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Interference Cancellation Matrix Beamforming for 
3-D Beamspace MLIMUSIC Bearing Estimation 

Michael D. Zoltowski, Member, IEEE, and Ta-Sung Lee, Member, IEEE 

Abstract-In conventional monopulse radar, the bearing of a 
single target within the mainlobe of the transmitted beam is 
estimated via a ML procedure based in a 2-D beamspace de- 
fined by sum and difference beams. For the case of two closely 
spaced targets angularly located within the mainlobe of the 
transmitted beam, 3D-BDML is a computationally simpie ML 
bearing estimation scheme which operates in a 3-D beamspace 
generated by three orthogonal, classical beamformers. The 
presence of strong interferers angularly .located outside the 
mainlobe encompassing the two targets of interest necessitates 
the use of adaptively formed left, center, and right beams. Let 
M denote the number of elements comprising the array. Novel 
procedures are developed for the construction of an M X 3 in- 
terference cancellation matrix beamformer which retains those 
properties of the M x 3 classical matrix beamformer critical to 
the computational simplicity of 3D-BDML. The most important 
of these is commonality of M - 3 nulls among the left, center, 
and right beams. Simulations are presented demonstrating the 
excellent performance of both single frequency and multifre- 
quency 3D-BDML incorporating interference cancellation in a 
simulated low-angle radar tracking environment. 

I. INTRODUCTION 
N conventional monopulse radar, the bearing of a sin- I gle target within the mainlobe of the transmitted beam 

is estimated via a ML procedure based in a 2-D beam- 
space defined by sum and difference beams [2], [3]. In the 
presence of strong interference, the sum and difference 
beams are formed adaptively such that ideally each ex- 
hibits a null in the direction of each and every interferer 
[2], [3]. Judicious construction of the adaptive sum and 
difference beams enables one to nullify the effect of in- 
terferers and nevertheless estimate the target bearing from 
the monopulse ratio of the difference beam output to the 
sum beam output in a very simple manner [3]. If an in- 
terfering source is angularly located within a beamwidth 
of the target being tracked, however, it is well known that 
the performance of the adaptive sum and difference beam 
method degrades severely. In attempting to place a null 
in the angular location of the interferer, the pointing angle 
of the sum beam, and hence, the direction of maximum 
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gain, squints away from the angular position of the target 
under surveillance. As the angular separation between the 
target and the interferer becomes a smaller and smaller 
fraction of a beamwidth, the drop in target SNR at the 
adaptive sum beam output becomes more and more se- 
vere. The target SNR at the adaptive difference beam out- 
put is affected similarly. Ultimately this phenomenon 
causes track breaking. 

The low-angle radar tracking problem [ l ] ,  [4]-[lo] is 
a classical example of a mainbeam interference problem. 
In low-angle radar tracking, echoes return from a target 
angularly located near broadside to a vertical array via a 
specular path as well as by a direct path. The specular 
path signal arises due to the relative proximity of both the 
target and the array to a smooth reflecting surface. Due to 
the low elevation angle of the target, the direct and spec- 
ular path signals arrive within a fraction of a beamwidth 
near broadside. The specular path signal thus represents 
an interfering signal angularly located within a beam- 
width of the signal of interest, the direct path signal. It 
should be noted that the differential between the direct and 
specular path lengths is small enough such that the two 
respective signals arrive overlapping in time. As a con- 
sequence, the two cannot be distinguished according to 
range bin. 

Rather than attempting to place a null in the direction 
of the specular path signal, it is apparent that it must be 
treated as arising from a second source located at the im- 
age of the target. The bearing estimation problem in low- 
angle radar tracking then represents a classical example 
of a real world problem in which it is necessary to resolve 
two sources angularly separated by less than the 3-dB 
beamwidth of the radar array pattern. As single target 
tracking is accomplished very simply and very effectively 
in a 2-D beamspace, a number of bearing estimation 
schemes based in a suitably defined 3-D beamspace have 
been proposed for the low-angle radar tracking problem 
[4]-[7]. The 3D-BDML [9], [lo], [ 121 is a computation- 
ally simple ML-based bearing estimation algorithm de- 
veloped for low-angle radar tracking which operates in a 
3-D beamspace generated by an M x 3 Butler matrix 
beamformer composed of three orthogonal, classical 
beamformers with equispaced pointing angles. Here M 
denotes the number of elements comprising the array as- 
sumed to be linear and equispaced. The computational 
simplicity of 3D-BDML is primarily due to judicious ex- 
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ploitation of the fact that the corresponding left, center, 
and right beams have M - 3 nulls in common. 

The presence of strong interferers (other than the spec- 
ular path signal) angularly located outside the angular re- 
gion encompassed by the mainlobes of the left, center, 
and right beams used to monitor the direct and specular 
path signals in low-angle radar tracking necessitates the 
use of adaptively formed left, center, and right beams. It 
is shown within that judicious construction of an M x 3 
interference cancellation matrix beamformer enables one 
to nullify the effect of interferers and nevertheless esti- 
mate the respective bearings of the direct and specular 
path signals via the computationally simple 3D-BDML al- 
gorithm with minor modification. The major contribution 
within is the development of novel procedures for con- 
structing the M X 3 interference cancellation matrix 
beamformer such that those properties of M X 3 Butler 
matrix beamforming critical to the computational simplic- 
ity of 3D-BDML are preserved. The critical properties are 
orthonormality and conjugate centrosymmetry among the 
columns, i.e., the left, center, and right beamforming 
vectors, and, most importantly, commonality of M - 3 
nulls among the three respective beam patterns. These 
properties facilitate estimation of the respective bearings 
of the direct and specular path signals via the roots of a 
quadratic equation whose coefficients are simple func- 
tions of the components of the “smallest” eigenvector of 
a 3 x 3 real-valued beamspace correlation matrix. These 
new matrix beamforming procedures also facilitate the 
formulation of a computationally simple version of 
3D-BDML which incorporates frequency diversity as well 
as interference cancellation. 

The description of the 3D-BDML algorithm may sound 
more like the description of a MUSIC algorithm [17] 
based in a 3-D beamspace. In fact, in the special case of 
only two (closely spaced) sources and Gaussian distrib- 
uted receiver noise, the 3-D beamspace domain MUSIC 
(3D-BDMUSIC) algorithm is the ML estimator when the 
data is the 3-D beamspace domain snapshot vectors 
formed by the M X ? Butler matrix beamformer [lo], 
[12]. Of cource, this yields different estimates than the 
ML estimator based in element space. When interference 
is present and measures are taken to nullify this interfer- 
ence, however, it is no longer strictly valid to refer to the 
algorithm as a maximum likelihood procedure. Hence, for 
the remainder of this paper, 3D-BDML will be referred 
to as 3D-BDMUSIC and when employing an interference 
cancellation matrix beamformer, the algorithm will be re- 
ferred to as 3D-BDMUSIC incorporating interference 
cancellation. 

Although the low-angle radar tracking problem is the 
motivating application, the bearing estimation procedures 
presented within are developed for the more general case 
in which two targets closely spaced in both angle and 
range give rise to respective echoes which arrive overlap- 
ping in time and angularly separated by less than a beam- 
width. That is, the method developed herein does not re- 
quire that the two closely spaced targets being tracked at 

a given instant in time be located near broadside. It is 
proposed that the 3-D beamspace techniques developed 
here be utilized in the same manner in which adaptive sum 
and difference beams are varied from one pointing angle 
to another in the process of sequentially tracking a large 
number of targets. 

This paper is organized as follows. Section I1 intro- 
duces simplifying notation, defining the polynomial and 
vector representations of a causal sequence. The matrix 
formulation of linear convolution critical to later devel- 
opments is presented as well. Section I11 briefly reviews 
the 3D-BDMUSIC algorithm for estimating the respective 
bearings of two closely spaced targets emphasizing those 
properties of M X 3 Butler matrix beamforming critical 
to the computational simplicity of the algorithm. Section 
IV develops a minimum variance distortionless response 
(MVDR) based procedure for constructing the M X 3 in- 
terference cancellation matrix beamformer which pre- 
serves these properties and, hence, the computational 
simplicity of 3D-BDMUSIC. A multifrequency version 
of 3D-BDMUSIC incorporating interference cancellation 
is presented in Section V which retains the computational 
simplicity of single frequency operation via coherent sig- 
nal subspace processing according to the method of Wang 
and Kaveh [13], [14]. The coherent signal subspace pro- 
cessing of the multifrequency data also gives rise to a large 
effective signal-to-interference plus noise ratio (SINR) and 
reduces the sensitivity of 3D-BDMUSIC to the phase dif- 
ference between the respective echo returns’ from the two 
closely spaced targets at any one frequency. Finally, sim- 
ulations are presented in Section VI demonstrating the ex- 
cellent performance of both single frequenci’and multi- 
frequency 3D-BDMUSIC incorporating interference can- 
cellation in a simulated low-angle radar trackiqg environ- 
ment with strong jamming. 

11. NOTATION AND MATRIX REPRESENTATION OF 

LINEAR CONVOLUTION 
We here introduce notation which will be invoked 

throughout. Let p ( z )  be a polynomial of order L - 1 de- 
fined as 

+ pL- I zL- l .  @.la) 

{ p }  then represents a causal sequence of length L ex- 
pressed as 

(2. lb) 

Finally, p represents the L x 1 coefficient vector associ- 
ated with p ( z )  constructed as 

p ( z )  = p o  + p l z  + p 2 z 2  + 

{PI = {PO? PI? P2, - - 7 PL-I}. 

P = [Po, PI, P2, * * 9 PL-,lT. (2. IC) 

Thus, as long as one of these entities is defined, the other 
two are defined automatically. 

In this notational convention, let q be an M x 1 vector 
defined similar to p in (2. IC). This automatically defines 
q ( z ) ,  a polynomial of order M - 1, and { q }  , a causal 
sequence of length M .  Let r ( z )  be the product of p ( z )  and 
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1 ] =  T M + L - 2  

q(z) ,  i.e., r (z )  = p ( z )  q ( z ) ,  a polynomial of order N = 
M + L - 2. Of course, the set composed of the roots of 
Y ( Z )  is equal to the union of the set composed of the roots 
of p (2)  with the set composed of the roots of q(z ) .  Also, 
the sequen e {r} is the linear convolution of the sequence 
{p} with t g e sequence { q } ,  i .e.,  

PI Po 0 

0 P L - I  p ; - : . *  ; [;I. 
Po 

9M 

L -  I M- 1 

rn Pkqn-k = kzo qkpn-k 
. k = O  

n = 0 ,  1 ,  * * , M + L - 2. (2.2) 

As indicated, {r} is a sequence of length N = M + L - 
1. We thus have the following polynomial, sequence, and 
vector representations associated with either the product 
of two polynomials or, equivalently, the linear convolu- 
tion of two causal sequences: 

r(z)  = P k )  q ( 2 )  (2.3a) 

i" 0 PL- ' J  I 

( 2 . 3 ~ )  

Note that the matrix representation of linear convolution 
in (2 .3~)  follows from the definition of linear convolution 
in (2.2). For notational simplicity, we will find it conve- 
nient in the development within to express (2 .3~)  in com- 
pact form as 

where it is understood that (2.4) is shorthand for (2 .3~) .  

111. OVERVIEW OF 3D-BDMUSIC ALGORITHM WITH 
M X 3 BUTLER MATRIX BEAMFORMING 

A.  Array Signal Model 
It is assumed throughout that the two closely spaced 

targets of interest are either in the far field or that far-field 
focusing is accomplished by correcting for the quadratic 
phase curvature associated with a specific range bin under 
scrutiny. In addition, we here assume the radar array em- 

ployed to be linear and composed of M elements uni- 
formly spaced by half the wavelength of the transmitted 
pulse. Let x ( n )  denote the M X 1 snapshot vector. The 
mth element of x ( n ) ,  denoted x, (n), m = 1, * - , M ,  is 
the value of the complex analytic signal outputted from 
the rnth element of the array measured at discrete time n. 
Invoking the narrowband model, x (n) may be expressed 
as 

+ i(n) + n(n) n = 1 ,  - , N 

= Ac(n) + i(n) + n(n) .  (3.1) 

The various quantities are defined. U, = sin e,, i = 1, 2, 
where 8, denotes the arrival angle of the ith signal with 
respect to broadside. A, (n) and 4, (n), i = 1, 2,  denote the 
magnitude and phase of the sample value of the complex 
envelope associated with the ith signal arrival at the nth 
snapshot. In the low-angle radar tracking scenario, one of 
the indices, i = 1, 2, is associated with the direct path 
signal while the other is associated with the specular path 
signal. The components of i ( n )  represent the interference 
present at each of the array elements at the nth snapshot 
due to external sources such as jammers and clutter. The 
components of n (n) represent the complex, receiver gen- 
erated noise present at each of array elements at the nth 
snapshot. It is here assumed that the components of n (n) 
are independent with zero means and identical variances. 
As 4[ (n )  is the phase of the ith signal occurring at the 
center of the array aperture at the nth snapshot, a(u,;  M )  
accounts for a linear phase variation across the array due 
to the far field assumption: 

The notation a(u;  M) is such that M designates the dimen- 
sion of the vector, Note that if M is odd the center element 
of a(u; M )  is unity. 

Note that when a ( u ;  M) for some specific value of U is 
employed as a weight vector applied to x ( n ) ,  the opera- 
tion is referred to as classical beamforming. Consider the 
M X 3 beamforming matrix 
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U, is the pointing angle of the “center” beam. U, may be 
the direction of the transmitted pulse or determined by 
geometrical considerations. For example, in a low-angle 
radar tracking scenario, U, = 0. In any event, in order to 
achieve adequate SNR’s at the beamspace ports, U, should 
be determined in some judicious fashion so as to be in the 
general angular vikinity of the targets being tracked at a 
given instant in time. U, - (2/M) and U, + (2/M) are 
the pointing angles of the “left” and “right” beams, re- 
spectively. Correspondingly, for notational simplicity, the 
first, second, and third columns of WB will alternatively 
be denoted as wBL, wBC, and wBR, respectively, in accor- 
dance with the far right-hand side of (3.3). This automat- 
ically defines tHe ( M  - 1)th order polynomials wBL(z), 
wBC(z), and wBR(z) in accordance with (2.2). The sub- 
script B is in reference to the Butler matrix beamformer. 
The Butler matrix beamformer for an M element array is 
an M X M matrix composed of M orthogonal, classical 
beamforming vectors of the form in (3.2); the correspond- 
ing pointing angles are integer multiples of 2 / M  covering 
the “visible” region - 1  I U I 1 .  The Butler matrix 
beamformer is, in fact, an M pt. DFT matrix. For the 
purposes of this paper, we will refer to WB defined by 
(3.3) as the M X 3 Butler matrix beamformer despite the 
fact that U, need not be an integer multiple of 2/M. It is 
easily shown that the three columns of WB are mutually 
orthogonal due to the 2 / M  spacing between the beams. 

Note that U (U; M) exhibits conjugate centrosymmetry, 
i.e., 

(3.4) i M U @ ;  M )  = u*(u; M )  

where iM is the M x M reverse permutation matrix 

0 0  

0 0  . .  . 
. . .  
0 1  

1 0  

0 -1. 
0 

(3.5) 

Thus, each of the three columns of WB is conjugate 
centrosymmetric. This property is invoked in the 
3D-BDMUSIC method to be described shortly. Note that 
IMiM = ZM, where ZM is the M X M identity matrix. Also, 
f; = &,. These properties of &, will be invoked through- 
out. 

An algorithmic summary of 3D-BDMUSIC is deline- 
ated below. A brief discussion of each step is provided to 
emphasize three important properties of the M X 3 Butler 
matrix beamformer defined in (3.3) which contribute 
greatly to the computational simplicity of the algorithm. 
The reader is referred to [lo], [12] for the full develop- 
ment of the algorithm. It should be noted that this version 
of the algorithm assumes the contribution to the beam- 
space snapshot vector due to interference to be negligible 
with respect to the contribution due to the signals of in- 
terest, i.e., l l~ f i (n) l12  << 11 WfAc(n)l12. This assumes 

that the interference is not too strong and/or that the 
sources of interference are angularly located in low side- 
lobe regions and are thus adequately filtered out by the 
beamforming operation. The next section develops a 
modification of the algorithm for strong interference sce- 
narios. 

B. Algorithmic Summary of 3D-BDMUSiC with M X 3 
Butler Matrix Beamforming 

M x 3 Butler matrix beamforming is as follows. 
The algorithmic summary of the 3D-BDMUSIC with 

1) Form 3 X 1 beamspace snapshot vectors: xB(n) = 

2) Construct 3 x 3 beamspace correlation matrix: $b 

3) Compute v = [ V I ,  v2, v31Tas EVEC of Re { $ b }  

4) Construct quadratic equation e&) = eo + elz + 

Wfx(n), n = 1, * - 7 N. 

= (1/N) E f I d  xB(n) x f ( n ) .  

associated with “smallest” EV. 

e$ z 2 ,  where 
eo = ~ J ” u c { . ~ ~ ~ J ( ” / M )  - v2 + V 3 e - ~ ( ~ / M ) ) ;  

el = -2(vl + v3)  cos (;) + 2v2 cos (g). 
5) Estimate zI  = elTU’ and z2 = eJTuz as the two roots 

of e,(z). 

Step 1: The M X 3 Butler matrix WB, defined in (2.2), 
performs a transformation from M-dimensional element 
space to 3-D beamspace. 

Step 2: Rbb is, in general, a complex-valued 3 x 3 ma- 
trix. The number of snapshots may be as small as one, 
i.e., N = 1, as in the case of monopulse radar. 

Step 3: The following two properties of the M X 3 
Butler matrix beamformer are invoked in this step: 

WfwB = 1 3  (3.6) 

fM WB = wf . (3.7) 

The first property is a mathematical statement that the col- 
umns of W, are mutually orthonormal. Since it is assumed 
that the element space noise covariance matrix is a scalar 
multiple of ZM, it follows that the beamspace space noise 
covariance matrix is a scalar multiple of Z3. As a conse- 
quence, U is computed via a standard eigenvalue decom- 
position (EVD) as opposed to a generalized EVD. This 
simplifies the algorithm somewhat but will actually be 
more critical in the case of multifrequency operation to be 
discussed later. 

The second property of W,, described by (3.7), is no 
more than a mathematical statement that each of the col- 
umns of WB is conjugate centrosymmetric. As a conse- 
quence, the 3 x 1 beamspace manifold vector 

b(u) = tVfa(u; M) (3.8) 

is a real-valued vector for all U. This claim is substanti- 
ated by the following sequence of manipulations: 
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b(u) = W;a(u; M) = W;I&fu(u; M) 

= W;a*(u; M) = b*(u) (3.9) 

where we have used the "trick" fMfM = ZM. The fact that 
b(u)  is a real-valued vector yields two advantageous fea- 
tures of operating in the beamspace domain defined by the 
beamspace transformation matrix WE. First, the EVD re- 
quired is that of a real-valued 3 x 3 matrix, as opposed 
to a complex one. This provides a modest savings in com- 
putation. More importantly, though, it produces the same 
effect as a single forward-backward average in element 
space with much less computation and storage require- 
ments. The effect of taking the real part of &, is most 
clearly explained by considering the case of a single snap- 
shot ( N  = I ) ,  no noise, and no interference.)n this case, 
Rbb is of rank one and may be expressed as BR,, B T ,  where 
B = [ b ( u l )  b(u2)] and 

A*@) = 42(n) - &(n) is the phase difference between 
the two signals occurring at the center of the array aper- 
ture. Since B is a real-valued 3 X 2 matrix, Re { R b b }  = 

B Re { $, } B where 

Re { R S }  

1. 
(3.11) 

It is evident that as long as A* (n)  is not equal to, either 
0" or 180", Re {R, , }  is of rank two. Hence, Re { R b b }  = 
B Re {fi,,} B T  is of rank two. Under these conditions, 
i.e., single snapshot !nd no noise or interference, the 
smallest EV of Re {Rbb} is zero and the corresponding 
EVEC is orthogonal to both b ( u l )  and b(u2)  individually, 
i.e., vTb(u i )  = 0, i = 1, 2. The anomalies occurring with 
either A*(n) = 0" or A*(n) = 180" will be discussed 
and dealt with at a later point. 

Step 4: This step invokes another very important prop- 
erty of the M X 3 Butler matrix beamformer described by 
(3.3). That is, the respective three beams associated with 
each of the three columns of WE have M - 3 nulls in 
common [IO], [12]. This is demonstrated in Fig. ](a) for 
the case of an M = 21 element array and a center pointing 
angle of U, = 0. Recall that wBL(z), w ,~ (z ) ,  and WBR(Z) 

denote the (M - 1)th order polynomials associated with 
the first, second, and third columns .of WE, respectively. 
Translated, this observation dictates that these three poly- 
nomials have M - 3 roots in common. The M - 3 com- 
mon roots are located on the unit cicle at z,  = exp [ j T (U, 
+ (2m/M)], m = 2, * - , M - 2. Let c ~ ( z )  denote the 
polynomial of order M - 3 having these M - 3 roots for 
which the coefficients exhibit conjugate centrosymmetry . 
(For n roots on the unit circle, it is always possible to find 

-0.4 -80 -60 -40 -20 0 20 40 60 80 

THETA (DEGREES) 
(a) 

1 . 1  . 
-80 -60 -40 -20 0 20 40 60 80 

THFTA (DEGREES) 

-0.41 ' 

(b) 

Fig.  1. Comparison of beams formed by M X 3 Butler matrix beamformer 
with beams formed by M x 3 interference cancellation matrix beamformer 
(ICMBF). M = 21 elements.  Center pointing angle: 0, = 0". Interference 
directions: O,, = 13.5" and 0,2 = 25". (a) Butler matrix beamforming. (b) 
Interference cancellation matrix beamforming. 

a corresponding polynomial of order n whose coefficients 
exhibit conjugate centrosymmetry .) It follows that 

wBL(z) = c B ( z )  qBL(z); wBC(z) = c B ( z )  qBC(Z) 

WBR(Z) = cB(z> qBR(z) (3.12) 

where qBL(Z), q&), and ~ B R ( z )  denote polynomials of 
order 2. The polynomial products in (3.12) give rise to 
the following convolutional relationships among the re- 
spective sequences: 

{wBL} = * {qBL}; {wBC} = { C B I  * { q B C j  

{WBR} = * {qBR} .  (3.13) 

In turn, (3.12) gives rise to the following factorization of 

WE = CBQB (3.14) 
WB : 

where CB is the M x 3 banded, Toeplitz matrix 

(3.15) 
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and QB is the 3 x 3 matrix Hence, 

The 3-D beamspace domain version of MUSIC, 
3D-BDMUSIC, prescribes that uI and u2 be estimated as 
the two values of u for which b(u) is orthogonal to the 
l-D subspace spanned by U, the “smallest” EVEC of Re 
{&}. The matrix factorization in (3.14) allows for an 
alternative formulation of this step in terms of finding the 
roots of a quadratic equation. This reformulation is sug- 
gested by the following sequence of manipulations: 

vTb(ui) = vTWzu(ui; M )  = u‘Q~Cfu(u i ;  M) 

= ( c fa (u i ;  M - ~ ) ) ( Q ~ U > ~ U ( U ~ ;  3) = o 
i = l , 2  (3.17) 

where we have exploited the banded, Toeplitz structure 
of CB and the Vandermonde structure of a(u;  M). Since 
c i a ( u i ;  M - 2) is a scalar, f o r i =  1, 2, (3.16) implies 
( Q ~ v ) ~ u ( u ~ ;  3) = 0, i = 1, 2.  Let 

e = Q B u .  (3.18) 

It follows that ii = eJaui, i = 1, 2, may be estimated as 
the two roots of e.&), the second-order polynomial as- 
sociated with e* = Qgv. 

Step 5: Formulation of the quadratic equation e&) re- 
quires the determination of Q B .  To this end, note that the 
two roots of wBL(z) which are not roots of cB(z)  are z = 
eJxuc and z = exp [ j r @ ,  + (2/M))]. Hence, 

( z  - exp [ . ir(uc + -31) 
= exp [ j r ( u c  + i)] - 2 cos ( ; ) z  

(3.19) 

Similarly, the two roots of wB,-(z) which are not roots of 
C B ~ )  are z = exp [ j r ( u c  + (2 /M))1  and z = exp [ j r ( u c  
- ( 2 / M ) ) ] .  Hence, 

Finally, the two roots of wBR(z) which are not.roots of 
c B ( z )  are z = eJsuc and z = exp [ j r ( u c  - ( 2 / M ) ) ] .  

- (2 - exp [ j + ,  - 31) 
= exp [ j r ( u c  - t)] - 2 cos ( ~ ) z  

+ exp [ - j r (uc  - i ) ] z 2 .  (3.21) 

Consider qBL,  qBC,  and qBR,  the 3 x 1 coefficient vectors 
associated with qBL(z),  qBC(z),  and qBR(z),  respectively. 
From (3.19)-(3.21), 

Note that each of the columns of Q B ,  i.e., each of the 
vectors listed in (3.22), is conjugate centrosymmetric such 
that f3QB = Q;. As z, is real, it follows that e = QBv is 
conjugate centrosymmetric as well. Upon substitution, we 
arrive at the following expressions for the components of 
e = QBv: 

eo = e J r ~ ~ { v l e J ( r / W  - v2 + v3e-J(n/M) } = e:; 

el = -2(vl + v3)  cos (6) + 2v2 cos ($). (3.23) 

The final step in the algorithm then is to estimate z1 = 
elru’ and z2 = eJru2 as the two roots of e,(z) = eo + elz 
+ e t z 2 .  

It is apparent that the ability to factor the M X 3 Butler 
matrix beamformer WB as CBQB, where CB is an M X 3 
banded-Toeplitz matrix, is critical to the computational 
simplicity of 3D-BDMUSIC. This property facilitates the 
formulation of the final step in terms of the solution of a 
quadratic equation, as opposed to a nonlinear search over 
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the beamspace manifold. As a consequence, this structure 
will be imposed in the construction of an M x 3 matrix 
beamformer suitable for operation in the presence of 
strong interferers environment. An appropriate procedure 
is developed in the next section. 

IV. MVDR-BASED CONSTRUCTION OF THE 

INTERFERENCE CANCELLATION MATRIX 
BEAMFORMER 

In the case of strong interference, it .is necessary to 
modify the locations of the nulls of each of the three beams 
achieved with M X 3 Butler matrix beamforming, i.e., 
formed by each of the three columns of WE. In order to 
nullify the effect of the jammers, each beam ideally ex- 
hibits a null in the direction of each and every point-like 
interferer. If an interferer is spatially distributed or con- 
tinuous, each beam should exhibit a suitable number of 
nulls in the angular vicinity of the interfering source. Let 
UIk,  k = 1, * ‘ ‘  , K, denote the directions in which nulls 
are to be formed. We will not here concern ourselves with 
the estimation of the locations of the interferers. We will 
simply assume that these null locations have been judi- 
ciously determined by employing a high quality, para- 
metric spatial spectral estimator such as ESPRIT [19], 
[20], MUSIC [ 171, IQML [ 181, etc., during a passive lis- 
tening period in which the radar is not transmitting. Let 
W, denote the M X 3 matrix beamformer to be employed 
in the case of strong interference. As the case with WE,  
the first, second, and third columns of W, denote the 
weight vectors for forming the left, center, and right 
adaptive beams. Correspondingly, 

The null constraints to be satisfied may be mathematically 
expressed as 

wya((uIk; M )  = [ !] k = 1, 2, * * , K. (4.2) 

In order to maintain the computational simplicity of 
3D-BDMUSIC achieved with the M X 3 Butler matrix 
beamformer, we will further impose that W, be con- 
structed in such a manner that it may be factored as 

WI = CiQi (4.3) 
where C, is an M X 3 banded, Toeplitz matrix of the form 

c, = [ i ;, ;] (4.4) 

and Ql is a 3 X 3 matrix, the columns of which are de- 
noted as 

. .  

cI is an (M - 2) x 1 vector; the M - 3 roots of cI(z)  
correspond to the M - 3 common nulls among the three 
beams. K of these M - 3 common roots correspond to 
the respective nulls formed in each of the interference di- 
rections UIk,  k = 1, - , K. The other M - K - 3 roots 
will be chosen so as to minimize some measure of the 
noise present at each of the three beamformer outputs. 

In addition to the factorization in (4.3), we will also 
impose that the columns of W, be mutually orthonormal 
and that each exhibit conjugate centrosymmetry . Mathe- 
matically, the two additional constraints on the structure 
of W, are 

wyw, = 1 3  (4.6) 

i,w, = w;.  (4.7) 

The conjugate centrosymmetry constraint in (4.7) serves 
to constrain the 3 X 1 beamspace manifold vector bI(u) 
= Wyu(u;  M) to be real valued. In turn, this facilitates 
the effecting of a single forward-backward average in ele- 
ment space by simply taking the real part of the 3 X 3 
beamspace correlation matrix. Correspondingly , it allows 
us to work with a real-valued matrix, as opposed to a 
complex one. Translated, the orthonormality constraint in 
(4.6) implies that the 3 x 3 beamspace noise correlation 
matrix is a scalar multiple of Z3. This allows us to avoid 
a generalized EVD, and will be important in the case of 
multifrequency operation. With W, satisfying (4.3), (4.6), 
and (4.7), the only changes to the 3D-BDMUSIC algo- 
rithm outlined previously is that W, replaces W, and that 
e in step 4 is computed as e = QIu. A novel procedure 
for constructing W,, and QI as well, satisfying all of these 
conditions is now developed. 

A.  Construction of Center Beam 
To facilitate a simple procedure for satisfying the con- 

straint in (4.3) that the three beams have M - 3 nulls in 
common, the following approach is taken. The weight 
vector associated with the center beam, wIC, is con- 
structed first. wIL and wIR are then constructed based on 
wIc. wIc is determined as that weight vector which mini- 
mizes the expected power of the noise present at the 
beamformer output subject to a number of null constraints 
and a unity gain constraint in the direction U,. In addition 
to the K null constraints associated with the prescribed 
interference directions, two additional null constraints are 
imposed. Ultimately, these produce the two nulls of the 
center beam which are not members of the set of M - 3 
nulls common to the three beams formed by the columns 
of W,. For a variety of reasons, we choose the positions 
of these two nulls to be the same as the locations of the 
two “uncommon” nulls associated with the center beam 
in the case of M x 3 Butler matrix beamforming, U = 
U, - (2/M) and U = U, + (2/M). These are the locations 
of the first null on either side of the mainlobe of the beam 
formed with wBc, the center column of WE. Under the 
assumption that none of the prescribed interference direc- 
tions is within two beamwidths of the mainlobe of the 
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center beam, this serves to maintain the integrity of the 
mainlobe of the center beam relative to that achieved with 
wBC.  As we shall see, this also yields significant benefits 
in the case of multifrequency operation. If one of the in- 
terferers is located in this region, an additional beam must 
be formed and 3D-BDMUSIC applied in a four-dimen- 
sional beamspace. The 3D-BDMUSIC described previ- 
ously generalizes for higher dimensional beamspaces. 
However, we herein consider only the case in which each 
of the interferers is located at least two beamwidths away 
from the pointing angle of the center beam. 

We will shortly describe several alternative methods for 
constructing wIc as the solution to the constrained opti- 
mization problem described above. Assume for the mo- 
ment, however, that wIc has been generated which satis- 
fies the above specifications. Given that the two 
corresponding “uncommon” nulls are located at U = U, 
- ( 2 / M )  and U = U, + (2/M), this approach automati- 
cally specifies that the (M - 3)th order “common roots” 
polynomial c,(z) is given by the polynomial ratio 

where qIc(z) = qBC(z) given by (3.19). Accordingly, the 
length M - 2 sequence { c ! }  may be computed by simply 
deconvolving the length 3 sequence { qIc } = { qBC } out 
of the length M sequence { wIc } . This approach then dic- 
tates that each of the two sequences { wIL } and { wIR } must 
be the linear convolution of {c,}  with a sequence of length 
3, i.e., 

{WIL} = {c,}  * {qIL} and iWIR} = { C I }  * { q I R } .  

(4.9) 
In this mode of operation, the final step in the construc- 
tion of W, is to determine the length three sequences { qIL } 
and { q I R }  under the restriction that W, exhibit the prop- 
erties described by (4.6) and (4.7). These two restrictions 
do not uniquely specify {qlL} and {qIR } . Final selection 
of {qIL} and {qIR} will be dictated by some constraints 
on the shape of the respective beams formed by wIL and 
wIR. A number of alternatives will be considered. 

In accordance with the above discussion, wIc is the so- 
lution to the following constrained optimization problem: 

Minimize E {  I ~ g n ( n ) \ ~ }  = 

subject to: AEwIc = 6 (4.10) 

where 0;  is the variance of the i.i.d. receiver generated 
noise at each element, Alc is the M X (K + 3) matrix 

WIC 

A,, = [ ~ ( u , ; M ) ~ u ( u , + M ; M ) I u ( u , - ~ ; M ) :  2 2 .  

(4.11) 

and 6 = [ l ,  0, 0, - - , O l T ,  a (K + 3) x 1 vector. The 
solution is simply the minimum norm solution to the con- 

1 a(uIl; : * * a(uIK;  M )  

straint equation in (4.10) 

WIC = A I c ( A E A I c ) - 1 6 .  (4.12) 

As a consequence of the conjugate centrosymmetry of 
each of the columns of A I c ,  it is easy to show that the 
solution for wIc described by (4.12) is conjugate centro- 
symmetric. 

We briefly describe several alternative methods for 
computing the solution wIc to the optimization problem in 
(4.10) which offer certain advantages over direct compu- 
tation according to (4.12). The first method is a two step 
procedure based on Gram-Schmidt orthogonalization. In 
the first step, the Gram-Schmidt procedure is used to find 
an orthonormal basis, denoted {e l ,  e2,  * , e K + 2 } ,  for 
the (K + 2)-dimensional subspace spanned by the set of 
vectors {a(u,  + (2/M); M ) ,  a(u ,  - (2/M); M ) ,  a(uI1; 
M ) ,  ’ * ’ , a (uIK; M ) }  . Once the orthonormal basis is de- 
termined, wIc is determined, to within a scalar multiple, 
by subtracting from a(u,;  M) its projection onto this ( K  + 
2)-dimensional space, i.e., wIc = a(u,; M )  - E;“=+: 

Computation of wIc according to either (4.12) or by the 
Gram-Schmidt based procedure sketched above explicitly 
requires estimates of the interference directions uIK, k = 
1, * * .  , K .  Alternatively, MUSIC [17] may be employed 
to estimate an orthonormal basis for the K-dimensional 
subspace range {a(uI1; F), - - - , a(uIK; M ) }  as the K prin- 
cipal eigenvectors of R,, = 1 / N  E:= I x ( n )  x (n) ,  the 
sample correlation matrix formed during a period in which 
the radar array is passively listening. A simple two step 
Gram-Schmidt procedure may then be implemented to 
expand to an orthonormal basis of K + 2 vectors encom- 
passing the space spanned by a (U, + (2 / M ) ;  M )  and a (U, 
- (2/M); M )  as well. Note that this Gram-Schmidt based 
procedure will yield a wIc exhibiting conjugate centro- 
symmetry if the principal eigenvectors are each conjugate 
centrosymmetric. This will be the case if we use the prin- 
cipal eigenvectors of k,, = 1/2{kxx + I , R ; f , } ,  the 
fonvard-backward averaged sample correlationA matrix 
over the entire aperture, as opposed to those of R,, itself 
[lo], 1121. 

Along these lines, the eigenvalue decomposition (EVD) 
required by MUSIC may be avoided if we forego “hard 
nulls” in the direction of the interferers and compute wIc 
according to a slight modification of the classical mini- 
mum variance distortionless response (MVDR) criterion. 
To this end, consider the constrained optimization prob- 
lem 

Minimize E {  Iw;x(n)1*} = wkk,wIc 

subject to: WiwIc = f 

{ . : d U , ;  M I }  e,. 

H 

WIC 

iMwlc = W; . (4.13) 

Here f = [0, 1, 0IT such that wIC is chosen to minimize 
the expected power at the beamformer output subject to a 
unity gain constraint in the direction U = U,, and a null 
constraint in each of the directions U = U, - (2/M) and 
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u = U, + (2/M) to facilitate simple construction of the 
left and right beams. Using the method of Lagrange mul- 
tipliers, it is easily shown that the solution is 

WIC = R;; WB(wfR6; W&'f (4.14) 

where R F B  = 1 /2{& + iMRzIM} as defined above. Note 
that since i M R F B i M  = R;B, it easy to verify that iMR;;iM 
= as well. Based on this result and the fact that the 
columns of WB are conjugate centrosymmetric, it is easy 
to show that wIc computed according to (4.14) is conju- 
gate centrosymmetric a,s desired. Note that this method 
requires an inverse of R F B  as opposed to an EVD of such 
as required by the MUSIC based procedure described 
above. However, this procedure may not yield nulls of 
significant depth to combat strong interferers. 

An alternative procedure for computing wIc requires 
only the coefficients of the so-called interference poly- 
nomial 

) 

(4.15) 

where cyyI is that scalar which makes the sequence { i } con- 
jugate centrosymmetric. That is, in the alternative pro- 
cedure to be described it is not necessary to determine the 
roots of i ( z ) .  An estimate of the coefficient sequence {i} 
may be extracted from either the IQML [18], TLS-ES- 
PRIT [19], or PRO-ESPRIT [20] algorithms without the 
need for rooting [18]. The second step in this procedure 
is to convolve the length K + 1 sequence {i} with the 
length 3 sequence {qBC}, defined by (3.20), yielding a 
length K + 3 sequence denoted { i , } ,  i.e., {i,} = {i} * 
{ q B C } .  Note that the convolution of two conjugate cen- 
trosymmetric sequences yields a conjugate centrosym- 
metric sequence. {wIc} is then computed as the convo- 
lution of { i, } with some sequence of length M - K - 2, 
denoted arbitrarily as {d, } . In matrix formulation 

i ( z )  = - e J " U f l ) ( z  - e J * W 2 )  . . . (z  - eJrurK 

= io + i lz  + i2z2 + * * + i K Z K  

WIC = Zcdc where: 

Note that Z, is an M X (M - K - 2) banded Toeplitz 
matrix. 

Construction of wIc according to (4.16) guarantees that 
the (M - 1)th order polynomial wIc(z) has roots at ZIk = 
ejUuurk, k = 1, - - - , K, and atzL = exp [ j ? r ( u ,  - (2/M))1 
and zR = exp [ j? r (u ,  + (2/M))]. Correspondingly, the 
beam produced by wIc will exhibit nulls at each of the 
interference directions UIk, k = 1, * a , K ,  and at uL = 
U, - ( 2 / M )  and uR = U, + (2/M) as required. Deter- 
mination of the (M - K - 2) X 1 vector d, is dictated by 
compliance with the constrained optimization problem in 
(4.10) which, upon substitution of (4.16), may be alter- 

natively expressed as 

Minimize IIwIC11* = dFZFZ, d, 

subject to: 
dc 

H H  wka(u,; M )  = d,Z,a(u,; M )  = 1. 

(4.17) 

The null constraints are already incorporated in the con- 
struction of wIc according to (4.16). Solving (4.17) via 
the method of Lagrange leads to the result that d, be de- 
termined as the solution to the (M - K - 2) X (M - K 
- 2) system of equations 

Z?Zc d, = XlcZ~u(u,; M) (4.18) 

where XIc is a Lagrange multiplier. Of course, the solu- 
tion is simply d, = X l c ( Z ~ Z c ) ~ l Z ~ u ( u c ;  M). Complying 
with the unity gain constraint in (4.17) yields hIc = 

{aH(u, ;  M )  PIca(u,; .+I)}-', where PI, is the projection 
operator onto range {Z, } . Thus, XIc is observed to be real. 

A number of important observations may be gleaned 
from (4.18). First, as a consequence of the banded, Toe- 
plitz structure of I,, it follows that Z r Z ,  is an (M - K - 
2) x (M - K - 2) Toeplitz-Hermitian matrix. Hence, 
(4.18) may be efficiently solved via the Levinson-Durbin 
recursion. Note that the elements of the first column of 
ZFZ, are simply the first M - K - 2 autocorrelation values 
for the sequence { i , } .  Second, the solution d, to (4.18) is 
conjugate centrosymmetric. Thus, computation of the so- 
lution to (4.18) via the Levinson-Durbin recursion may 
be terminated at iteration number (M - K - 2)/2, in the 
case of M - K - 2 even, or iteration number (M - K - 
1)/2, in the case of M - K - 2 odd. Proof of the con- 
jugate centrosymmetry of d, is achieved by invoking the 
Toeplitz-Hermitian structure of ZFZ,, the conjugate cen- 
trosymmetry of a(u,; M), and the fact that XIc is real. The 
proof is trivial and thus not included here. As a conse- 
quence, {wIc} = { i , }  * {d , }  is a conjugate centrosym- 
metric sequence and wIc is a conjugate centrosymmetric 
vector. 

An important insight is provided by identifying wIc = 
I, d, in (4.18). With this substitution, (4.18) may be ex- 
pressed as Zfwlc = XlcZ;u (U,; M) from which we deduce 
that the solution is such that wIc = a(u,; M). In loose 
terms, wIc is attempting to emulate the classical beam- 
former wBC = a (U,; M) as best as possible under the given 
null constraints. We will invoke this observation shortly. 

B. Construction of Left and Right Adaptive Beams 
Once the solution wIc to (4.10) has been determined 

according to one of the five computational procedures de- 
scribed above, cI is readily determined in accordance with 
(4.8). As discussed previously, the length M - 2 se- 
quence {c , }  is computed by simply deconvolving the 
length 3 sequence { q B C } ,  defined by (3.19), out of the 
length M sequence { wIc } . Note that { wIc } and { q B c  } are 
each conjugate centrosymmetric such that {cI } is conju- 
gate centrosymmetric as well. { wIL } and { wIR } are then 
each determined by convolving { c I }  with a sequence of 
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length 3, denoted and (qIIR}, respectively, as de- 
scribed in (4.9). In matrix formulation 

wIL = c/%L; WIR = C I q l R  (4.19) 

where C, is the M X 3 banded, Toeplitz matrix con- 
structed from cI according to (4.4). Note that it is guar- 
anteed that each of the two respective beams formed with 
wIL and wIR exhibits a null in the direction of each and 
every interferer. It thus seems logical to determine qIL and 
q I R  by using the two remaining degrees of freedom in each 
beam to suppress the noise at the corresponding beam- 
former output as best as possible subject to a unity gain 
constraint in some specified direction. In light of the de- 
sirable properties of the M X 3 Butler matrix beam- 
former, we choose the pointing angles of the left and right 
beams to be uL = U, - (2/M) and UR = U, + (2/M), 
respectively. 

With the assumption of i.i.d. receiver generated noise, 
this criterion leads to the following constrained optimi- 
zation problem with respect to the left beam: 

Minimize wEwIL = qECrClqIL 
41L 

subject to: wEa U, - -. ( : ? M )  

= qEC:u(u, - G; 2 M )  = 1 .  (4.20) 

Solving (4.20) via the method of Lagrange leads to the 
result that qIL is determined as the solution to the 3 x 3 
system of equations 

where AIL is the Lagrange multiplier associated with the 
unity gain constraint in (4.20). Every comment made with 
respect to (4.18) can be made with respect to (4.21) with 
minor modification: CFC, is a 3 X 3 Toeplitz-Hermitian 
matrix, the appropriate AIL is real valued, and qIL which 
solves (4.21) exhibits conjugate centrosymmetry . Also, 
in loose terms, wIL is attempting to emulate the classical 
beamformer wBL = a (U, - (2 / M ) ;  M )  as best as possible 
under the constraints imposed. This is deduced by ob- 
serving that the qIL which solves (4.21) is the least square 
error solution to CIqIL = AILa(u, - (2/M); M )  and that 

A constrained optimization problem similar to (4.20) 
with qIL replaced by q I R  and U, - (2/M) replaced by U, 

+ (2/M) leads to the result that qIR is determined as the 
solution to the 3 x 3 system of equations 

WIL = CI4IL- 

c r c / q I R  = h I R c 7 a  U, + -; kf . (4.22) ( : )  
Again, similar comments hold with the most important 
being that the qIR which solves (4.22) exhibits conjugate 
centrosymmetry. Also, once again, it is apparent that wIR 

= C I q I R  is attempting to emulate the classical beam- 

former wBR = a(u, t ( 2 / M ) ;  M )  as best as possible under 
the constraints imposed. 

qIR determined by solving (4.21) and (4.22), respectively, 
and qIC = qBC.  Unfortunately, the three columns of W, 
constructed in this fashion are not, in general, mutually 
orthogonal. Thus, in general, the beamspace noise real- 
ized with this M X 3 matrix beamformer will be corre- 
lated from beamport to beamport, a condition we seek to 
avoid. Now, it is apparent from the discussion that in at- 
tempting to minimize the expected power of the noise 
present at each of the beamformers outputs, W, is attempt- 
ing to emulate WE, the M X 3 Butler matrix beamformer, 
as best as possible under the null constraints described by 
(4.2) and the constraint that the respective beams formed 
by wIL, wIc, and wIR have M - 3 nulls in common. In- 
corporation of an orthonormality constraint on the col- 
umns of W, into the above procedure for constructing W, 
leads one to consider determining Q, as the solution to the 
following constrained least square error (LSE) problem: 

. .  
Let W/ = C/Q/ ,  where Q/ = [qIL 4 I c  : % R I  with 4 I L  and 

Minimize 1 1  WE - Will; = 1 1  WB - CIQIll: 
a 

subject to: 

13WI = f3{CIQI}  = {C,QI}* = WT. 

WYW, = Q r { C F C I } Q I  = l3 

(4.23) 

The solution to (4.23) will be evaluated under the as- 
sumption that C, is determined in accordance with the pro- 
cedure outlined previously. This dictates that qrc = qBC.  
To facilitate efficient computation of the solution to 
(4.23), Q, is factored as Q, = QTe where Q is a 3 X 3 
matrix computed via a Gram-Schmidt procedure such that 
the columns of W, = C I Q  are orthonormal and conjugate 
centrosymmetric, and T, is a 3 X 3 orthogonal matrix. 
This enables us to reformulate the constrained optimiza- 
tion problem described by (4.23) as a Procrustes rotation 
problem [20] which is easily solved. The appropriate de- 
velopment is provided below. 

The construction of Q may be accomplished by con- 
structing an orthonormal basis for a 3-D Hilbert space with 
inner product defined by (x ,  y ) = xHCYCly. Let this 
basis be denoted qL, qc, and q R .  As the objective function 
in (4.23) dictates that W, = C,QI be “close” to WB in a 
Frobinius norm sense, it seems logical to employ the 
Gram-Schmidt procedure to construct qL, qc, and q R  using 
as an initial basis qBL,  qBC,  and qBR defined in (3.21). As 
each of these vectors is conjugate centrosymmetric, this 
also serves to facilitate compliance with the conjugate 
centrosymmetry constraint in (4.23). In light of the con- 
dition cited above that qIc = qBC,  the appropriate Gram- 
Schmidt procedure is 

(4.24a) 

(4.24b) 
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(4 .24~)  

Invoking the fact that CyCl is Toeplitz-Hermitian, such 
that i3c;c,i3 = {c?c,}*, and the fact that qBL, qBC, and 
qBR defined by (3.22) are each conjugate centrosymme- 
tric, it is easy to show that qL, qc, and qR constructed 
according to (4.24) are each conjugate centrosymmetric 
as well. Let Q = [qr. : qc:  qR] and WQ = CIQ. It follows 
that the columns of WQ are orthonormal and conjugate 
centrosymmetric, i .e.,  WQ satisfies the following two re- 
lationships: 

WZWQ = 13; IMWQ = wz. (4.25) 

With WQ = C f Q  constructed according to step 1 above, 
the constrained LSE problem in (4.23) may be reformu- 
lated as 

Minimize (1 WB - C,QI 11; = I( WB .-- WQTQIIi 

subject to: TZTQ = TQT: = Z3. (4.26) 

As stated previously, what we have effectively done is to 
factor Q, as QTQ where Q is determined such that the col- 
umns of C,Q are orthonormal and TQ is unitary. Since TQ 
is unitary, it follows that the columns of Wl = WQTQ = 
{ C f Q }  TQ are orthonormal. In this manner, the con- 
strained LSE problem defined by (4.23) is converted into 
the classical Procrustes rotation problem [20] defined by 
(4.26). One method of solving the Procrustes rotation 
problem defined by (4.26) involves the computation of the 
SVD of the 3 X 3 matrix W i  WQ. Invoking the conjugate 
centrosymmetry of the columns of both WB and WQ, it 
follows that W ~ W ,  = w,"i,,,i,,,w, = w,'w~ = 
[ W i  We]* .  This proves that W i  WQ is a real-valued 3 x 
3 matrix. This reduces computation somewhat as only real 
computations are required in computing the SVD of 
W i W , .  The solution to (4.26) is then as follows. If 
W ;  WQ = UC VTis the SVD, then TQ = UVT. Of course, 
TQ is a 3 X 3 real-valued, orthogonal matrix. Thus, it 
easily follows that the columns of Wf = WQTQ are con- 
jugate centrosymmetric since i,,, W ,  = iM WQ TQ = W z  TQ 
= W:. Thus, b,(u) = Wyu(u) is a real-valued, 3 x 1 
vector as desired. 

A summary of the procedure for constructing W, is de- 
lineated below. Note that the first step in this procedure 
is the construction of wIc. Five procedures for construct- 
ing wIc were presented. The Gram-Schmidt based pro- 
cedure is specifically cited in the prescription below. 

. .  

Te 

C. Summary of Method for Constructing W, (Gram- 
Schmidt Option for wIC) 

la) Construct orthonormal basis for span {a (u ,  + 
a(uIK; M ) } .  

Ib) Construct wIc by subtracting from a (uc; M )  its com- 
2/M7 M), a(uc - 2/M; M I ,  a(ur,; M ) ,  * * * 

ponents on this subspace. 

2a) Form the length M - 2 sequence { e , )  by decon- 

out of the length M sequence { wIC } . 
2b) Construct M x 3 banded Toeplitz matrix C, ac- 

cording to (4.4). 
3a) Construct orthonormal basis {qL, qc, qR} for 3-D 

Hilbert space defined by ( x, y ) = xHCyCly according 
to (4.24) with initial basis {&L, q B c ,  q B R }  defined by 
(3.22). 

volving the length 3 sequence 1 defined by (3 20). 

. .  
3b) With Q = [ q L  : qc : q ~ ] ,  construct WQ = CIQ. 
4a) Compute 3 x 3 real-valued SVD: W f W Q  = 

uc VT. 
4b) Form TQ = UVT. 
5 )  WI = WQTQ = C,QTe and Q, = QTQ. 

With W, and Q, determined according to this procedure, 
the only changes to the 3D-BDMUSIC algorithm outlined 
previously in Section I11 is that W, replace WB in step 1) 
and that e&) in step 4) be the second-order polynomial 
associated with the vtctor e* = { Q l v } *  = QFu, where U 

is the EVEC of Re { R b b }  associated with the "smallest" 
EV . 

V. FREQUENCY DIVERSITY 

Advances in radar technology have progressed to the 
point where the use of frequency diversity in tracking sys- 
tems has become increasingly more commonplace [8], 
[ 1 11, [2 11. Depending on the system hardware, the pulses 
at the various frequencies may be transmitted simulta- 
neously and/or in rapid succession corresponding to fre- 
quency hopping. There are a lot of advantages to employ- 
ing frequency diversity for tracking purposes. For our 
purposes here, the use of multiple frequencies allows us 
to achieve a large effective signal-to-interference plus 
noise ratio (SINR). This is accomplished by coherently 
combining the additive component of the beamspace cor- 
relation matrix at each frequency associated with the two 
signals of interest; the additive components of the beam- 
space correlation matrix at each frequency due to inter- 
ference and receiver noise are incoherently combined. (In 
the case of low-angle radar tracking, the two signals of 
interest are the direct and specular path signals.) The co- 
herent combination of the signal-only (no noise and no 
interference) component of the beamspace correlation 
matrix at each frequency is accomplished through the use 
of focusing matrices in accordance with the coherent sig- 
nal subspace (CSS) processing method of Wang and Ka- 
veh [ 131, [ 141. Another advantage of frequency diversity 
is that it inherently produces diversity in the phase differ- 
ence occurring at the center of the array which, when ex- 
ploited by the CSS processing, diminishes the sensitivity 
of 3D-BDMUSIC to the phase difference at any one fre- 
quency. This is important for the following reasons. Al- 
though the use of spatial smoothing [ 151 prior to the trans- 
formation to 3-D beamspace theoretically eliminates the 
aforementioned problems with A\k(n) = 0" and A\k(n) 
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= 180” in the single snapshot or coherent case, the case 
of A* (n) = 180” remains problematic in practice. This 
is due to the severe signal cancellation occurring across a 
large portion of the array when A u  = ]U, - U*( is a frac- 
tion of a beamwidth, giving rise to a low effective SNR. 
Multifrequency operation with CSS processing dimin- 
ishes the pejorative effect of a 180” phase difference at 
any one transmission frequency. 

A multifrequency version of 3D-BDMUSIC incorpo- 
rating CSS based on Butler matrix beamforming was de- 
veloped in [lo]-[12]. The contribution here is simply an 
adaptation of that algorithm incorporating interference 
cancellation. Only a brief explanation is provided; details 
may be found in [lo], [12]. A discussion of multifre- 
quency operation requires the introduction of some nota- 
tion. The transmission frequencies are denoted &, j = l ,  
. . .  , J, where J is the total number of such frequencies. 

f o  denotes the frequency for which the M elements of the 
array are spaced by a half-wavelength; fo may or may not 
be one of the transmission frequencies. Let W, (& ) denote 
the M, x 3 beamformer to be applied to each of M - M, 
+ 1 identical subarrays of MJ < M contiguous elements 
at frequency&. In fact, it may well be that M, = M, j = 
1 ,  * * -  , J, corresponding to no spatial smoothing at any 
frequency. However, it may be desirable to perform a 
small amount of spatial smoothing at each frequency to 
further diminish the sensitivity to the phase difference at 
any one frequency. In addition, as in the case of multifre- 
quency 3D-BDMUSIC employing Butler matrix beam- 
forming [lo]-[12], operating with an effective subaper- 
ture equal to that associated with a subarray of MJ elements 
at frequency & leads to a criterion for the selection of 
transmission frequencies which makes the job of coher- 
ently combining the signal-only component of R b b  (& 1, the 
‘‘spatially smoothed” beamspace correlation matrix 
formed at &, a very simple procedure. This criterion will 
be discussed shortly. 

The element space manifold vector associated with fre- 
quency & and a subarray of MJ contiguous elements is de- 
noted a(u; &, M,). a ( u ;  M) in (3.2), now denoted a(u;  
fo, M), is easily generalized for arbitrary frequencies of 
operation and subarrays of length M,: 

a ( u ; & ,  Mi) = [ exp ( -jn y i u ) ,  -- 

exp ( jr-- 4 ,  3 i U )  , 

* (5.1) 

Consider the Mj x 3 matrix beamformer 

j =  1 ,  , J. (5.2) 

Given the definition of a ( u ;  & , M,) in ( 5 .  l ) ,  it is easily 
verified that the columns of WE (& ) are mutually ortho- 
normal. For each$, j = 1 ,  , J, the M, x 3 matrix 
beamformer W, ( & ) for interference cancellation purposes 
is constructed according to an optimization problem sim- 
ilar to (4.23): 

Minimize I l w ~ & >  - w~&>ll$ a CA ) 

= IIWB<&> - Cd&> Q,<$>II: 
subject to: Wy($) W,($) 

= QF(&> {CF(f;> C d d > >  QI(&> = 13 

13 Wd&> 

= f3{Cd&) Qd&>> = {Cl(&> Q,(&>>* = W,*<&> 

(5.3) 

where C,(d) is an M, X 3 banded-Toeplitz matrix of the 
form in (4.4). C,(&) may be determined for each fre- 
quency &, j = 1 ,  - * * , J ,  by any of the five methods 
described previously for single frequency operation, ap- 
propriately adapted invoking the form of a ( u ;  &, M,) in 
(5.1). For the procedure based on the interference poly- 
nomial, the appropriately modified interference polyno- 
mial ford,  j = 1 ,  * * , J, is 

ij(z> = aj ( z  - exp ( jn j U/,)) 
(z - exp ( j r i  U/*)) * 

(5  -4) 

It should be kept in mind that implicit in the prescription 
in (5.3) is that the beamformers W,(&), j = 1 ,  , J, 
must satisfy the null constraints Wy($)  a(ulk; &, M,) = 

03, k = 1 ,  2, , K. In addition, for each frequency, 
the respective beams formed by each of the three columns 
of W,(&) must have M, - 3 nulls in common. 

Having constructed W,( 6) for each transmission fre- 
quency, the first step in multifrequency 3D-BDMUSIC 
incorporating both CSS and interference cancellation is to 
form R b b  (& as follows. Decompose the overall array into 
M - MJ + 1 overlapping subarrays of MJ contiguous ele- 
ments. W I ( & >  is applied to each subarray, and a b ( , ( & )  is 
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formed as the arithmetic mean of the outer products of the 
( M  - MJ + 1) 3 X 1 beamspace snapshot vectors thus 
created. This is done for each of the J transmission fre- 
quencies. The CSS averaging is then achieved by the con- 
struction of Re { & , }  = 1 / J  Cy=  I T;Ebb.(J;) TfT, where 
the focusing matrix Tf “translates” the signal-only com- 
ponentof&,<J;) tofk, wherefk E { f l , f 2 ,  * * * ,fJ). Let 
b,(u;J;) = W7(J;>a(u;J; ,M,) , j  = 1, * * ,J,andB,(J;) 

= [ b , ( u I ; ~ ; )  ; b , ( u 2 ; ~ ; ) 1 , j  = 1, * , J .  The focusing 
matrices must satisfy B,(fk) = T : B , ( J ) , j  = 1 ,  . 3 J .  
Of course, the notation is such that T i  = Z3. Note that 
since br(u; J )  is a real-valued 3 x 1 manifold vector, 
T: is a real-valued 3 X 3 matrix, j = 1 ,  * * , J .  Once 
the CSS averaging has been performed, U is computed as 
the “smallest” generalized EVEC of the 3 X 3 pencil 
{Re {&}, T } ,  where T = I /J  E!=, T ~ T : ~ .  Finally, z I  
= e are estimated as the two roots of 
e,(z), the quadratic polynomial associated with the con- 
jugate of the 3 X 1 vector e = Q(fk)u.  

Construction of the focusing matrices T,k, j = 1 ,  
. . .  , J ,  in fact requires knowledge of u I  and u2, i.e., the 
angles we are trying to estimate. As a consequence, Wang 
and Kaveh [ 131, [ 141 propose an iterative procedure which 
commences with an initial set of focusing matrices based 
on some coarse estimates of the angles. One possibility 
for initialization is to take the pointing angle of the center 
beam U, as an estimate of both angles. Proceeding with 
the initial set of focusing matrices yields updated esti- 
mates of the angles corresponding to the first iteration. 
The new pair of angles are used to construct an updated 
set of focusing matrices which, in turn, yield the esti- 
mates of the angles at the second iteration. The procedure 
is then iterated until the absolute value of the difference 
between respective angle estimates obtained at the ( k  + 
1)th and kth iterations is less than some threshold for both 
signals. A number of methods for constructing the focus- 
ing matrices have been proposed [ 131, [ 141. 

In [lo]-[12] it was shown that the need for focusing 
matrices in multifrequency 3D-BDMUSIC based on But- 
ler matrix beamforming may be eliminated if the trans- 
mission frequencies,J;,j = 1 ,  - * * , J ,  and corresponding 
subarray lengths, M,, j = 1, - , J ,  are selected such 
that the productJM, is the same for each frequency, i.e., 
J M ,  = a , j  = 1, * * , J .  The following justification is 
provided. In the case of Butler matrix beamforming at 
each frequency with WB ( J ;  ), j = 1 ,  - * , J ,  defined by 
(5.2), the corresponding beamspace manifold vector over 
the angular region U, - ( f o / J ) ( 6 / M , )  < u < U, + 
(&/A) ( 6 / M , )  may be approximated as 

and z2 = e 

- I  

sin ( J ; ;  M. - - (U - U,) ) 

I 

(; (. - U, -@)) J (5.5) J;  Mj 

This approximation is tantamount to approximating the 
respective array patterns formed by each of the three col- 
umns of WB(f,) defined by (5.2) as a sinc function in the 
vicinity of the respective mainlobe and first sidelobes. It 
is thus apparent that if J M ,  = CY, j = 1, , J ,  the 
beamspace manifold vector b(u; J )  is the same for each 
transmission frequency. Hence, CSS averaging is simply 
accomplished by summing the spatially smoothed beam- 
space correlation matrices formed at each frequency. This 
represents a dramatic simplification. 

With regard to interference cancellation, note that con- 
struction of W,($) for each frequency according to the 
prescription in (5.3) dictates that W , ( J )  be as “close” as 
possible to W B ( J ; ) ,  in the sense of minimizing the Fro- 
benius norm of the difference between the two, while 
complying with the null constraints W y ( J )  a(uIk; J; ,  M,)  
= 03, k = 1, 2, * * , K. As a consequence, it is easily 
argued that for each frequency b,(u; J ; )  = Wy(J;) a(u; 
J;, M,)  5: b(u) = W f ( J ; )  a(u;  J ; ,  M,) over the angular 

It follows from previous arguments then that if the trans- 
mission frequencies satisfy J;MJ = CY, j = 1, * * * , J ,  
b,(u; J )  = W ; ( J ; )  a(u; J;,  M,) is the same for each fre- 
quency over the angular region U, - ( f 0 / f )  ( 6 / M , )  < u 
C U, + ( f 0 / J ) ( 6 / M J ) .  As the case with Butler matrix 
beamforming [lo]-[12], CSS averaging is then simply ac- 
complished by summing a,,(&), j = 1, - - , J .  Also, 

r eg ion4  - ( h / J ; ) ( 6 / M , )  < U < 4 + (h/J)Wy/) .  
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this result implies that QI( 4 )  must be approximately the 
same for each frequency. Thus, the simplified version of 
multifrequency 3D-BDMUSIC incorporating both CSS 
and interference cancellation for the case where the trans- 
mission frequencies satisfy$Mj = a, j = 1 ,  * - * , J ,  is 
as follows. 

With W,( 4 )  constructed for each transmission fre- 
quency in accordance with (5.31, form &,(A), j = 1,  
. . .  , J ,  as described above. U is then computed as the 
"smallest" EVEC of Re {&} = 1/J E;=, &(A). 
(Note that this step exploits the fact that Wr($) W,(J) 
= 13, j = 1, * - , J ,  which avoids a generalized EVD 
and estimation of the noise power at each frequency.) zl 
= eJXu '  and z2 = e'*'' are then estimated as the two roots 
of e&), the quadratic polynomial associated with the 
conjugate of the 3 X 1 vector e = Q(fk)  U, where fk is 
any one of the transmission frequencies. This form of the 
algorithm will be used in the simulation presented in Sec- 
tion VI. 

2.00 - cancel --two interferers 

1.004 ' ' ' ' ' ' ' 
0 135 180 4 5  90 

AY (Degrees) 

- cancel -- two interferers 1 --t butler-no interference I 

VI. COMPUTER SIMULATIONS 
Computer simulations were conducted to ascertain the 

performance of both single frequency and multifrequency 
3-D BDMUSIC incorporating interference cancellation in 
a simulated low-angle radar tracking environment with 
jamming. The following parameters were common to all 
test cases. First, the array employed was linear consisting 
of M = 21 elements uniformly spaced by a half-wave- 
length at fo. The nominal 3-dB beamwidth for this array 
is 2/21 rads = 5.46". The two signals of interest, the 
direct and specular path signals, were angularly located 
at 0 ,  = 1.5" and O2 = -lo, respectively, corresponding 
to an angular separation of 0.46 beamwidths or roughly a 
half-beamwidth. The noise was additive, spatially white, 
and uncorrelated with the direct and specular path signals, 
and with the interfering signals as well. The SNR of the 
direct path signal was 20 dB (per element). The ratio of 
the amplitude of the specular path signal to that of the 
direct path signal p was 0.9. In the case of single fre- 
quency operation at fo, corresponding to the simulations 
presented in Figs. 2-5, each independent trial involved 
the execution of 3D-BDMUSIC incorporating interfer- 
ence cancellation given a single snapshot of data, N = 1 .  
For each simulation example, the respective performance 
for five different values of A*, the phase difference be- 
tween the direct and specular path signals at the center 
element, was examined. Multifrequency operation with 
three frequencies satisfyingf,Mj = constant, j = 1, 2, 3, 
is examined in Fig. 6. In this case, each independent trial 
involved the execution of the simplified multifrequency 
version of 3D-BDMUSIC incorporating interference can- 
cellation summarized at the end of Section V given a sin- 
gle snapshot of data, N = 1, at each of the three frequen- 
cies. Finally, in all cases, sample means (SMEAN's) and 
sample standard deviations (SSTD's) were computed from 
the results of 100 independent trials. 

In the single snapshot case, single frequency 
3D-BDMUSIC incorporating interference cancellation 

AY (Degrees) 

I I" 1 - cancel _ _  two interferers 

0 135 180 4 5  90  

AY (Degrees) 

1 - cancel --two interferes - butler -- no interference 

0 4 5  90  135 180 
A Y  (Degrees) 

Fig. 2. Performance comparison: 3D-BDMUSIC with no interference and 
Butler matrix beamforming versus 3D-BDMUSIC with two interferers and 
ICMBF. M = 21 elements and N = 1 snapshot. Direct path: 0,  = 1.5" 
and SNR = 2 0  dB.  Specular path: = - l o  and p = 0.9. Interferers: BII 
= 13.5" and B r z  = 25"  with SNR = 20 dB each (SIR = 0 dB). SMEAN's /  
SSTD's computed from 100 independent trials. (a) Direct path sample 
means. (b) Specular path sample means. (c) Direct path sample STD's. (d) 
Specular path sample STD's. 
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Fig. 3. Performance comparison: 3D-BDMUSIC with Butler beamforming versus 3D-BDMUSIC with ICMBF. Simulations 
parameters same as those described in caption to Fig. 2 except e,, = 15" and = 28". (a) Direct path sample means. (b) 
Specular path sample means. (c) Direct path sample STD's. (d) Specular path sample STD's. 
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Fig. 4. Sensitivity of 3D-BDMUSIC with ICMBF to error in estimated interference angle. Simulations parameters same as 
those described in caption to Fig. 2 except single interferer located at e,, = 17" with SNR = 20 dB (SIR = 0 dB). (a) Sample 
means. (b) Sample STD's. 

does not work properly if A*((n) is either 0" or 180" as 
discussed previously. In the case of 3D-BDMUSIC with 
M X 3 Butler matrix beamforming, this problem is averted 
by employing spatial smoothing combined with symme- 
trization [12]. In this mode of operation, the 2-D param- 

eter estimation problem is decomposed into two succes- 
sive 1-D parameter estimation problems. That is, instead 
of simultaneously estimating both uI and u2, we first es- 
timate the bisector angle = 1/2{u1 + u 2 }  and then, 
as a second step, estimate 6 = /U, - U B I  =, - U B I .  
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Fig. 5. Performance of 3D-BDMUSIC with ICMBF as a function of SIR with an interference angle estimation error of 0.5". 
Simulations parameters same as those described in caption to Fig. 2 except single interferer located at e,, = 17". Estimated 
interference angle: a,, = 17.5". (a) Sample means. (b) Sample STD's. 
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Fig. 6. Performance of multifrequency 3D-BDMUSIC with ICMBF. Simulations parameters same as those described in caption to 
Fig. 4 except J = 3 frequencies employed. fo: frequency for which elements spaced by half-wavelength. A*,: phase difference at 
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(a) Direct path sample means. (b) Specular path sample means. (c) Direct path sample STD's. (d) Specular path sample STD s. 
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Simulations have indicated that this procedure, referred 
to as the spatial smoothing/symmetrization version of 
3D-BDMUSIC, is less sensitive to the reduction in aper- 
ture length incurred with spatial smoothing [12]. This re- 
finement to 3D-BDMUSIC is easily adapted for 
3D-BDMUSIC incorporating interference cancellation 
and was employed in the simulation associated with Figs. 

In the first simulation example, the interference sce- 
nario consisted of K = 2 interferers angularly located at 
ell = 13.5" and 012 = 25". Each of these interferers had 
the same signal strength, i.e., the same SNR, as the direct 
path signal. Fig. l(a) displays the three beams generated 
by the 21 x 3 Butler matrix beamformer W, with a center 
pointing angle of eE = 0".  Note that the three beams have 
21 - 3 = 18 nulls in common. Also note that the angular 
position of the first interferer is the location of the peak 
of the largest sidelobe of the beam pointed to 5.46", and 
the location of the respective peaks of the second and third 
largest sidelobes of the beams pointed to 0" and -5.46", 
respectively, as well. The angular position of the second 
interferer is also located at a peak of one of the sidelobes 
of each of the three beams. In contrast to Fig. l(a), Fig. 
l(b) displays the three beams generated by the interfer- 
ence cancellation matrix beamformer W, constructed ac- 
cording to the method outlined at the end of Section IV 
with the actual (no estimation error) values of On and e12. 
Note that by design the three beams have 18 nulls in com- 
mon with two of the nulls located at ell = 13.5" and O I 2  
= 25". 

The simulation results presented in Fig. 2 compare the 
performance of 3D-BDMUSIC employing W, in this in- 
terference environment with that of 3D-BDMUSIC em- 
ploying WE (e, = 0") in an "interference-free" environ- 
ment. Since in the former case the nulls are exactly aligned 
with the actual interference directions, comparable per- 
formance is expected and is indeed obtained. Note that in 
either case, poor performance is obtained with A?P = 180" 
due to the substantial signal cancellation occurring across 
the array under these conditions. Overall, however, the 
performance of 3D-BDMUSIC with perfect interference 
cancellation is slightly worse than that achieved in the no 
interference case with WE. This may be attributed to a 
slight drop in the average gain in the direction of the di- 
rect and specular path signals associated with the three 
beams formed by W, relative to that associated with the 
three beams formed by WE. The performance gradually 
deteriorates as the location of an interferer, and hence, the 
corresponding null, approaches the angular locations of 
the direct and specular path signals. 

The simulation results plotted in Figs. 3 and 7 illustrate 
the poor performance of 3D-BDMUSIC employing Butler 
matrix beamforming in the presence of interference. In 
order to achieve a SSTD for the estimates of the direct 
path angle for A 9  = 90" no greater than half the angular 
separation between the direct and specular path signals, 
the interference locations were moved from the positions 
in the first simulation example to = 15" and BIZ = 

2-5. 
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Fig.  7 .  Same as caption to Fig.  1 except 0,1 = 15" and = 28". (a) 
Butler matrix beamforming. (b) Interference cancellation matrix beam- 
forming. 

28". The locations of these interferers relative to the side- 
lobes of the three beams formed by WE with 8, = 0" is 
depicted in Fig. 7(a). As before. each interferer had the 
same power as the direct path signal. Observing Fig. 3, 
it is noted that even in the best case of A?P = 0", the 
SSTD of the direct path angle is 0.8". For comparison, 
the performance of 3D-BDMUSIC employing W, con- 
structed according to the method outlined at the end of 
Section IV with the true interference directions of = 
15" and = 28" is presented in Fig. 3 as well. Fig. 7(b) 
displays the three beams generated by the W, thus ob- 
tained. Except for the A?P = 180" case, the SSTD of the 
estimates obtained with this W, is roughly an order of 
magnitude less than that obtained with WB. 

An indication of the sensitivity of 3D-BDMUSIC in- 
corporating interference cancellation to errors in the es- 
timated interference directions may be gleaned from ob- 
serving the simulation results plotted in Figs. 4 and 5. 
The scenario for these two simulation examples consisted 
of a single interferer located at = 17". Fig. 4 displays 
the performance of 3D-BDMUSIC employing an interfer- 
ence cancellation matrix beamformer W, constructed ac- 
cording to the method outlined at the end of Section IV 
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for various estimates of O f l .  For this example, the inter- 
ferer had the same power as the direct path signal. For an 
estimation eqor  of fairly large magnitude equal to 0.5", 
the SSTD of the djrect path angle rises from tke minimum 
value of 0.27" at = = 17", to 0.52" at Ofl  = 16.5", 
and 0.42" at a,, = 17.5". Note that it should not be ex- 
pected that the SSTD will keep rising as the estimation 
error increases as it is possible for one of the other com- 
mon null locations to eventually line up with the true in- 
terference direction. In generating the statistics plotted in 
Fig. 5, the estimated interference direction was held fixed 
at Ofl = 17.5", while the strength of the interfering signal 
at = 17" was varied. Relative to the strength of the 
direct path signal, the signal-to-interference ratio (SIR) 
was varied from -10 to 30 dB in 5-dB steps. As ex- 
pected, the pejorative effect of the interferer diminishes 
as the SIR increases, despite the estimation error of 0.5". 
In fact, for this particular estimation error, the effect of 
the interferer appears to be negligible once the SIR reaches 
10 dB. 

The simulation results presented in Fig. 6 illustrate the 
excellent performance of the computationally simplistic 
version of multifrequency 3D-BDMUSIC incorporating 
interference cancellation for frequencies satisfying& MJ = 
constant, where MJ I M, j = 1 ,  * * - , J. Two different 
simulation experiments were conducted, denoted case 1 
and case 2. In both cases, the number of transmission fre- 
quencies was J = 3 with one of these equal tofo. Also, 
in both cases the interference scenario consisted of K = 
2 interferers located at = 15" and O f 2  = 28" with each 
interferer having the same strength as the direct path sig- 
nal at each transmission frequency. Arbitrarily assign f l  

= fo such that MI denotes the number of elements com- 
prising the subarrays over which spatial smoothing is per- 
formed at fo. In case 1 ,  M I  = 21 corresponding to no 
spatial smoothing and, hence, use of the full aperture at 
fo. This automatically dictates that the other two frequen- 
cies satisfyf,MJ = flMl = 21f0, or& = (21/MJ)fo, j = 
2, 3, where MJ is an integer strictly less than 21. The 
specific selections were M2 = 19 and M3 = 17 such that 
the three transmission frequencies for,case 1 were5 = fo, 
f2 = (21/19)fo = l.lOSfo, and& = (21/17)f0 = 1.235f0. 
In case 2, MI = 19 dictating that the other two frequen- 
cies satisfyf,MJ = fiMI = 19fo, orf, = (19/MJ)f,, j = 
2, 3, where MJ is an integer less than or equal to 21. The 
specific selections were M2 = 21 and M3 = 17 such that 
the three transmission frequencies for case 2 werefi = fo, 
f2 = (19/21)fo = 0.905fo, and& = (19/17)fo = 1.11740. 

For each of the two cases, cases 1 and 2, a single snap- 
shot was collected at each of the three transmission fre- 
quencies. For each frequency, f,, j = 1 ,  2, 3, a suitably 
constructed interference cancellation matrix beamformer 
W , ( f , )  of dimension MJ x 3 was applied to each of M - 
MJ + 1 identical subarrays of MJ elements. The outer 
products of the (M - MJ + 1 )  3 X 1 beamspace snapshot 
vectors thus created were averaged to form R ( f , ) ,  j = 1 ,  
2, 3. U was then computed as the "smallest" EVEC of 
the 3 x 3 matrix Re {Ebb } = f E;= I &(&). Finally, z1 

- - elTu' and z2 = eJTu2 were then estimated as the two 
roots of e,(z) ,  the quadratic polynomial associated with 
the conjugate of the 3 x 1 vector e = Q(fi ) U ,  where f l  

= fo. SMEAN's and SSTD's of both the direct and spec- 
ular path angle estimates obtained from this procedure 
were computed from the results of 100 independent trials 
for each of five different values of A*,, the phase differ- 
ence between the direct and specular path signals at the 
center element at fi = fo. Note that the phase difference 
between the direct and specular path signals at the center 
element occurring at the other transmission frequencies 
was determined from that at f l  = fo in accordance with 
the low-angle radar tracking model described by Barton 
[ 11. The resulting statistics for both cases 1 and 2 are pre- 
sented in Fig. 6. It is observed that in all cases the sample 
bias is less than 0.02" and the corresponding SSTD is less 
than 0.25". Also, the performance is observed to be rel- 
atively insensitive to A q 1  or to the phase difference at the 
center element at any one frequency, in general. It is also 
observed that the frequencies associated with case 1 
yielded better performance than those associated with case 
2. For case 2 the SSTD's were all less than 0.15". This 
is to be expected since the beamwidth for case 1 ,  which 
is the same for each of the three frequencies due to judi- 
cious variation of the respective (effective) aperture 
lengths, is that associated with a linear array of 21 ele- 
ments with half-wavelength spacing at fo and operating at 
fo. On the other hand, the beamwidth for case 2 it is that 
associated with a linear array of 19 elements with half- 
wavelength spacing at fo and operating at fo. 

The selection of fl  = f o  and MI = 21 in case 1 auto- 
matically constrained the auxiliary frequencies to be 
greater thanfo, the frequency for which the elements are 
spaced by a half-wavelength. Although this ultimately 
lead to better performance than that achieved in case 2 
where one of the frequencies was less than fo, one should 
take into consideration the locations of the grating lobes. 
For a beam steered to broadside the first pair of grating 
lobes do not enter the visible region - 1 < U < 1 as the 
frequency of transmission is increased until a frequency 
of 2f0. As the direct and specular path signals amve near 
broadside, the grating lobe problem is not an issue of sig- 
nificant concern in the low-angle radar tracking applica- 
tion. However, for more general tracking purposes, the 
grating lobe problem associated with transmission fre- 
quencies significantly higher than fo becomes an issue of 
increasing concern the farther the direction of "look" de- 
parts from broadside. 

VII. SUMMARY 
Judicious construction of an M X 3 interference can- 

cellation matrix beamformer enables one to nullify the ef- 
fect of interferers and nevertheless estimate the respective 
bearings of two closely spaced targets via the computa- 
tionally simple 3D-BDMUSIC algorithm with minor 
modification. A suitable MVDR based procedure for con- 
structing the M x 3 interference cancellation matrix 
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beamformer was developed based on the MVDR criterion 
which preserves those properties of M X 3 Butler matrix 
beamforming critical to the computational simplicity of 
3D-BDMUSIC. Computational simplicity in the case of 
multifrequency operation is maintained by coherent signal 
subspace processing according to the method of Wang and 
Kaveh. The performance of 3D-BDMUSIC in a simulated 
low-angle radar tracking environment under single snap- 
shot conditions demonstrates the real-time ability of 3D- 
BDMUSIC to accurately estimate the respective bearings 
of two targets separated by less than a beamwidth in a 
hostile jamming environment. 
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