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Abstract 

This paper presents a Hopfield-type neural network approach which 
leads to an analog circuit for implementing the bit-level transform im- 
age. Different from the conventional digital approach to image coding, 
the analog coding system would operate at  a much higher speed and re- 
quires less hardware than digital system. In order to utilize the concept 
of neural net, the computation of a two-dimensional DCT-based trans- 
form coding should be reformulated as minimizing a quadratic nonlinear 
programming problem subject to the corresponding 2’s complement bi- 
nary variables of 2-D DCT coefficients. A novel Hopfield-type neural 
net with a number of graded-response neurons designed to perform the 
quadratic nonlinear programming would lead to such a solution in a 
time determined by RC time constants, not by algorithmic time com- 
plexity. A fourth order Runge-Kutta simulation is conducted to verify 
the performance of the proposed analog circuit. Experiments show that 
the circuit is quite robust and independent of parameter variations and 
the computation time of an 8 x 8 DCT is about Ins for RC = lo-’. In 
practice, programmable hybrid digital-analog MOS circuits are required 
to implement the neural-based DCT optimizer. The circuit techniques 
are based on extremely simple and programmable analog parameter- 
ized MOS modules with such attractive features as reconfigurability, 
input/output compatibility, and unrestricted fan-in/fan-out capability.’ 

1 Introduction 

The goal of transform image coding is to reduce the bit-rate so as 
to minimize communication channel capacity or digital storage memory 
requirements while maintaining the necessary fidelity of data. The dis- 
crete cosine transform (DCT) has been widely recognized as the most 
effective among various transform coding methods for image and video 
signal compression. However, it is computationally intensive and is 
very costly to implement using discrete components. Many investiga- 
tors have explored ways and means of developing high-speed architec- 
tures [l], [2] for real-time image data coding. Up to now, all image 
coding techniques, without exception, haven been implemented by dig- 
ital systems using digital multipliers, adders, shifters, and memories. 
As an alternative to the digital approach, an analog approach based on 
a Hopfield-type neural networks [3], [4] is presented. 

Neural network models have received more and more attention in 
many fields where high computation rates are required. Hopfield and 
Tank [3], [4] showed that the neural optimization network can perform 
some signal-processing tasks, such as the signal decomposition/decision 
problem. Recently, Culhane, Peckerar, and Marrian applied their con- 
cepts to discrete Hartley and Fourier transforms. They demonstrated 
that the computation times for both transforms are within the RC time 
constants of the neural analog circuit. 

In this paper, a neural-based optimization formulation is proposed 
to solve the two-dimensional (2-D) discrete cosine transform in real 
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time. I t  is known that the direct computation of a 2-D DCT of size 
L x L is to perform the triple matrix product of an input image matrix 
and two orthonormal base matrices. After proper arrangements, the 
triple matrix product can be reformulated as minimizing a large-scale 
quadratic nonlinear programming problem subject to L x L DCT co- 
efficient Variables. However, a decomposition technique is applied to 
divide the large-scale optimization problem into L x L smaller-scale 
subproblems, each of which depends on its corresponding 2-D DCT co- 
efficient variable only and then can be easily solved. In order to achieve 
the digital video applications, each 2-D DCT coefficient variable should 
be considered in the 2’s complement binary representation. Therefore, 
each subproblem has been changed to be a new optimization problem 
subject to a number of binary variables of the corresponding 2-D DCT 
coefficient. Indeed, the new optimization problem is also a quadratic 
programming with minimization which occurs on the corners of the 
binary hypercube space. This is identical to the energy function in- 
volved in the Hopfield neural model [3], [4]. They showed that a neural 
net has associated with it an “energy function” which the net always 
seeks to  minimize. The energy function decreases until the net reachs 
a steady state solution which is the desired 2-D DCT coefficient. The 
architecture of the neural net designed to perform the 2-D DCT would, 
therefore, reach a solution in a time determined by RC time constants, 
not by algorithmic time complexity, and would be straightforward to 
fabricate. 

Since MOS circuits have the attractive features such as reconfig- 
urability, input/output compatibility, and unrestricted fan-in/fan-out 
capability, we proposed an novel hybrid digital-analog neural network 
in MOS technology. This network includes compact and electrically 
programmable synapses and bias using the analog parameterized MOS 
modules. More details about the MOS realization will be discussed in 
section four. 

2 An Optimization Formulation for The 
Transform Image Coding 

The Discrete Cosine nansform (DCT) is an orthogonal transform 
consisting of a set of basis vectors that are sampled cosine functions. A 
normalized Lth-order DCT matrix U is defined by 

for 0 5 s 5 L - 1, 1 5 t 5 L - 1 and U,$ = L-: for t = 0. The 
two-dimensional (2D) DCT of size L x L is defined as 

Y = UTXU (2) 
where UT is the transpose of U and X is the given image data block 
of size L x L (typical 8 x 8 or 16 x 16). 

Traditionally, the resultant matrix in the transform domain Y may 
be obtained by a direct implementation of (2) which is computationally 
intensive. By taking the advantage of the high-speed analog imple- 
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mentation of the Hopfield-type neural network [3], [4], the following 
formulations are required and would be described as follows: 

From (2), we have 

x = UYUT 
= [ U0 U1 ". UL-1 1 .  

YO0 yo1 '.. 
YlO Y l l  ... 

L-1L-1 

= c y i j u i u ;  
i = O  j = O  

(3) 

where ui is the i-th column vector of U .  

Define the distance or norm between two matrices A and B to be 

NORM(A,B) = tr(ATB) (4) 

where tr(A) is equal to EL:' aii. 

Let A = X - UYUT and llA112 = NORM(A,A). Therefore, the 
coefficients yij in (3) minimizes the distance function 

v,n llAllz (= IIX - UYUTIJz) (5) 
o_<.,,_<r-, 

In this way, given X, the problem of computing Y by (3) has been 
changed into the problem of finding the minimum Y = [yi,] of the 
function llAllz in (5). 

To reduce the complexity of performing the optimization problem 
in (5), 11A112 can be rewritten in the following form: 

L-1L-1 

llA112 = IIX - y i j u i ~ ~ 1 1 ~  - (L2 - l) tr(XTX) (6) 
i = O  j = O  

Observing (6), it should be noted that the second term of the right-hand 
side of (2) is constant and the components involved in the summation of 
the first term are independent each other. Therefore, the minimization 
problem in (5) could be divided into L2 subproblems as follows: 

Indeed, Equation (7) can be expanded and rearranged in the scalar 
form 

This decomposition approach provides us with a technique to di- 
vide a large-scale optimization problem into a number of smaller-scale 
subproblems, each of which can be easily solved. 

Due to the requirement of many digital video applications, each yij 
is quantized into ci, which can be represented by the 2's complement 
code as follows: 

m,j-1 

y^.. - - -s(maJ)2mo I J  + s y 2 p  (9) 
p=-n., 

where s$) is the p t h  bit of cij which has a value of either 0 or 1, s:;*j-') 

is the most significant bit (MSB), S $ ~ * J )  is the least significant bit, and 
s{;*') is the sign bit. 

Substituting (9) into (8), one may obtain the new minimization 
problem subject to the binary variables; s$', -ni, I p 5 mij, that is, 

In the following section, a novel neural-based optimizer is proposed 
to solve the above minimization problem in order to meet the real-time 
requirement of many digital video applications. 

3 A Neural-Based Optimization Approach 

Artificial neural networks contain a large number of identical com- 
puting elements or neurons with specific interconnection strengths be- 
tween neuron pairs [3], [4]. The massively parallel processing power of 
neural network in solving difficult problems lies in the cooperation of 
highly interconnected computing elements. I t  is shown that the speed 
and solution quality obtained when using neural networks for solving 
specific problems in visual perception [5] and signal processing [6] make 
specialized neural network implementations attractive. For instance, 
the Hopfield network can be used as an efficient technique for solv- 
ing various combinatorial problems [7] by the programming of synaptic 
weights stored as a conductance matrix. 

Hopfield model (31, [4] is a popular model of continuous, intercon- 
nected n nodes. Each node is assigned a potential, up(t), p = 1 , 2 , .  . . , n 
as its state variable. Each node receives external input bias I p ( t ) ,  and 
internal inputs from other nodes in the form of a weighted sum of firing 
rates E, Tp9g9(X9u9), where g q ( . )  is a monotonically increasing sig- 
moidal bounded function converting potential to firing rate. The gen- 
eral structure of the networks is shown in Figure 1. The equations of 
motion are 

du 
dt 

n 

C p  = -Ife + c T p q u q  +Ip 
q=1 

UP = SP(XPUP) (11) 

where Xp's are the amplifier gains and gp(Xpup) is typically identified 
as f (1  + tanh(Xpup)) 

Electrically, Tp9uq might be understood to represent the electrical 
current input to neuron p due to the present potential of neuron q. The 
quantity Tp9 represents the finite conductance between the output uq 
and the body of neuron p. It would also be considered to represent 
the synapse efficacy. The term -up/R is the current flow due to finite 
transmembrane resistance R, and it causes a decrease in up. Ip is any 
other (fixed) input bias current to neuron p. Thus, according to ( l l ) ,  
the change in up is due to the changing action of all the Tp9uq terms, 
balanced by the decrease due to -up/R, with a bias set by Ip. 

Hopfield and Tank [3], [4] have shown that in the case of symmetric 
connections (Tp9 = Tqp), the equations of motion for this network of 
analog processors always lead to a convergence to stable states, in which 
the output voltages of all amplifiers remain constant. In addition, when 
the diagonal elements (Tpp) are 0 and the amplifier gains Xp's are high, 
the stable states of a network comprised of n neurons are the minima 
of the computational energy or Liapunov function 

The state space over which the analog circuit operates is the n- 
dimensional hypercube defined by up = 0 or 1. However, it has been 
shown that in the high-gain limit networks with vanishing diagonal 
connections (Tpp =. 0) have minima only at  corners of this space [4]. 
Under these conditions the stable states of the network correspond to 
those locations in the discrete space consisting of the 2" corners of this 
hypercube which minimize E. 

To solve the minimization problem in (10) by the Hopfield-type 
neural network, the binary variables s$) should be assigned to their 
corresponding potential variables up with n (= mij + nij + 1) neurons. 
Truly, the computational energy function Eij of the proposed network 
for yij may be identified as IlAijll" in (10). However, with this simply 
energy function there is no guaranttee that the values of will be near 
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enough to 0 or 1 to be identified as digital logic. Since (10) contains 
diagonal elements of the T-matrix are nonzero, the minimal points to 
the llAij112 (10) will not necessarily lie on the corners of the hypercube, 
and thus represent the 2's complement digital representation. One can 
eliminate this problem by adding one additional term to the function 
IlAi,l12. Its form can be chosen as 

The structure of this term was chosen to favor digital representations. 
Note that this term has minimal value when, for each p, either s t '  = 1 
or s$) = 0. Although any set of (negative) coefficients will provide this 
bias towards a digital representation, the coefficients in (13) were chosen 
so as to cancel out the diagonal elements in (10). The elimination to 
diagonal connection strengths will generally lead to stable points only at 
corners of the hypercube. Thus the new total energy function EiJ for yij 
which contains the sum of the two terms in (10) and (13) has minimal 
value when the s$) are a digital representation close to the resultant 
yij in (3). After expanding and rearranging the energy function E i j ,  
we have 

p=-n,j q=-n.j p=-",j 

where 

4 Programmable Hybrid Digital- Analog 
Neural Implementation 

Observing equations (14.b) & (14.c), i t  is indicated that the synapse 
weights and bias are not fixed and depend on input analog signals zit's 
and the index ( i j )  of their corresponding result yij. Both synapse 
weights and bias should be programmable in order to capture the in- 
formation from the data set. Several researchers address the issues 
of programmable neurons. One VLSI chip from Intel [E] was imple- 
mented fully analog circuity operating in a deterministic manner, while 
another chip (91 was implemented with fully digital circuits operating 
in a stochastic manner. In this paper, an novel hybrid neural circuit 
including compact and electrically programming synapses and bias is 
described. The circuit techniques are based on extremely simple and 
programmable analog parameterized MOS modules with such attrac- 
tive features as reconfigurability, input/output compatibility, and un- 
restricted fan-in/fan-out capability. 

Before introducing the design of reconfigurable hybrid neural chip, 
several arrangements should be considered in the expressions of both 
synapse weigh qi  and bias 12 as follows: 

0 for p = q 
-2p+q-~m,F.. f o r ~ # q , p # m i j , q # m i j  (15.a) 
2p+q-2m*~ F.. 
2p+q-2m.j% 

for p # q,  p # mij , q = mij 
for p # q ,  p = mij, q # mij 

and 

for p = mij I 

I>-1 L-1 
where 
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r=O i = o  

r.-1 r.-1 

(15.c) 

(15.d) 
r=O t=O 

and 
U. *si, . - - 2m*,+1uirutj, o 5 i ,  j , s , t  5 L - 1 (15.e) 

Basically, the concept of the above arrangements is conducted to 
categorize the expressions of both and I? into a class of terms as- 
sociated with the index (i, j )  which corresponds to the result cj and 
another class of terms associated with the index (p,q) which corre- 
sponds to the size of neural network (or number of bits involved in C i j ) .  

In addition, (p, 9)-related terms, 2P+g, 2P+', and 22P are normalized 
by scaling factors 2-'"'8j, 2-"'*., and 2-2m*3-', and thus the ranges of 
normalized terms 2p+q-2m*j, 2P-"'**, and 22(p-mt~)-1 would lead to be 

, 1, respec- within the intervals [2-2(n-1), 1],[2-("-'), 11, and [2-2"-3 2-' 
tively, where n (= mij + nij + 1) is the number of neurons. Therefore, 
those normalized terms are totally independent of index ( i , j ) .  Since 
2p+q-m1j = 29+p-msJ, this allows the synapse weight qi to hold the 
property of symmetry, that is, rd', = vi. This also turns out that only 
the evaluations located on the upper (or lower) triangle area (Vi with 
q > p) of the T-matrix are necessary for the Hopfield neural network 
(note that = 0 when p = q ) .  Based on the above discussion, a p r e  
posed programmable system architecture and the function structure of 
each module are illustrated in Fig. 2, Fig. 3, and Fig. 4 respectively. 

The parameters T i j ,  and uirtj could be precomputed and are stored 
in the ((L' + 1) x L z )  register file which is controlled by an address 
counter with clock At1. Note that At1 is defined as the sum of Atrejrc.h 
(= time for refreshing both the synaptic weights and bias) and Atneural 
(the computation time for the neural network). While computing a 
particular &'those parameters should be pumped out from the reg- 
ister file. A Ti, will go to the upper triangle analog multiplier array 
illustrated in Fig. 3 and thus compute the desired synaptic weights 
qi which are used to dynamically refresh the on-chip programming 
Hopfield network. Since the Lz input analog signals zSi's are required 
in computing the A vector multiplication (with ui,tj,O 5 s , t  5 L - 1) 
involved in each Iij, 0 5 i, j 5 L - 1, z.t's should stay in the ana- 
log buffer until the L2 fjij's have been completed. This analog buffer 
is controlled by a system counter yith clock At2 (= Lz . Atl) .  After 
completing the evaluations of both T& and Ii, , the synaptic weights 
and bias 2:' could be determined according to the values 2P+q-2msJ and 
2p-m1J respectively. The upper triangle array with zero diagonal used 
to compute contains n(n - 1)/2 analog multipliers, each of which 
has a prescribed operand that is independent of the index (i, j ) .  The 
implementation of analog multiplier is suggested to employ the MOS 
modified Gilbert transconductance multiplier (or four-quadrant multi- 
plier) [lo] illustrated in Fig. 5, which has a wide range of both stabitity 
and linearity. Since each prescribed operand 2p+q-Zm.j is power of two, 
another solution to implement the evaluations of T-matrix can use the 
shift registers instead of the analog multipliers. Similarly, two linear 
analog multiplier arrays are used to determine I l2 ' s  and I2;. '3' s based 
on the computed values cj and 6, from the previous modules. After 
analog additions, the resultant IF = 11; + I2;, -nij 5 p 5 mij would 



340 IEEE Transactions o n  Consumer Electronics, Vol. 37, No. 3, AUGUST 1991 

be then pumped into the neural network. The synaptic weights and 
bias from a digital register file are converted to analog form through an 
evaluator module and then written on the storage capacitors or analog 
DRAM-type storage (111 inside the Hopfield neural network selected by 
the address decoder. The circuit schematic of a Hopfield neural network 
is shown in Fig. 4. The neurons are realized by simple CMOS double 
inverters which are interconnected through the n (= mi, + nij + 1) 
vector multipliers. The transfer function of the double inverter is iden- 
tified as the montonically increasing sigmoidal function, g,(X,u,). Each 
multiplier illustrated in Fig. 6 implements the scalar vector productor 
of the vector of neuron outputs (sf])’s) and the vector of the synaptic 
weights. For a network of n neurons, there are n such scalar produc- 
tors. Each scalar product is achieved using only one operational ampli- 
fier and 4(n + 1) MOS transistors for 2n-tuple vector inputs resulting 
in an economic and attractive analog MOS VLSI implementation. Us- 
ing depletion transistors, gates of MOS transistors can be connected to 
ground resulting in a special case of the vector multiplier which allows 
the multiplication of voltages that are referred to ground. Positive or 
negative grounded voltage levels can be assigned to synaptic weights, e. The outputs of n neurons si:) (-ni, 5 q 5 mi,) are fedback as 
inputs to the p t h  multiplier (-nij 5 p 5 mi,). The output of the p t h  
multiplier in turn is fed into the input of the p t h  double inverter (neu- 
ron p). The overall output of the p t h  vector multiplier, u t )  is given 

m.1 
by 

ut; = c x qq x 6;;) (16) 
q=-n., 

where c = the constant depends on the characteristics of MOS imple- 
mentation. 
It is interesting to  note that the constant c could be compensated by 
absorbing the values into ?J For example, one may precompute the 
new 5, as c-l x f&, where zj is the old one. The input-output com- 
patibility of the overall MOS implementation is of particular interest 
since the relatively high output impedance node of the double inverter 
is connected to the almost inifinite input impedance node of the MOS- 
FET gates with almost no restrictions on the fan-in/fan-out capability. 
More details about the MOS vector multiplier are shown in [12]. 

5 Illustrated Examples 

To examine the performance of the neural-based analog circuit for 
computing the 2-D DCT transform coding, an often used 8 x 8 DCT will 
be considered in our simulation since it represents a good compromise 
between coding efficiency and hardware complexity. Because of its effec- 
tiveness, the CCITT H.261 recommended standard for p x 64 kb/s(p = 
1,2, .  . .30) visual telephony developed by CCITT, and the still-image 
compression standard developed by IS0 JPEG all include the use of 
8 x 8 DCT in their algorithms. 

In order to obtain the size (= n) of neural network required for 
computing its corresponding DCT coefficient, it is necessary to  calcu- 
late their respective dynamic range and to take into account the sign 
bit. To achieve this purpose, the range of each DCT coefficient can be 
determined by generating random integer pixel data values in the range 
0 to 255 through the 2-D discrete cosine transform. For example, the 
range of yo0 is from -1024 to 1023. Therefore, moo is identified as 11, 
that is, 10 bits are for the magnitude of yo0 and 1 bit is for sign. As a re- 
sult, the corresponding m,> for each DCT coefficient y,, is illustrated in 
Table 1. Another important parameter required in determining the size 
is n,, which depends on the required accuracy and the tolerable mi* 
match in the final representation of the reconstructed video samples. 
The analysis of the accuracy and mismatch involved in the finite length 
arithmetic DCT computation has been discussed in [l], [2]. Based on 
their results and the consideration of feasibe hardware implementation, 
the number of bits (or size of neural network) involved in each DCT 
cosfficient is set to be 16. Then, nV would be equal to (15 - m,,), for 
example, no0 = 5. The above skggestion seem quite reasonable for 
improving the accuracy of a particular y,, which has a small dynamic 

range. 

We have simulated the DCT-based neural analog circuit of equa- 
tion ( l l ) ,  using the simultaneous differential equation solver (DVERK 
in the IMSL). This routine solves a set of nonlinear differential equa- 
tions using the fifth-order Runge-Kutta method. It is known that the 
converge time for neural network is within RC time constant. We 
used three different RC time constants, RC = lo-’’ (R = l kR ,C  = 
O.OlpF), RC = (R = 
lkR, C = IpF) and all amplifier gains X,’s are assigned to  be 100 in 
our experiments, and ran simulations on a SUN workstation. The test 
input pixel data Z , ~ ’ S  are illustrated in Table 2.(a). Figures 7.a, 7.b & 
7.c show an example of the time evolution of the reduction of energy 
performed by a network with n (= 16) neurons that represent y25 based 
on the 2’s complement binary number representation for three different 
RC time constants. The (2,5)-entry in Table 2.(c) shows the resulted 
DCT coefficient ~ 2 5  obtained at  the steady state points on the curves 
of Figures 7.a, 7.b & 7.c. It is shown that the result is almost inde- 
pendent of the RC time constants. However, each converge time will 
be in proportion to its corresponding RC time constant. For example, 
the converge times for RC = 10-lo, RC = and RC = are 
in proportion to the orders of time scale, 10-l0sec (= O.lns), 10-gsec 
(= Ins), and lO-%ec (= lOns), respectively. But these three curves 
have almost the same time evolution. Starting from very high energy 
state, the neural network reduced its energy spontaneously by changing 
its state 80 that the 2’s complement binary variables s$)*s minimize the 
error energy function. 

Considering the programmable neural MOS circuit implementation 
of an 8 x 8 DCT based on the above results, both address clock At1 
and system clock At2 for RC = are estimated as 2ns and 128ns 
respectively with the estimated Atrefte,h = Ins. Therefore the com- 
putation time for computing all DCT coefficients would be estimated 
as 150- which includes the overhead of I/O. The real implementation 
of the analog MOS neural circuit will be realized in our microelectronic 
laboratory. 

(R = l kR ,C  = O.lpF), and RC = 

6 Conclusion 

The computation of a 2-D DCT-based transform coding has been 
shown to  solve a quadratic nonlinear programming problem subject to 
the corresponding 2’s complement binary variables of 2-D DCT coeffi- 
cients. A novel Hopfield-type neural analog circuit designed to perform 
the DCT-based quadratic nonlinear programming could obtain the de- 
sired coefficients of an 8 x 8 DCT in 2’s complement code within Ins 
with RC = lo-’. In addition, a programmable analog MOS implemen- 
tation provieds a flexible architecture to realize the DCT-based neural 
net. 
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