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Feedback Equalization for Digital Subscriber Line 
Transmission with Possibly Correlated Line Codes 
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Abstract- Most of the published theory on the optimal per- 
formance of decision-feedback equalization under the MMSE 
criterion addresses the transmission of i.i.d. symbol sequences 
only. This paper presents a theory which accommodates the 
case of correlated symbol sequences. It also considers the use 
of a fractionally spaced forward filter in the decision-feedback 
equalizer (DFE). Two limiting conditions are discussed in some 
detail, both concerning having an infinite-length DFE feedback 
filter. In one of them the forward filter is of finite length and in 
the other it is noncausal infinite. Several numerical examples are 
given, in which we apply the theory to the study of the MMSE 
transmission performance, at ISDN basic access rates, of a few 
example subscriber lines using some well-known line codes. In 
these examples, the near-end crosstalk from identical digital 
transmission systems is assumed to be the only significant noise. 
Throughout the study, we ignore the effects of error propagation 
in a DFE. 

I. INTRODUCTION 
ECISION-FEEDBACK equalization for data transmis- D sion over dispersive channels has been a topic of contin- 

ued study for some time [l]. Somewhat earlier applications 
include a high-rate coaxial transmission system [6] and a 
military tropospheric scatter radio system [7]. More recently, 
it has been used in digital subscriber line (DSL) terminals to 
support the ISDN (integrated services digital network) basic 
access over twisted-pair cables [8], [9]. Our interest here is 
in understanding its optimal performance, in the minimum 
mean-squared error (MMSE) sense, in the DSL environment. 

Despite the amount of previous studies concerning decision- 
feedback equalization [l]-[SI, we find the published theory 
unable to address our need fully. A major reason is that the 
published theory on MMSE equalization largely addresses the 
transmission of i.i.d. (independent and identically distributed) 
symbol sequences only, whereas in the area of DSL there has 
been a long standing interest in line coding schemes which 
yield non-i.i.d. outputs. More recently, Lechleider [ 111 aug- 
mented the theory to accommodate also the case of correlated 
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symbol sequences. The present author [12] also reported a 
study which not only considered correlated symbol sequences, 
but also allowed for a fractionally spaced forward filter in 
the DFE (decision-feedback equalizer). However, these publi- 
cations are concerned with finite-length DFE’s only. McGee 
[ 101 considered infinite-length DFE’s in correlated symbol 
sequences. However, he assumed their analog front-ends to 
be optimal, a common assumption which in practice can only 
be approximated at best and one which we do not make in this 
study. Further, the extension of his results to the conditions we 
are interested in is not an obvious matter. 

The performance of an infinite-length DFE is of interest 
although practical DFE’s are always of finite lengths. This 
is because it provides information on the limit of MMSE 
equalization and can serve as a benchmark against which 
the performance of a finite-length DFE may be compared. 
To some extent, we can liken its role to that played by the 
channel capacity in the design of communications systems. 
Now, the input to the feedback filter is a digital signal with 
only a very limited number of levels, while that to the forward 
filter is continuous in amplitude. Hence it is more difficult to 
implement a long forward filter than a long feedback filter, due 
to the amount of multiplication required with the former. Thus, 
for the sake of benchmarking at least, it is of interest to study 
the performance of MMSE decision-feedback equalization in 
the limit of an infinite-length feedback filter, while holding 
finite the length of the forward filter. This limiting case is 
addressed in this paper, as well as that of having an infinite- 
length feedback filter with an infinite-length forward filter, 
both in the situation of correlated symbol sequences. 

In summary, therefore, the aim of this paper is twofold. 
First, to present a theory on MMSE equalization for DFE’s 
(especially infinite-length ones) operating in correlated symbol 
sequences; and second, to illustrate their performance in the 
DSL environment by way of some numerical examples. 

Schematically, the equalization problem considered can be 
pictured as in Fig. l(a) where the “channel” includes all analog 
transmission filtering, as depicted in Fig. l(b) for the case 
of DSL transmission. (Hybrids are transformer circuits for 
coupling transceivers with the transmission line. An example 
will be shown later.) For generality, the DFE forward filter 
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Fig. 2. A mathematically equivalent problem when the DFE slicer makes 
no decision error. 

Transmit Fig. 2, we can write down an expression for the mean-squared 
decision-point error. For this, note first that the combined 
impulse response of the channel and the DFE forward filter 

a lower triangular Toeplitz matrix having h as its first column 
(padded with trailing zeros as needed), K is an Lf-column 

Filter 

( b) 

Details of the channel. 
Fig. 1. The MMSE equalization problem. (a) Problem frame work. (b) is, after T-spaced given by MfHKhf  where H is 

is assumed to be possibly fractionally spaced with a temporal 
tap spacing k T l m  where T is the symbol period and IC and 
m are coprime integers with k 5 m ,  including the case k = 
m = 1. In Fig. l(a), b denotes the vector of channel impulse 
response sampled at T/m spacing and 0 the corresponding 
frequency response, i.e., @(U) = hie-jiwTlm where 
we have let = [ho,hlh2,. . .]’, with ’ denoting matrix 
transpose. The noise x is also assumed to be sampled at T / m  
spacing. The vectors hf and & represent, respectively, the 
impulse responses of the kT/m-spaced DFE forward filter 
and the T-spaced DFE feedback filter, while F and B the 
corresponding frequency responses. We have also assumed an 
overall transmission delay (cursor delay) of c symbol periods. 
Note from Fig. l(a) that, unlike in some earlier studies [2]-[SI, 
[lo], we do not consider the analog front-end as part of the 
DFE. In other words, we assume the response of the analog 
front-end to be fixed and not optimizable. This is because 
analog filters are less easily made adaptive to minimize the 
MSE (mean-squared error) as shown. 

In the following, Section I1 outlines a general solution to the 
MMSE decision-feedback equalization problem. It serves to 
establish some notions for later use. Section 111 then develops 
the results to address the case of an infinite-length feedback 
filter with a finite-length forward filter, and Section IV the 
case where both the forward and the feedback filters are 
infinite in length. Section V applies the theory to a few 
example subscriber lines to investigate their transmission 
performance under MMSE decision-feedback equalization. 
Section VI concludes the paper. In this work, the problem of 
error propagation in DFE’s is not addressed. 

matrix whose ik + 1st column is the i k  + 1st column of the 
identity matrix (i = 0 , 1 , 2 , .  . . , L f  - l ) ,  and M is a matrix 
whose zk + 1st column is the i m  + 1st column of the iden- 
tity matrix (i = 0,1 ,2 , .  . .) [12]. The MSE is thus given by 
(assuming a certain given cursor delay c) 

E(&fT’,lhf,&} = E([ (M‘HKhf  - P& -e,)’ 
’ !&T + b;K’g;T]2} 

= (M‘HKbf  - P~L, - 5)’Ra 
. ( M ’ H K L f  - P b  - G) + h;K‘R,Khf 

(1) 

where E denotes expectation; ai, and giT are, respectively, 
vectors of far-end signal symbols and noise samples, arranged 
in reverse time order and led by CL~T and Z~T, respectively, R, 
and R, are the corresponding autocorrelation matrices; e, is 
the c + 1st column of the identity matrix; and P is a matrix 
composed of the c + 2nd through the c + Lb + 1st columns 
of the identity matrix. 

All of the vectors and matrices in (1) can be of infinite 
dimension. Also, note that M’HK is basically block Toeplitz 
with IC x m-sized blocks. Further, if the channel noise is 
dominated by self-NEXT (near-end crosstalk from identical 
DSL systems), then, by the Tlm-spaced sampling of E, the 
matrix R, is either Toeplitz or block-Toeplitz with m x m- 
sized blocks; and so is K’R,K. 

Minimization of the MSE involves a straightforward ex- 
ercise of the least-squares technique [12], which yields the 
following MMSE DFE: 

byt = RT’pl, ( 2 4  
11. MMSE DECISION-FEEDBACK EQUALIZATION - h T t  = (P’R,P)-lP’R,(M’HKh~t - G), (2b) 

As often done, we assume that the slicer in the DFE 
makes no incorrect decisions, which should be approximately 
true during normal operation at a low error rate. Then the 
transmission path is mathematically equivalent to the one 
shown in Fig. 2. Assume further that the signal and the 

and the MMSE: 

e min E{E?Tlbf ,h} hf ’ h b  

noise are uncorrelated with each other. Then, by examining = 0: - &R,P(P’R,P)-lP’Ra& - P ; R ; ’ p l ,  ( 3 )  
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where 

and 

(i.e., the far-end signal power). In writing (2)-(4), we have 
assumed the invertibility of R1 and P’R,P which can be 
shown to hold for finite-length DFE’s. The invertibility may 
be a concern for infinite-length DFE’s and it will be addressed 
in later sections. Also, note that (2)-(4) simplify significantly 
when we have uncorrelated symbol sequences, i.e., when 
R, = 0 : I .  (For simplicity, we shall use the same notation 
Z to denote identity matrices of different dimensions, when 
confusion is unlikely.) 

After equalization, the nominal SNR (signal-to-noise ratio) 
is given by oi/o,”. It can be used to measure the transmission 
performance, subject to the concerns discussed in [ 121, such 
as the possible signal-dependence of noise variance. For no- 
tational simplicity, hereafter we omit the superscript opt from 
hopt and hipt, because all subsequent references to bf and hb -f 
are to their MMSE values. 

111. DFE WITH AN INFINITE-LENGTH FEEDBACK FILTER AND A 
FINITE-LENGTH FORWARD FILTER 

To apply the MMSE solution to the case of an infinite- 
length DFE feedback filter, note first that the matrix P in this 
case is semi-infinite and so is P’R,P. By the Toeplitz nature 
of R,, we have P’R,P = R,. It is trivial to invert R, 
when it is diagonal. For many line codes, however, it is not 
only nondiagonal but also singular because of the deliberately 
designed spectral zeros on the unit circle [14]. Examples of 
such codes are the precoded dicode (or bipolar, or AMI) [15], 
the precoded MDB (modified duobinary, or class-4 partial- 
response) [15], and the MS43 [16], [17] codes. For them 
the use of inverse of P’R,P in the MMSE solution has 
to be reexamined. In MMSE estimation with a finite-length 
estimator, a convenient tool to handle this kind of problem is 
the generalized matrix inverse [18], [19]. It turns out that, in 
our case, we can also define a special kind of matrix inverse for 
R, to make valid the solution as formulated in (2)-(4). This 
inverse can be described in terms of a spectral factorization 
[20], [2] of S,(w), the power spectrum of the far-end signal. 

To this end, let {w,} be a zero-mean Gaussian random 
sequence whose power spectrum is equal to S,(w) also. Then 
{vi} can be represented as a causal moving average of a white 
sequence {U,} as v, = U, + p1~,-1 + ~ Z U , - Z  + . . .. The 
sequences {U,} and { p , }  are related to S,(w) as 

denote a spectral factorization of S,(w). It is not hard to show 
that 

R, = 0;rrrI (6) 

where II is a lower triangular Toeplitz matrix whose first 
column is given by [ l , p l , p ~ , . . . ]  ’. Now, let { l . q l r q 2 , . . . }  
be the causal inverse of {l,pl.p2,. . .}, i.e., & ( U )  

E,”=, q,e-JZwT = &, with qo 1. (The system & ( U )  is 
marginally stable when S, (w) contains spectral zeros.) The 
sequence { -41, -92 , .  . .}, in fact, gives the infinite-order one- 
step linear MMSE predictor for the process {vz} and 02 is 
equal to the variance of the infinite-order one-step prediction 
error. We are now ready to define the special kind of inverse 
for R,, denoted RL: 

(7) 

where Q is a lower triangular Toeplitz matrix with its first 
column given by [l, 41, q 2 ,  . . . ] I .  Proof that the use of this 
inverse in (2)-(4) does result in the desired MMSE solution 
for the problem will be omitted here. Simply put, it involves a 
verification of the equivalence of the range subspaces of some 
singular linear transformations, much the same as in the case 
of generalized matrix inverses. 

The evaluation of o? and p ,  for the various line codes 
is not a difficult task. For a partial-response code, {p ,}  is 
simply given by the partial-response filter and 02 the power 
of filter input. For a block code, its power spectrum is a 
finite-order rational function in the Z-transform domain and 
can be calculated by an established method [17]. The spectral 
factorization can thus be done by factoring the numerator and 
the denominator of that function, followed by a long division. 
As a numerical example, Table I gives the power spectrum of 
the MS43 code and its spectral factorization. 

To calculate the MMSE solution as given in (2)-(4), then, 
we note that, by (6) and (7), 

R, - R,P(P’R,P)~P’R, = o;~I’(I  - P P ’ ) ~ I  (8) 

which is everywhere zero except for the leading (c + 1) x 
( c  + 1) submatrix. In fact, this matrix can be interpreted 
as the autocorrelation of error in estimating the infinite 
vector [vz, v,-1. v1-2. . . .I’ from {w,-,-1, vZ-,-2,. . .} by a 
linear (matrix) MMSE estimator. The quantity of 0: - 

eLR,P(P’R,P)tP’R,g, appearing in (3) is simply the 
c + 1st diagonal element of the above matrix and is equal 
to ~72. (These results can also be derived using the notion of 
innovations [20]. ) Therefore, the MMSE can be expressed as 

where 
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TABLE I 
POWER SPECTRUM OF THE MS43 CODE AND ITS SPECTRAL FACTORIZATION 

Power Spectrum 

Denominator = 
Numerator = 

22.4. [ ( z 6  + z - ~ )  + 9.225(z3 + z - ~ )  - 29.23906253 
- (2 + E-*) - 6.8(zi + E-’) +69(z6 + z - ~ )  - 17.465(z5 + z?) - 70.66(z4 + E - ~ )  

+ 592.425(z3 + z - ~ )  + 14.6075(z2 + z- ’ )  + 292.255(~’  + Z - ’ )  - 1744.725 

Spectral Factorization 

Error Variance = 
Denominator = 
Numerator = 

Series Expansion = 

2.1944 
1 - 0 . 3 7 5 ~ ~ ~  - O.0390625rK6 
1 - 0.34952~-’  - 0.16995~-’ - 0 . 4 7 9 8 6 ~ ~ ’  + 0 . 0 4 6 7 6 4 ~ - ~  
- 0.0031980~-’ - 0 . 0 5 2 7 1 3 ~ - ~  + 0 . 0 0 5 6 8 1 6 ~ - ~  + 0 . 0 0 0 7 9 4 6 9 ~ - ~  
1 - 0 . 3 4 9 5 2 ~ ~ ’  - 0.16995~5’ - 0.10486zC3 - 0 . 0 8 2 3 0 6 ~ - ~  
- 0.066928~-’ - 0 . 0 5 2 9 7 4 ~ - ~  - 0.038836;-‘ - 0 . 0 3 0 9 4 2 ~ ~ ~  
- 0.023961~-’ - 0 . 0 1 7 7 7 9 ~ - ’ ~  - 0.014218~-” - 0 . 0 1 1 0 5 5 ~ ~ ~ ’  
- 0 . 0 0 6 1 8 4 0 ~ ~ ’ ~  - 0 . 0 0 6 5 4 0 3 ~ ~ ’ ~  - 0.0050815~-’~ - 0 . 0 0 3 7 6 3 5 ~ - ~ ~  
- 0.0030080~-” - 0 . 0 0 2 3 3 7 4 ~ - ~ ~  - 0 . 0 0 1 7 3 1 0 ~ ~ ’ ~  - 0 . 0 0 1 3 8 3 5 ~ - ~ ~  
+ .  . .  

m-1 lO(W.)12 The optimal DFE forward filter is again given by hf = Rclpl. 
The optimal DFE feedback filter can be shown by using (6) 
and (7) in (2b) to be 

factorization of 1 + S,(w) . $ (where w, = 

+ +) in the Sense that 

& = W’rI(M’HKILf - g c ) .  

By the Toeplitz nature of Il and XP, multiplications with them 
can be viewed as convolutions and carried out in the frequency 
domain by multiplying with P(w)  and &(U).  The possible The MMSE feedback filter is given by 

existence of unit-circle poles in & ( U ) ,  due to the spectral zeros 
of Sa(w), causes no stability problem because these poles are 
canceled by the corresponding zeros of €‘(U). 

Iv. DFE WITH BOTH FILTERS INFINITE IN LENGTH 
We now consider a DFE whose forward and feedback filters 

are both infinite in length. As mentioned, this DFE structure 
has been studied in various contexts short of what we are 
interested in [2 ] ,  [4], [ lo].  And the extension of these previous 
results to our situation is not an obvious matter. 

As in the earlier studies, we assume the forward filter to 
be noncausal, i.e., infinite in both directions of time, while the 
feedback filter strictly causal and semi-infinite. In terms of our 
time-domain formulation given in the previous sections, this 
DFE structure can be considered as first letting the cursor delay 
c + CO, letting the forward-filter length L f  = 2cm/k ---t CO, 

and then shifting the time origin to where the cursor is. 
After the shift of time origin, the cursor delay becomes zero 
relative to the new “time zero” and the forward filter becomes 
noncausal and two-sided infinite. 

Due to its length and mathematical nature, we leave the 
derivation of the MMSE solution to the Appendix. Below 
we summarize the results for the situation where IC = 1, 
assuming that the sampled noise process x is stationary and 
letting Sx(w) denote its power spectrum. In this situation, the 
MMSE forward filter is given by, in the frequency domain, 

a:a;O*(w)P*(w)y*(w) 
S X  (U) 

F ( w )  = (11) 

where * denotes complex conjugation, U: and P(w)  are 
defined in the last section, and U: and y ( w )  define a spectral 

And the MMSE is simply 

2 -  2 2 uc - u,cTy. 

- ll 

A comparison of (11) with the earlier results concerning 
i.i.d. symbol sequences, such as those in [4], reveals that the 
difference lies mainly in the presence of ~7: and P(w). In fact, 

front-end of the conventional MMSE DFE[4]. Note also that 
neither P ( w )  nor y ( w )  is needed in calculating the MMSE 
uf and hence the nominal SNR a ~ / a ~ ,  but only U: and U:; 
of which the latter can be evaluated from A(w) using the 
well-known equality that [21], [22], [2] 

the factor o * ( w ) p * ( w )  in ’ (1 1) corresponds to the matched-filter 
s= ( w )  

and the former from S,(w) by the technique of rational- 
function factorization described earlier. 

Interestingly, a simple expression exists for each of the 
two constituents of the MMSE, viz., the filtered channel-noise 
power and the equalization error power. The former is given by 
- h;K’R,Khf and the latter uf - &K’R,Khf.  By (A.10), 



TABLE I1 
SYMBOL ERROR RATE VS. REQUIRED SNR (IN DB) FOR SOME LINE CODES IN TRANSMISSION OVER A GAUSSIAN NOISE CHANNEL 

Line Code -+ Precoded Dicode, 
1 Error Rate “2 Precoded MDB MS43 3B2T 2B1Q 

10-6 13.5 
lo-‘ 14.3 
10-8 15.0 

16.7 
17.5 
18.1 

~ 

17.8 18.4 20.7 
18.5 19.2 21.4 
19.2 19.8 22.1 

900 

Fig. 3. An example hybrid network 

V. NUMERICAL EXAMPLES 

As examples, we consider the DFE performance on the six 
loops (subscriber lines) used in a previous study [13]. As in 
[13], we also consider two simple 26-gauge PIC (polyethylene- 
insulated cable) lines of lengths 2.5 and 3 miles, respectively, 
for a comparison. Although we shall sometimes refer to this 
effort as a simulation, we do not mean a “real” simulation done 
in a sample by sample fashion. Instead, the above-developed 
theory is used to calculate the numerical results. 

We consider the following six line codes: (N)RZ ([non-] 
return-to-zero - coding 1 as +1 and 0 as -1; waveform re- 
turns or does not return to zero depending on the duty cycle) 
[24], dicode (precoded), MDB (precoded), MS43, 3B2T (3 
binary-to-2 ternary, excluding 00), and 2B1Q (2 binary-to- 
1 quaternary). Table I1 lists the required SNR for symbol 
detection in signal-independent additive Gaussian noise for 
these codes at several symbol error rates. (This table is more 
accurate than Table I of [12].) We let the bit rate be that 
considered for the ISDN basic access, i.e., 160 kbls, except in 
the case of the 3B2T code where for divisibility by three we 
let the bit rate be 162 kb/s. 

The simulated hybrid network has the configuration shown 
in Fig. 3 where the 1 p F  capacitors are for DC blockage. 
Interestingly, we have found the 900 R resistance to result in a 
better SNR performance than the 135 R used in some studies, 
although the latter is closer in value to the characteristic 
impedance of the lines at the considered frequencies. This 
could be due to the combined effect of various factors which 
we do not intend to analyze here. The transformer windings 
are assumed to be perfectly coupled so that M = L.  Two 
values of L are considered, namely, L = 40 mH and L = 
3.5 mH. (This hybrid network only serves as an example and 
is in no way claimed to be the best design. Same is true for 
the transmission filters to be described later.) 

The impulse responses of the loops have been calculated 
as described in [13]. As in (131, we have assumed their 

frequency responses to be negligible beyond twice the baudrate 
in each case-equivalent to assuming brickwall low-pass 
filtering with a cutoff at twice the baudrate. Because of this 
we have not included an antialiasing low-pass filter in the 
simulated transceiver. The combined characteristics of the 
transmit and the receive filters are the same as the 21-tap FIR 
filter described in [13], in series with a first-order analog high- 
pass filter. Data symbols are transmitted with a 25% duty cycle 
because the FIR filter operates at 4 times the baudrate. We let 
the corner frequency of the first-order analog high-pass filter be 
variable with the line code and the DFE length. For each line 
code and each DFE length, it is determined by choosing from a 
set of frequencies the one yielding a better SNR, where the set 
consists of seven frequencies at, respectively, 0, 0.025, 0.05, 
0.1,0.15,0.2, and 0.25 times the baudrate. (A corner frequency 
at 0 means a flat unity gain, i.e., no high-pass filtering.) It 
happens that this chosen frequency has been zero in all the 
examples presented below. 

The noise is assumed to be dominated by self-NEXT which 
is known to have a power transfer function Kf3I2 where 
f is the frequency in Hz and K is a parameter depending 
on the crosstalk strength [25]. Further, we assume that the 
composite self-NEXT noise is stationary (instead of merely 
cyclostationary as the digital waveform in each individual 
crosstalking system is). Also for simplicity, we arbitrarily 
assume that the crosstalkers consist solely of 2 mile 26 
gauge PIC lines. (The results from assuming 2 mile 26 gauge 
crosstalkers composed of pulp-insulated lines differ from those 
obtained under the above assumption by less and 0.1 dB in 
all examples below.) We let K = which corresponds 
roughly to the 49 crosstalker curve in [26]. (The data presented 
in [26] were obtained through computer simulation of crosstalk 
in 18 kft 22 gauge PIC lines which were terminated in their 
characteristic impedance. Although this condition is different 
from ours, we should have been conservative by using its 
data, at least for the two reasons below. First, 26 gauge lines 
incur more loss per unit length than 22 gauge ones and hence 
the crosstalk power will probably be lower on the average. 
And second, the data in [26] are for severe NEXT disturbance 
which has only 1% cumulative probability of occurrence.) 

Consider now the situation of a DFE having a noncausal 
infinite-length T12-spaced forward filter and a semi-infinite 
feedback filter. For it we obtain a better result with L = 40 mH 
than with L = 3.5 mN. Fig. 4 shows the result from having 
L = 40 mH where for ease of comparison we have normalized 
the SNR values with respect to that required for a symbol 
error rate. In other words, we have subtracted 14.3, 17.5, 
18.5 dB, etc., from the performance of the (N)RZ, the pre- 
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coded dicode, the MS43, etc., respectively; so that, if the 
decision-point error E is Gaussian and signal-independent, than 
a 0 dB normalized SNR corresponds to a symbol error 
rate. We have also included a very small amount of band- 
limited white noise in x to avoid the need to handle division by 
zero in the computation of A ( w )  which would otherwise arise 
sometimes. This should not have caused appreciable difference 
in the result. In obtaining the result, we have also otimized 
the receiver's timing by considering 16 equispaced candidate 
sampling phases and picking the one yielding the minimum 
MMSE. As seen, in Fig. 4 we have ordered the six loops 
according to ascending SNR performance. 

Interestingly, the MMSE performance obtained using a 
T-spaced forward filter is effectively the same as that using a 
T/2-spaced: the difference being less than 0.1 dB in all code 
and loop combinations. With a moderately suboptimal timing 
phase (&1/16 of a symbol interval away from the optimal), the 
performance of the T/2-spaced equalizer stays intact, and that 
of the T-spaced suffers little (less than 0.1 dB in all cases), 
too. The performance difference becomes more conspicuous 
with a more suboptimal timing phase, however. For the 
T-spaced equalizer, a f 1 / 4  symbol interval's phase offset 
from the optimal leads to a performance degradation of up to 
about 0.85 dB and a &1/2 symbol interval's offset one of up to 
2.7 dB; while for the T/2-spaced equalizer, less than 0.05 
dB of maximum degradation is caused in these situations. 
This echoes the frequently observed result that fractionally 
spaced equalizers suffer less from timing suboptimality than 
synchronous ones in diverse situations in a different context. 

We now shorten the forward filter to finite lengths but keep 
the length of the feeback-filter infinite. Fig. 5 depicts some 
results, again with L = 40 mH because it yields a better 
performance. The forward filters are again T/2-spaced. The 
decision delay has again been optimized up to 1/16 of a 
symbol period in each case. Fig. 6(a) plots the reduction in 
MMSE SNR from using an infinite-length forward filter to 
using an 8-tap one, and Fig. 6(b) that from using an 8-tap 
forward filter to using a 3-tap one. It is interesting that the 
SNR reduction for each code is quite even across the different 
loops in either situation. 

As may be expected, timing suboptimality now exerts a 
greater influence on the equalizer's SNR performance for these 
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Fig. 5 .  Transmission performance (subscriber to central office) with an 
MMSE DFE whose feedback filter is semi-infinite in length and whose forward 
filter is T/2-spaced. (a) Length of forward filter = 8. (b) Length of forward 
filter = 3. 
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Fig. 6. Reduction in transmission performance from shortening the DFE 
forward filter. Feedback filter is semi-infinite in length. (a) As forward filter is 
shortened from of infinite length to 8 taps. (b) As forward filter is shortened 
from 8 taps to 3 taps. 

shorter forward-filter lengths than for a length of infinity. With 
a &1/16 symbol interval's phase offset, a worst case SNR 
degradation of 0.6 dB (among all code and loop combinations) 
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Fig. 7. Transmission performance (subscriber to central office) with an 
MMSE DFE whose feedback filter is 30-tap long. Forward filter is T/2-spaced. 
(a) Length of forward filter = 8. (b) Length of forward filter = 3. 

is found in the 8-tap situation, and one of 2.0 dB in the 3-tap 
situation. 

Finally, let us shorten the feedback filter length to 30 taps 
while keeping the forward-filter lengths at 8 and 3 taps. This 
time we get a better performance with L = 3.5 mH. The 
corresponding result from using optimal decision delays is 
shown in Fig. 7. Fig. 8(a) plots the SNR reduction from having 
an infinite-length feedback filter to having a 30 tap one, at a 
forward filter length of 8 taps; and Fig. 8(b) that from having 
an 8 tap forward filter to having a 3 tap one, at a feedback- 
filter length of 30 taps. On the effect of suboptimal timing, we 
find a worst case degradation of 0.65 dB among all code and 
loop combinations in the situation of an 8 tap forward filter, 
and one of 2.25 dB in the situation of a 3 tap forward filter, 
again at a *1/16 symbol interval’s offset from the optimal 
delay. It is likely that timing suboptimality will cause a worse 
degradation if we further shorten the feedback filter [27]. 

It is interesting to note that, in all these examples, the 
transmission performance is reversely related to the baudrate, 
except in the case of the simple (N)RZ, which often performs 
as well as the MS43. 

VI. CONCLUSION 
We presented a theory on MMSE decision-feedback equal- 

ization which augments previously published results by al- 
lowing both a correlated symbol sequence and a fractionally 
spaced DFE forward filter. This theory facilitates our calcu- 
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Fig. 8. Reduction in transmission performance from shortening the DFE. (a) 
As feedback filter is shortened from of infinite length to 30 taps, at a forward 
filter length of 8 taps. (b) As forward filter is shortened from 8 taps to 3 taps, 
at a feedback filter length of 30 taps. 

lating the potential DSL transmission performance in cases of 
correlated line codes, especially for situations where one or 
both of the DFE filters are infinite in length. The situation 
of an infinite-length DFE is of interest because it provides 
information on the limit of MMSE equalization and can thus 
serve as a benchmark against which the performance of a 
finite-length DFE may be compared. 

We also presented a few numerical examples on the per- 
formance of MMSE decision-feedback equalization in DSL 
transmission at ISDN Basic Access rates with several well- 
known line codes. Interestingly, the calculated performance is 
inversely related to the transmission baudrate, except in the 
case of the simple (N)RZ code, which frequently performs as 
well as the MS43. 

APPENDIX 
MMSE SOLUTION WHEN BOTH DFE FILTERS ARE 

INFINITE IN LENGTH 

Although in this case it is possible to formulate and solve 
the MMSE problem in the frequency domain, starting with the 
time-domain formulation is no less convenient and avoids the 
introduction of some new notions. Thus, we shall proceed by 
further developing (9), (lo), and (2a). A frequency-domain 
expression of the solution will surface in the process. 

The shift of time origin moves us to a new viewpoint 
for comprehension and evaluation of the above equations. 
First, consider the matrix R I .  As the forward filter is now 
(two-sided) infinite, the quantities R,, H ,  11, I ,  K ,  and M 
are “full-plane’’ matrices which are (two-sided) infinite in 
both row and column dimensions. Indexing of their rows and 
columns can be more conveniently done using both positive 
and negative integers, with the “center” rows and columns 
(those corresponding to time zero) indexed by zero. The 
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quantity P is a half-plane matrix, infinite column-wise and 
semi-infinite (to the right) row-wise. Its negative- and zero- 
indexed rows are all equal to zero and its positive-indexed 
rows form an identity matrix. Its leading column corresponds 
to time zero. For p l ,  the vector e, is now infinite and 
is everywhere zero except for a unity zeroth element. By 
the upper-triangular nature of K’H’M and II’, the nonzero 
elements of p ,  are confined to the “anticausal” half. 

To obtainthe MMSE solution, an immediate problem is 
the computation of RTl. (As in Section 111, concern over its 
invertibility will go away as we later consider spectral factor- 
izations. Similar is true for (K’R,K)-’ below.) We appeal to 
the following well-known identity for matrix inversion: ( X  + 
Making the identifications that X = K’R,K, Z = &$I. and 
Y = W’ = K’H’MII’(I - PP’) ,  we get 

RT1 = (K’R,K)-l - O:(K’R,K)-~K’H/MIII’  

YzW)-1  = x-l - x- ’y ( z - l+  W x - l Y ) - 1 w x - 1 .  

‘ (I - P P ’ ) @ ( I  - PP’)rIM’HK(K’RzK)-l 

(A.1) 

where 

@ = [I + cci(I- PP’)IIM’HK(K’R,K)-l 
. K’H’MII’(I - P P ’ ) ] - l .  (A.2) 

Simple algebraic manipulations then lead to 

hf = RT1pl = n:(K’R,K)-lK’H’MII’(I - PP‘)@g, 

04.3) 

and 

2 E = 2 U -  - p i R T 1 p ,  = u:gb@e,. (A.4) 

Equations (A.2)-(A.4) appear formidable and, at the first sight, 
it may seem that we have complicated the problem rather than 
simplfied it. However, the matrix @ exhibits an interesting 
structure and, if the noise autocorrelation matrix K’R,K is 
Toeplitz or block-Toeplitz, then @ and the MMSE solution can 
be evaluated with available techniques. 

Consider first the evaluation of @. To start, note that, if 
K’R,K is (block) Toeplitz, then (K’R,K)-l is also (block) 
Toeplitz. Thus, since IIM’HK is (block) Toeplitz, the factor 
rIIM’HK(K’R,K)-lK’H’MII (denoting it by A below 
for short) in (A.2) is a full-plane (block) Toeplitz matrix. Its 
pre- and postmultiplications by I - PP’ simply zero out all 
elements outside the upper-left “quadrant.” Hence @-’ is the 
direct sum of a semi-infinite (block) Toeplitz matrix and a 
semi-infinite diagonal matrix, where only the former enters 

into the final expressions for the MMSE solution because of 
the pre- and postmultiplications by e, and I -PP’  in (A.3) and 
(A.4). By its (block) Toeplitz nature, inversion of this semi- 
infinite matrix can be achieved by way of (matrix) spectral 
factorization. 

To further specify this factorization, we limit our scope 
by assuming that the sampled noise process 5 is stationary 
and let Sz(w) denote its power spectrum. Then K’R,K 
is indeed Toeplitz and is associated with a power spectrum 
k s, (w,,/k) where we have defined w, w +27rr/T. 
A frequency-domain expression of @ can be obtained by 
first noting that the quantity HK(K’R,K)- lK’H’  has an 
associated matrix power spectrum as shown at the bottom of 
the page, where * denotes complex conjugation and @,(U) = 
@(w)eJ””T/”. Therefore, the quantity M’HK(K’RzK)- l  
K‘H’M is associated with a k x k matrix power spectrum 
whose ijth element is given by 

1 
- 

m 

m-1 c 
p=o 

Now, the matrix II can be viewed as a block Toeplitz matrix 
with k x k blocks and associated with a matrix transfer 
function whose i j th element being Pi- - I (wq/k)  
where P,(w) = P(w)e7pdT.  Hence, the matrix power 
spectrum associated with the quantity A is given by 

[+ C P , - ~ ]  [A -1 [+ P:-,]’. Call it 

W(w) for short. Then the matrix power spectrum associated 
with the upper-left quadrant of a-’ is given by I + a;W(w). 
Note that W(w) reduces to a scalar in some cases, for example, 
when IC = 1 or when the channel bandwidth is less than & 
(so that no aliasing occurs in the DFE forward filter). 

Let I + o,’,W(w) be spectral factorized as 

I + c,”,W(w) = [V’(w)]-’D-’[V*(w)]-’. (AS) 

where D is a k x k diagonal matrix and V(w) is of minimum 
phase [20] and has a series expansion whose leading term 
is lower-triangular with unity diagonal elements. To further 
relate this to @, it is convenient to define a permutation 
operator J which “reverses the time” for a k-vector sequence. 
In other words, J is a block antidiagonal matrix with k x k 
identity matrices on its antidiagonal. The upper-left quadrant 
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of a-’ is thus turned into the lower-right quadrant in J Q - l J .  
Denote this semi-infinite matrix by 5-l. By the summetry 
of Q-l.5-l is associated with a matrix power spectrum 
I + a:W’(w) .  Thus 

- 

cp = rnr’ (A.6) 

where A = d i a g ( D . D , . .  .) and r is the lower-triangular 
block Toeplitz matrix associated with V ( w ) .  r has k x k 
blocks and unity diagonal elements. 

Therefore, from (A.4) we have the MMSE as 

where a; denotes the leading diagonal element in D.  From 
(A.3) we have the MMSE forward filter as 

where y*(w) is the leftmost column of V * ( w ) .  [* P:-J] 
is a shorthand for the k x k matrix whose 23th element 
is given by Ckz; P:pJ ( w p / ~ ) .  and [+ O r k t 7 ]  is a 
shorthand for the k-vector whose zth element is given by 

E,”=: O?,,, ( w m p / k ) .  with 1 5 i I k and 1 5 j 5 
I C .  For the MMSE feedback filter, we note first that from 
(A.3) the quantity I I (M’HKbf)  in (10) corresponds to 
a transfer function a:a:W(w)y*(w). From (AS) we get 
a:crZW(w)r*(w) = - [ ( U )  - a?y*(w) where ( ( U )  is the 
leftmost column of [V’(w)]- ’ .  Now, the premultiplication by 
P’ in (10) denotes a projection onto the strictly causal subaxis 
of time. Hence, we obtain 

- I-  - 

An interesting expression exists for the channel-noise power 
after equalization, i.e., the quantity h;K’R,Khf. By (A.2), 
(A.3), and (A.6), it can be expressed as 

(A. 10) 

Extension of above results to more general conditions can 
be done in a similar spirit. 
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