPCM over DPCM 
with M 2 4, however, the IDPCM and SDPCM performance 
is very close. If the number of retained paths M is only 1 
at rate R = 1, IDPCM and SDPCM performance remains 
close for the McD(1) source and both outperform DPCM. 
However, for the LAW(2) and McD(3) sources, the ranking 
of performance from best to worst is IDPCM, DPCM, and 
SDPCM. 

The reason for this degraded performance of SDPCM is 
that a two-level ( R  = 1) quantizer together with single path 
searching produces reconstruction error samples, which are 
measurement noise samples, that are too highly correlated 
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TABLE IV 
PERFORMANCE FOR AR SOURCES IN SNRSEG (dB): IDPCM 

1355 

McD( l) ,  R = 1 11.09 50.17 11.53 43.14 11.63 k0.14 11.70 50.14 13.23 
LAW(2), R = 1 15.08 fO.20 18.80 50.18 19.20 f 0 . 1 4  
McD(3), R = 1 8.96 f 0 . 1 4  12.17 f 0 . 0 7  12.48 50 .09  12.68 40.09 14.3a 
LAW(3), R = 1 10.74 f0.12 12.48 kO.10 
BWH(3). R = 1 7.95 f 0 . 0 7  8.96 50.08 9.08 H . 0 7  9.14 f0.07 11.19b 
LAW(3). R = 2 16.59 f 0 . 0 9  17.57 50.10 17.70 50.10 17.81 50.11 21.45 
BWH(3), R = 2 12.32 f0.08 13.21 k0.08 13.26 50.08 13.34 50.08 17.52 

19.46 60 .13  

12.77 50.10 12.92 f O . l l  

"From [ 5 ] .  
hFrom [8]. 

TABLE V 
PERFORMANCE FOR AR SOURCES IN SNRSEG (dB): SDPCM 

-11 = 1 J I  = 4 .\I = s .\I = 12 D R F  

McD(l), R = 1 11.27 f0.15 11.63 f 0 .  15 11.66 50.14 11.74 k0.14 13.23 
LAW(2). R = 1 13.96 50.21 18.88 f 0 . 1 6  19.20 50.15 19.46 50.13 
McD(3), R = 1 7.63 50.13 12.26 k0.10 12.58 f 0 . 0 9  12.75 fO.10 14.3a 

12.97 f O . l l  13.12 fO.10 LAW(3). R = 1 9.70 f0.16 12.60 +O. 11 

LAW(3), R = 2 17.12 50.12 19.21 fO . l l  19.45 f0.12 19.58 f 0 . 1 3  21.45 
BWH(3). R = 2 13.33 zk0.12 15.29 fO.10 15.46 34.09 15.56 rtO.08 17.52 

BWH(3), R = 1 7.65 f0 .10  9.64 10 .10  9.73 fO.10 9.75 50.10 11 .19  

"From [ 5 ] .  
'From [8]. 

and therefore do not match the white measurement noise 
assumption used in developing the fixed-lag smoothing algo- 
rithms. Increasing the coding rate R or multipath searching 
tends to reduce the statistical dependence in the reconstruction 
error (measurement noise) so that the assumed model is more 
accurate. Since the IDPCM interpolator is not based on an 
explicitly stated model, its performance is not as severely 
affected at R = 1 with M = 1. IDPCM is not able to perform 
as well as SDPCM at R = 2 for the same reason, however. 

To obtain a clearer view of relative performance, the 
SNRSEG is plotted for the three code generators at R = 
1 for the LAW(3) and BWH(3) sources in Figs. 6 and 7, 
respectively, and for the same two sources at rate R = 2 in 
Figs. 8 and 9. From Figs. 6 and 7, we see that at rate R = 1, 
multipath searching improves the performance of SDPCM 
over DPCM and IDPCM as M increases, and the rate 2 results 
in Figs. 8 and 9 show a 1.77 to 2.22 dB performance gain for 
SDPCM over IDPCM with M = 12 and a 3.55 to 3.73 dB 
gain for SDPCM relative to DPCM. 

VI. SDPCM PERFORMANCE FOR SPEECH 

Using the well-known linear prediction model for speech, 
fixed-lag smoothing algorithms can be written for speech 
analogous to those described in Section V. This section 
presents simulation results for tree coding of speech at 
R = 2 b/sample (16 kb/s) using DPCM and SDPCM 
code generators. The tree coders use a four-level robust 
Jayant quantizer [ 121, the squared error distortion measure, 
the ( M .  L )  tree search algorithm, and the single symbol 
release rule. The SNR, SNRSEG, sound spectrograms, and 
informal subjective listening tests are used to evaluate coder 
performance for the five sentences in Appendix C. The 

I + DPCM I 

5 ... 1 4  8 12 M 

Fig. 6. Improvement versus retained paths-LAW(3), R = 1 

SNRSEG is calculated on nonoverlapping 20 ms segments. 
Only 8th-order predictors are considered, and the coefficients 
are adapted using the least-squares lattice algorithm described 
in Reininger and Gibson [13]. 

Tables VI and VI1 show SNR/SNRSEG in decibels for 
DPCM and SDPCM codes, respectively, for five sentences 
using the (111,L) search algorithm with depth L = 10 and 
M = 1, 4, 8, and 12. The results show that SDPCM has 
a higher SNRSEG than DPCM for all five sentences, but 
the difference is not nearly so substantial as it is for the 
synthetic autoregressive sources. Narrowband spectrograms 
of the original sentence 2 (first 10000 samples), the tree 
coder output with the DPCM code generator ( M ,  L )  = 
(4,10), and the tree coder output with the SDPCM code 
generator ( M ,  L )  = (4 , lO) are shown in Figs. 10, 11, and 12, 
respectively. These spectrograms indicate that SDPCM yields 
a better reproduction of the original spectrogram than DPCM- 

.. . . .. . . . . . . . .. . . . . . . . . . .. . . . . . .. . . ... .. .. . . . . . . . .. .. . . . . . . 
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SNRSEG(dB) 

15! 

TABLE VI 
PEKFORMANCF FOR SPEECH SOURCES IY SNRiSNRSEG (dB): DPCM 

sent1 16.65/16.97 19.80/19.57 20.26/20.09 20.39/20.17 
sent2 17.3 1/  16.73 19.79/19.25 20.67/19.69 21.15/19.90 
sent3 16.1S/ 15.18 18.96/17.77 19.79/ 18.25 19.96/ 18.49 
sent4 14.26/ 15.77 16.91/17.96 17. IS/18.24 17.53/ 18.41 
sent5 14.09/15.70 16.58/18.14 17.33/18.65 17.49/18.88 

51.,,,,,,,,.,, 
1 4  8 12 M TABLE VI1 

PER~ORMANCE FOR SPEECH SOURCFS I N  SNRiSNRSEG (dB): SDPCM 

Fig. 7. Improvement versus retained paths--BWH(3), R = 1. 11 = 1 .\I = 4 .\I = s  .\I = 12 

+ DPCM 
0 IDPCY U x SDPCY 

0 0 

+ + 

10 
1 4  8 12 M 

Fig. 8. Improvement versus retained paths--LAW(3), R = 2. 

+ DPCY 
0 IDPCY U x SDPCM 

Fig. 9. Improvement versus retained paths-BWH(3), R = 2 

based codes, particularly during the first 2000 samples and 
in the 1500-2000 Hz band around 5000 samples. Informal 
subjective listening tests reveal a slight preference for the 
SDPCM code generator. 

The success of the smoothing algorithms depends heavily on 
the accuracy of the models and model parameters in (8)-(12). 
For speech, the AR source model does not account for the 
long-term redundancy present due to the pitch pulse. Thus, 
the smoother performance may be poor in time intervals 
around the occurrence of a pitch pulse. Further, the smoothing 
algorithms used here are based upon the assumption of white 
measurement noise in (11). Since the measurement noise is 

sent 1 16.16/ 17.10 19.84/20.12 20.23/20.41 20.54/20.49 
sent2 17.73/17.35 20.77/19.86 21.24/20.04 20.84/20.38 
sent3 17.03/15.N7 19.26/18.21 19.83/18.50 19.50/18.61 
sent4 14.lY/16.10 16.44/18.03 16.91/ 18.43 17.08/ 18.61 
sent5 14.33/16.04 16.37/18.47 17.40/18.78 17.02/19.03 
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Fig. I O .  Spectrogram (sent2, original). 

actually the quantization noise, and we are using only a four- 
level quantizer at 2 b/sample, this white noise assumption 
may be violated. The extensive simulations required to verify 
these two conjectures have not been performed. However, 
the relatively slight performance increment for SDPCM over 
DPCM here is likely a result of these two factors. 

VII. CONCLUSIONS 

Smoothed DPCM codes employing an MMSE fixed-lag 
smoother have been introduced and shown to outperform 
IDPCM and DPCM based code generators for tree coding 
several synthetic sources at rate R = 2 b/sample, M = 1, 
4, 8, 12, and R = 1 b/sample with M 2 4. With M = 1 
at rate 1, SDPCM has a smaller SNRSEG than both IDPCM 
and DPCM, which is likely because the whiteness assumption 
on the measurement noise is violated, thus leading to poorly 
matched smoothing algorithms. Rate 2 b/sample tree coding 
of speech with adaptive DPCM and SDPCM code generators 
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Fig. 11. Spectrogram (sent2, DPCM) 
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Fig. 12. Spectrogram (sent2, SDPCM) 

show that SDPCM has slightly higher SNRSEG values, and 
spectrogram analyses reveal that SDPCM provides output 
speech that more closely emulates the original speech than 
does DPCM. I t  is evident that the source and measurement 
models used in developing the smoothing algorithms must be 
accurate and are extremely important to the success of the 
SDPCM codes. 

APPENDIX A 
FIXED-LAG SMOOTHING ALGORITHMS 

Consider a linear, discrete-time dynamic system described 
in state-space form. Hereon, we will use lower-case italic 
letters for scalars, lower-case boldface letters for vectors, and 
capital boldface letters for matrices. At each time instant n, 
~ ( 7 1 )  denotes the p-dimensional system state vector and y(n)  
denotes the noisy measurement sample. The system model 
can be described by both the process and the measurement 
equations. The former specifies the dynamics of the system in 

terms of the system state vector z(n) ,  and the latter describes 
the structure of the available measurement. In state-space 
notation, these equations are 

where *(n)  is a known p-by-p state transition matrix, c ( n )  
denotes a known p-dimensional measurement vector, and the 
measurement noise sample q(n) and the process noise vector 
v ( n )  are assumed to be zero-mean, white noise processes with 
variance and covariance matrix given, respectively, by 

and 

The problem of interest here is to find the MMSE estimate 
of the system state vector z(z), given the data measured up 
to time n, $" = ( ~ ( 1 ) .  y(2). . . . . y(n)}. This information- 
processing operation is called filtering if ? = n, prediction if 
7 > n, and smoothing if I < 72. In our work, we are only 
concerned with filtering and fixed-lag smoothing, in which 
there is always a fixed delay J between the measurement 
and the availability of the smoothed state estimate. Given the 
measurement set $", it can be shown [9] that the estimate 2 ( i )  
that minimizes the mean-squared error E {  [z(?) - k(z) ]*  I $"} 
is the conditional mean k ( i )  = E[.(/) 1 dP]. Hence, we define 
the filtered state vector estimate i f ( n  I n) = E [ z ( n )  1 d)"] 
and the lag-J smoothed state vector estimate 2,(ir - .I 1 
n)  = E[.(. - J )  I $"]. The filtering operation implies that 
the state vector estimate k f ( n  1 n )  must be available at time 
71,  given the measurements up to time n. One widely used 
filtering algorithm is the Kalman filter which offers a recursive 
MMSE filtered estimate. On the other hand, smoothing differs 
from filtering in that the state vector estimate at time n, 
%s(n 1 n + J ) ,  need not be available until time 7~ + J .  Note 
that the measurements required to compute the filtered estimate 
sf (n 1 n )  are a proper subset of those required to compute the 
smoothed estimate ks(rr I n + J ) ,  which implies that a fixed- 
lag smoother offers a state estimate with an error variance no 
larger than that of the Kalman filter. The specific fixed-lag 
smoother used here is the stable finite-dimensional algorithm 
described by Chirarattananon and Anderson [ 101. Throughout 
this paper, we only consider the single-lag smoother with 
J = 1 to minimize the total coding delay L + J and to hold 
complexity to a minimum. 

In order to formulate a fixed-lag smoother, we first recall 
the recursive difference equations of the Kalman filter. Define 
the filtered state error vector d ( n )  as the difference between 
the state vector z(n) and its filtered estimate vector i f ( n  1 n), 
d ( n )  = z(n) - k f ( n  I n) .  Its error covariance matrix is 
P(n)  = E [ d ( n ) d T ( n ) ] .  Define the predicted state error vector 
d(n.n - 1) as the difference between the state vector z (n )  

-- 
- . --. . . - -  .......... 
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and its one-step predicted estimate vector +(n - l)iifJn - 1 I 
n - l), and denote its error covariance matrix as P ( ~ L )  = 
E[a(n. n - l )aT(n.  n - l)]. From Kalman filtering theory for 
a white measurement noise assumption [ll], the filtered state 
vector estimate is speaker) 

kf(. 1 n )  = q n  - l)kf(?I - 1 1 n - 1) 

APPENDIX C 

The five sentences used in this work are: 
1) “The pipe began to rust while new.” (female speaker) 
2 )  “Add the sum to the product of these three.” (female 

3) “Oak is strong and also gives shade.” (male speaker) 
4) “Thieves who rob friends deserve jail.” (male speaker) 
5) “Cats and dogs each hate the other.” (male speaker). 

+ k ( n )  [y(n) - c(n)@(n - 1)2 f (n  - 1 I n - I ) ]  

(A51 

where the Kalman gain k ( n )  and the two error covariance 
matrices P ( . )  and P ( . )  are updated recursively as 
- 
P ( n  - 1) = (P(n - 1)P(n - l)*T(n, - 1) + Q(n - 1). 

(‘4.6) 

k ( n )  = F ( n  - l)cT(n) [c(n)P(n - l)cT(n,) + .,“(n)] -l .  

(A.7) 

P(n)  = [ I  - k(n)c(n)]P(n - 1). (‘4.8) 

To define the single-lag smoother ( J  = l), we introduce 
the quantity 

D(n - 1) = P(n - 1) [P(n - l )aPT(n - 1)I-l (A.9) 

and then the smoothed state vector estimate is given by [lo] 

q n  - 1 I n)  = D - y n  - l )kf (”  I n )  + D - y n  - 1 )  
. [D(n  - 1) - * ( n  - l)]fif(. - 1 I n - 1). 

(A. 10) 

Finally, the specific smoothed estimate sample at time n is 
obtained by 

is(n- 1) = 11 0 0 . . .  O ] k s ( ~ ~ -  1 I TI,). (A.ll)  

Since the recursive algorithm offers a tracking capability to 
follow the time variations of the measurements, the choice of 
initial states is not crucial. In our work, the initial states are 
set to zero. 

APPENDIX B 

The objective performance measures used in this work are 
the signal-to-noise ratio (SNR) defined as 

where (.) denotes time averaging over the entire utterance, and 
the segmental SNR (SNRSEG) given by 

l K  SNRSEG = - SNRBj 
j=1 

where SNRBj is the SNR in (B.l) over the j th  block of speech 
data. 
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