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Abstract: An efficient method for the design of the 
half-band filter is described. Both the character- 
istics of the time response and the frequency 
response of the half-band filter are fully utilised to 
reduce the computation time and to increase the 
computation accuracy. The algorithm is based 
on the Chebyshev approximation criterion and 
uses only odd-symmetry polynomials for 
frequency interpolation to meet the required fre- 
quency response of the half-band filter. 

1 Introduction 

The use of digital technique in signal processing has 
become very popular in many areas. In several applica- 
tions, a system may even be required to handle data of 
different type with various sampling rates [ l ] .  This raises 
the need for a rate conversion system. A tree structure 
composed of sections each capable of coping with a sam- 
pling rate change of two is currently the most widely 
used. The design of half-band filter for decimation and 
interpolation has received considerable attention in the 
past decade [&SI. 

Mintzer [2] had shown that the half-band filter can be 
designed by the Parks and McClellan [12] procedure 
with symmetry constrain on the passband and the stop- 
band cutoff frequencies as well as with equal weighting 
on the passband and the stopband error. The filter thus 
designed is not optimum because of the quantisation 
error. Grenez [3] proposed a linear programming 
method with constrained Chebyshev approximation to 
design the half-band filter. The dense grid of points repla- 
cing the frequency axis is made symmetric with respect to 
42 .  The specifications of the half-band filter was exactly 
met with the Remez exchange algorithm [20]. The sym- 
metry property of the extrema1 points is not fully utilised 
in the general Parks and McClellan procedure. The 
search for the new external points in the Remes algo- 
rithm is thus not optimised. Vaidyanathan and Nguyen 
[19] proposed another method which exploits knowledge 
about the coefficient of the impulse response of the half- 
band filter to reduce the design time. 

An efficient design procedure based on the odd- 
polynomial interpolation technique for the half-band 
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filter is presented. The frequency response is always 
guaranteed to be symmetric with respect to w = 4 2 .  The 
computation time is about 3/8 of that of the P-M method 
in each iteration because of the use of only odd- 
coefficients. The resultant filter is guaranteed to be a half- 
band filter. A filter obtained using this procedure has the 
following properties: 

(a) The even terms of the impulse response are zero 
(b) The searching time for the new external points can 

be reduced by one-half compared with the Parks- 
McClellan method 

(c) The external points obtained will be symmetrical 
with respect to the quarter-Nyquist frequency 

(d) The overall computation time can be reduced by at 
least 3/8 compared with that of the Parks-McClellan 
method and one quarter is found in the implementation. 

2 Characteristics of half-band filter 

Multirate digital signal processing concepts have recently 
become popular. The basic concept of multirate digital 
signal processing is that the sampling rate of signals to be 
processed in the same system can be different. The signal 
is decomposed in the frequency domain into different 
channels to reduce the bandwidth. The signal in each 
channel can be decimated to lower rates because of the 
reduction in bandwidth. The original signal can be recon- 
structed without error if these subsignals are properly 
recombined through interpolation. 

If the factor of decimation and interpolation is two, a 
2-band QMF bank will result. The system function of 
this filter bank is 

X ( Z )  = %Ho(Z)Go(Z) + Hi(Z)Gi(ZII X (Z)  

+ fCHo(-Z)Go(Z) + Hi(-Z)Gi(Z)I 

X ( - Z )  ( 1 )  
The term containing X(-Z) is caused by the aliasing 
effect. 

Smith and Barnwell [7, 81 proposed a method for the 
choice of the analysis and synthesis filters to reach the 
perfect reconstruction condition. The choices are 

H , ( Z )  = Z-"-')H0(-Z-l) 

Gl(Z) = Z-"-"H1(Z-') (2) 
Go(Z) = Z-"-')Ho(Z-') 

Using this, the transfer function can be written as 

T(Z)  = F(Z)Z-"-" + F(-Z)Z-"-" (3)  
where F(Z) = Ho(Z)Ho(Z- '). For perfect reconstruction, 
the transfer function is required to be Z-"-'). From eqn. 
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3, it is necessary that 

F ( Z )  + F ( - Z )  = 1 (4) 
F(Z)  is a linear phase FIR filter over the interval 
[-(N - l), N - 13 and is called the half-band filter. 
From eqn. 4, it can be shown that the even terms off@) 
are zero except for f(0) = 0.5. If expressed in spectral 
domain 

(5) 

(6) 

F(w) + F(z - 0) = 1 

F ( 4  = I HO(4 IZ 
and 

From eqn. 5, it is clear that F ( 4 2 )  = 0.5. By this, eqn. 5 
can be written as 

(7) 

This means that F(w) is odd-symmetry with respect to 
w = n/2. The design of this odd-symmetry filter is the 
main topic of this paper. 

The P-M [12] algorithm is a popular method for 
linear phase FIR filter design. This method uses Cheby- 
shev approximation for frequency interpolation. It uses 
the Remes exchange algorithm to search external points 
during the iteration. The half-band filter is known to be 
an extra-ripple filter and is odd-symmetry with respect to 
w = n/2, i.e. even terms must be zero. The P-M method 
can be used to design such a filter with equal weighting 
on both the pass band and the stop band and with sym- 
metrical frequency response with respect to 42 .  The even 
terms are not usually zero because of the quantisation 
error in the calculation. The filter obtained is not the 
half-band filter required. If the even term is deliberately 
set to zero to meet the requirement of the half-band filter, 
the resultant error ripple is not greater than that of the 
original [2]. This phenomenon indicates that a filter 
designed by the conventional P-M method is not 
optimal. The results from both the P-M method and the 
proposed odd-polynomial based method for the half- 
band filter design are to be compared. 

The frequency response of the half-band filter is odd- 
symmetrical, so the search time for extreme points in the 
Remes exchange algorithm is reduced by half in the pro- 
posed method. The even terms of the time response are 
assumed to be exactly zero, so the size of the inter- 
polation basis in the formulation is reduced by half. The 
proposed method is discussed in detail and the design 
formula is derived from the point of view of linear 
algebra. 

3 Chebyshev approximation based on 

An efficient technique to design the halfband filter with 
maximum stop band attenuation is presented. The filter 
spectral response is interpolated by a set of odd- 
polynomials. The Remes exchange algorithm is used to 
search the new extreme points in the Chebyshev approx- 
imation. 

3.1 Chebyshev approximation 
Chebyshev approximation [9] has long been used for 
optimisation designs such as network synthesis [lo]. The 
application of this in linear phase FIR filter design was 
proposed by Parks and McClellan [12]. Many tech- 
niques [ l l ,  12, 17, 181 exist that can be used to solve this 
kind of optimisation problem. Linear programming and 

odd-polynomial 
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the second Remes algorithm (the so-called Remes 
exchange algorithm) are the two most popular methods 
for solving the Chebyshev sensed optimisation problems. 

The Remes exchange algorithm has fast convergence 
speed but is difficult to use or implement. Linear prog- 
ramming is easier and more flexible in use, but it is much 
slower in convergence than the Remes algorithm. The 
Remes exchange algorithm for optimisation in Cheby- 
shev approximation is discussed. 

3.1 . I  Problem modelling 
Let {h(n)} be the impulse response of the product filter 
over the interval [-(N - l), (N - l)]. The frequency 
response of the product filter can be described as 

N-1 
H(w) = h(0) + 2 4 )  cos (nw) 0 < w < s (8) 

The Chebyshev approximation for the FIR filter design 
could be modelled as 

"=l  

(9) 

where W(w) is the weighting function of the approx- 
imation error, D(w) is the desired frequency response and 
A is a compact subset within CO, rr]. 

If the weighted error function of the approximation is 
written as 

E(w) = W(O)[H(O) - D(o)] 0 E A (10) 
then the Chebyshev approximation can be rewritten in 
terms of E(w), as 

3.1 2 Remes exchange algorithm 
The basic concepts of Chebyshev approximation for filter 
design is as mentioned above. An iterative algorithm to 
solve this optimisation problem is discussed - the well 
known Remes exchange algorithm. This algorithm is 
simple and efficient, and is known [13, 141 to converge 
uniformly according to I - P* I < C$ and all com- 
ponents of the approximation must be continuous in A. 
P is the kth approximation polynomial, P* is the best 
approximation polynomial, C is a constant and 
o < e < i .  

Several conditions and properties are first stated. 

Haar condition 
Let {SI, gZ, ..., gn} be a prescribed function set defined 
on a compact metric space A. The system of functions 
{gi} is said to satisfy the Haar condition iff every gdx) is 
continuous in A for i = 1, . . . , n, and fer every set of n- 
vecrors {XI} with the form X, = [gl(xJ, ..., g,,(xJ], i = 1, 
. . . , n, is linear independent for all distinct x, E A. That is, 
fgl, g2,  . . . , gn} forms a basis of the n-space over A. 

The linear combination E, c, g, is defined as the gener- 
alised polynomial. From the Haar condition, several 
properties can be obtained. 

Property 3.1.1 
If the set of functions {gl. g2, ..., g.} satisfy the Haar 
condition. There exists a square matrix M, such that 



M(xl, x2 ,  ..., x,) is clearly nonsingular, if the samples 
{xi}, i = 1, . . . , n, are all distinct over A. 

Property 3.1.2 
Let { g l ,  ..., go} satisfy the Haar condition over A and 
span the n-space V", i.e., Vg in V", 3 !  { a f } ,  i = 1, . .., n, 
3 g = xi aigf ) .  If there is another function g n + l  which is 
continuous on A. Thus {gl, ..., gn, g n + l }  would also 
satisfy the Haar condition if gn+ 4 V". 

Alternation theorem 
Let { g l ,  g 2 ,  ..., g.} be a system of functions on A 
satisfying the Haar condition. For a given function f(x), 
x E A, there is one generalised polynomial P = If c ig i  
that would be the best approximation off on A iff the 
error function r = f -  P exhibits at least n + 1 'alterna- 
tions' on A. In other words, ifxi) = -r(xi+ 1) = k p ,  xo < 
x ~ < . . . < x , , x E A  . 

A means the interested regions of x and from this 
theorem, A must be chosen to have n + 1 alternations or 
more, and p = max, E A 1 r(x) 1. 
Iterative procedure 
Let the functions si} satisfy the Haar condition, and 
Yx) = y(x)! f(x) -ki ci gi I is the weighted error func- 
tion satisfying the alternation theorem on A. f(x) and 
W(x) are continuous on A. Let {xt, $, .. ., x:} be the kth 
iteration extreme points, x t  < x: < . . . < x:, x: E A, and 
pk the deviation of the kth iteration according to the kth 
extreme points. 

The solution of the Chebyshev approximation prob- 
lems can then be obtained by the following iterative 
process: 

(a) Initial guessing of the extreme points {xo} 
(b) From alternation theorem, suppose in the kth iter- 

ation {x!} and pk satisfy 
r 1 

= ( - l ) ' p k  i = O ,  ..., n (13) 
j =  1 

in matrix form 

(14) 
Assume gn+  l (x i )  = (- lY+'/W(xi), i = 0, . . . , n. If eqn. 14 
is to be invertible, then from property 3.1.1 and 3.1.2, { g l ,  
..., g n ,  g n + l }  has to satisfy the Haar condition. That is, 
g.+ is not in the n-space spanned by { g l ,  . . . ,g.} .  If W(x) 
is chosen to satisfy the condition above, then the above 
system of equations can be solved to find pk and the kth 
approximation polynomial as PL = I:= cf  gi(x) 

(c) From the polynomial p.' to find new extreme points 
{X!"} 

(d) Check if {x;"} is exactly equal to {x!}, or equiva- 
lently, if pk+' is equal to pk. If not, go back to step b 

(e) Pk is the best approximation polynomial to f ( x ) ,  
and pk is the ultimate equal ripple deviation with respect 
to the weighting function W(x) on A. Denote this best 
approximation polynomial and deviation as P*(x) and 
p*, respectively. 
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3 2  Polynomial interpolation [15, 161 
The interpolation technique is one of the simplest ways 
to determine the original function in many applications. 
The spline curve is commonly used as the interpolation 
basis in curve-fitting applications. In many applications 
the problem is how to find a well defined interpolation 
basis that is suitable for the application. A method, based 
on the linear functional theory of linear algebra, is intro- 
duced to find the interpolation basis required for the 
application in question. 

32.1 Linear functional theory [ 1 51 
In the linear transformation domain, there exists a special 
case that transforms a n-dimensional vector space V" into 
a field F (i.e., one-dimensional vector space). If some 
specifications are given to the n-dimensional space basis 
of V", for example, let the basis be (1, x, ..., x"-'}, this 
transformation that transforms from V" to F then acts 
like a linear function. A formal definition of this theory is 
presented in the following: 

DeJinition 
Let V" be a n-dimensional vector space over the field F ;  1 
is a linear transformation from V" to F (denote I :  V" -+ F) 
and I satisfies 

l (ca+B)=cl (a)+I( /J)  V C E F  and a , B E V "  (15) 

Thus, I is defined as the linear functional on V". 

Dual space 
Let L(V", F )  V* represent the set of all the linear func- 
tionals from V" to F and {Il ,  I , ,  ..., I ,}  be a set of linear 
functionals that satisfy libi) = a i j .  Here { g l ,  g 2 ,  . . . , g m }  is 
the basis of V" and 6, = 6(i - j ) .  It can be shown that { I l ,  
I , ,  . . . , I.} is linearly independent and forms a basis of V*, 
that is, dim V* = dim V". V* is defined as the dual space 
of V" or linear functional space. 

Theorem 3.2.1 
Let V" be an n-dimensional vector space over F, B = { e l ,  
g , ,  ..., g.} be an ordered basis for V", and B* = {Il, I , ,  
. . . , l"} be an ordered basis for V*. Then B* is the unique 
basis, such that 

l ig j )  = hij  i ,  j = 1, 2,  ..., n (16) 

and B* is called the dual basis of B. For every g in V" 
and 1 in V*, g = a l g l  + a , g ,  + ... + a , g ,  and 1 =  
b,ll + b2 I, + . . . + b, I,. It can be easily shown that 

ai = Ids) 
bi = l (gi)  i = 1, . . . , n (17) 

Theorem 3.2.1 is an important property that will provide 
the theoretical foundation for finding the interpolation 
basis for some special applications. 

32.2 Odd-polynomials 
In many approximation applications, it is desirable to 
formulate the problems with a set of polynomial func- 
tions or a linear combination of some special functions, 
e.g., sine or cosine functions. For the present situation, if 
the complexity of analysis is considered, it is obvious that 
polynomial representation is the most suitable. 

The desired filter spectral response has a symmetrical 
property. The ordinary technique, such as Lagrange 
interpolation, may not be able to take this characteristic 
into consideration, and will suffer from unnecessary com- 
putational complexity. The requirement for the half- 
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band filter necessitates the even terms of its impulse 
response to be zero. This characteristic indicates that the 
spectral response consists of only odd power poly- 
nomials. There is no need to consider the polynomial of 
even power. 

If this is included in the formulation,f(x) = a. + a,x + a, x2 + . . . + a," x'". Since f(x) has odd-symmetry 
property, i.e., f(x) is an odd-function, then 
f(x)+f(-x)=Oand 

2(a0 + a2xz +a4x4 + ... + aznxZn) = O 

f(x) = a l x  + a3x3 + ... + a2n-1x2n-1 

It is clear that aZi = 0, i = 0, . . ., n, and 

(18) 
By this, the function that satisfies eqn. 18 is defined as the 
odd-polynomial function. In the same way, the function 
that contains only even power terms, is called even- 
polynomial function. 

32.3 Interpolation basis 
The classical Lagrange interpolation formula is a general 
interpolation technique for arbitrarily spaced sample 
points. The Lagrange interpolation may be unsuitable in 
this case. A new interpolation formula that will satisfy the 
requirements must be designed. 

Question modelling 
Let B = {x, x3, ..., x2"-'} be an ordered basis on V", 
and B' = {gl, ..., gn} be another ordered basis on V" 
with 

gi = bijX2'-1 (19) 
j= 1 

Let {f(xl),f(x2), . . . , f ( x , ) }  be a set of n-distinct samples. 
Then, the question for finding an interpolation basis can 
be stated as follows : 

A basis set B' = {gl, . . . , g"}, is desired that satisfies 
n 

f(x) = ,E f ( x h 0 )  (20) 
, = 1  

It is known that the dual space basis B* = {Il. . . . , la}  
and 

U-) = f ( X i )  (21) 
Before solving this question, it is necessary to ensure that 
B* is indeed a basis of the dual space V*. This can be 
proved if {Il ,  . . . , lm}  are linear independent. 

Proof: Suppose {li}. i = 1, . . . , n, are linearly dependent 
and {al, ..., a,} are not all zero and ai E F, i = 1, ..., n. 
Such that 

I = alll + a,l, + ... + a,l, = 0 
Then from theorem 3.2.1 

l ( f )  = ,e ai f(xi) = O V xi E F i = 1, . . . , n 

It is clear that ai = 0, for i = 1, . . . , n and this contra- 
dicts the assumption. So { I l ,  I , ,  ..., I , }  is linearly inde- 
pendent and forms a basis of V*. 

" 
,=1 

Solution of odd-polynomial basis 
B* is a basis of the dual space, so from theorem 3.2.1 and 
eqn. 21 

(22) gJ{xi) = aij i, j = 1, 2, ..., n 
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Consider j = 1 and eqn. 19, eqn. 22 means that 

1 i = l  
0 otherwise 

bllxi + bl,x: + ... + blnxf"-'  = 

in matrix form 
A . B = C  

where 

and 
B =  (bll b12 ... bJ 

C = ( l  0 ... 0)' 
It can be seen that A is similar to the Vandermone matrix 
and will be nonsingular, that is 

det A = n x i  fl, (x; - xf) 
i = 1  l < i < J C # I  

and will be nonzero for distinct {xi). So, eqn. 23 is invert- 
ible and 

det A, 
det A 

blk = - 

where A, is obtained by replacing the kth column of A 
and C .  From eqns. 19 and 25 

gl(x) = det A, . x2'-'/det A 
k = l  

det A Ix, 
det A 

-- - 

Similarly, for arbitrary j ,  say j = k, g, can be described as 

x n (x2 - x ; ,  

Xk fi (x: - x;) 
k = 1, 2, ..., n (26) - j = l , j + k  - 

j = l , j # k  

This set of functions, {gl, . . . , gn}, is the interpolation 
basis required for the odd-polynomial function. The stan- 
dard odd-polynomial interpolation formula can be 
expressed as 

" 
" x n (x2 -4) 

xi n (xf - x f )  
f ( x )  = f(xJ j = y  (27) 

i =  1 

j=1. j # i  

Uniqueness theorem 
Let B = {si} form an interpolation basis of V". If the two 
sample sets, { f(xJ} and {f'(xi)}, simultaneously satisfy 

f(x) = ,E f(xi)gAx) = f'(xi)gdx) 
, =1  , = 1  
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then 

f(xJ =f'(xi) i = 1, 2, ..., n 

Proof: Let f(x) = f(x,)gdx), if there exists another 
set of samples ET:,)} which also satisfies f(x) = 
Z= 1 f'(x,)gi(x). Then 

0 = c (f(x3 -f'(x,)) ' gdx) 
, = I  

because {g,} is a basis of V", it is clear thatf(xi) =f'(xi), 
for i = 1, . . . , n. Then it can be concluded that for any 
f(x) there exists a unique expression with {g,}. 

3.2.4 Barycentric form 
The interpolation method is very useful for recon- 
structing the original function from arbitrary spaced 
sample points. Unfortunately, it will take a lot of compu- 
tations when the order of the interpolation is high. 
Hamming [I61 introduced a special barycentric form for 
Lagrange interpolation which has about n/2 fewer com- 
putations than that of the standard Lagrange inter- 
polation formula. This form will make the interpolation 
technique more useful. 

In the odd-polynomial case, if the desired functionf(x) 
is known for a given x, that is for a distinct sample set 
{x,}, i = 1, . .., n, thenf(x,) = xi. 

From eqn. 27 

because of the uniqueness property. If eqn. 27 is divided 
by eqn. 28 

- x:)l 'f(xk) 
f(x) = x "='. (29) 

1 Cak/(x2 - ' xk 
t = 1  

where 

Eqn. 29 is the barycentric form for the odd-polynomial 
interpolation formula, and it has about (n + 1)/3 fewer 
computations than that of the standard form. 

3.3 Design method and procedure 
There are many methods [Il ,  12, 19,201 that can be used 
to design the half-band filter. Suppose { f ( n ) } ,  for 
n = -(N - l), . . . , (N - 1) is the impulse response of the 
half-band filter and 

N -  1 

because F ( 2 )  + F( -Z) = 1, by applying eqn. 31 

Clearly, eqn. 32 means that 

0.5 n = 0 
0.0 n = even f (4 = { 

4% 

Sincef(0) is always a value of 0.5, it is more convenient 
to set f ( 0 )  to zero during the design process. The perfect 
reconstruction condition then becomes 

F ' ( Z ) + F ' ( - Z ) = O  and f'(2m)=O m 6 - Z  (34) 

The dedgn for the half-band filter is to first design a 
linear phase filterf'(n) according to eqn. 34, and then let 
f ( n )  =f'(n) andf(0) = 0.5. 

3.3.1 Filter response represented in terms of 

The condition for designing the perfect reconstructed 
half-band filter in eqn. 34 has been presented. Since the 
phase and f (0)  are temporarily neglected, only the ampli- 
tude response is of concern 

odd -polynomials 

NI?. - 1 

~ ' ( o )  = 2 1 f'(2n + 1) cos (2n + 1)w (35) 
" = O  

where N is even for the QMF design. It is clear that 
f ' ( N  - 1) =f'( - N + 1) = 0 if N is odd. So, only the case 
when N is even is of concern. 

Property 3.3 
For a cosine function cos (no), if n = 2k + 1, there is a 
set {a,}, i = 0, . .., k, such that 

k 

cos (2k + l)o = adcos w ) ~ , +  
i = O  

If n = 2k, then there is another set {b,} ,  i = 0, . . ., k, such 
that 

k 

COS (2k )o  = b&os w ) ~ ,  
i = O  

eqns. 36 and 37 can be combined as 

cos (nu) = tni(cos o)i 
i = O  

where 

i = 2 k + 1  n = 2 m + 1  t . =  
"' { 0 otherwise 

and 

bk i = 2 k  
0 otherwise 

n = 2m t"i = { 

(37) 

{t,,} i = 1,2, . .., n, is the coefficient of the nth Chebyshev 
polynomial [9, 161 7',,(x) and eqn. 38 becomes 

cos (no) = Tn(cos o) (39) 

From property 3.3.1, eqn. 35 could be rewritten as 
N / 2  - 1 

F'(o) = 2 1 f"(n)(cos w)~"" (40) 
" = O  

where 
N/Z 

k = n  
f " ( n )  = f'(2k + l)  . t ( Z k + l ) ( Z n + l )  (41) 

and t(zk+l)(zn+l) is the (2n + 1)th coefficient of the 
(2k + 1)th Chebyshev polynomial. The half-band filter 
spectral response can be considered as an odd- 
polynomial function, and will be useful when applying 
the Remes exchange algorithm for finding the extreme 
points. 
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399 Iterative procedure 
Since F'(w) = -F'(n - w), only the response during the 
interval CO, n/2] has to be considered. Let A denote the 
region [0, wp] and up the passband edge. It has been 
shown that {cos (2i + l)o} and {(cos m)""}, i = 0, 1, 
. . . , N/2 - 1, satisfy the Haar condition in CO, 421. From 
the alternation theorem, there is a set of extreme points 
{mi}, mi E A,  i = 0, . . . , N/2, and coo = 0 and mN12 = up. 
Since the half-band filter is an extra-ripple filter, the 
Chebyshev approximation for the half-band filter design 
then becomes 

) min ( max W(m) I F'(w) - D ( o )  I 
r o € I O . u J d  

Apply the Remes iterative procedure as stated earlier, the 
following N/2 + 1 equations are obtained 

det 

( - V P  
W ( 4  

F ( q )  - - = D(mJ i = 0, . . . , N/2 

a1 

a2 

a" 
b,  b ,  ... b,  c 

I 

From eqn. 14 

and 

with respect to the two different bases. Here x i  = cos mi. 
The weighting function W(w) is generally set to be unity 
because of band separability, and D(w) is set to be 0.5 so 
that the ultimate 1 F ( o )  1 < p*, for w E [a,, n]. 

If eqn. 43 or 44 is solved directly and eqn. 35 or 40 is 
used to find the new set of extreme points, it will be time- 
consuming. In the following, a simple method, using the 
odd-polynomial interpolation basis discussed earlier, is 
presented and eqn. 27 can be restarted as 

N / Z - 1  

i=O 
F(w) = c F(wi)gi+ 1(XJ 
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(45) 

where { g k } ,  k = 1 ,  ..., N/2, are the interpolation basis 
and satisfies eqn. 26. Thus eqn. 14 can be rewritten as 

I 

From eqn. 26 

(47) 

From eqns. 47 and 48, p and F'(wi) in eqn. 46 can easily 
be shown to be 

N / 2  

k = O  
'(Ok) 

(50) p = N / 2  c (- l ) ' aJW(4  
k = O  

and 
F(wi) = D(oJ + (- l)'p/W(~i) 

i = 0, ..., N/2 - 1 (51) 

Since eqn. 46 is invertible and from eqn. 45 

F ( w N / 2 )  = F ( m O ) g 1 ( X N / 2 )  + ' . ' + F ' ( ~ N / z -  l ) g N / 2 ( X N / 2 )  

then, the condition 

will be automatically satisfied. So, eqn. 51 is exactly the 
same as eqn. 42. Only the deviation p need be solved and 
F'(wi) will be obtained immediately. 

It is more efficient to use the barycentric form in eqn. 
29 than that of eqn. 44 and write F(w) as 

F(aN/Z) = D ( w N / 2 )  + (- 1 ) N ' 2 P / w ( m N / 2 )  

N / 2  - 1 

1 - xiI]F'(wt) 

F(w) = x k;;z- (52) 
- x : ) l x k  

k =  1 
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where 

(53) ak = akx2 - xi,,) k = 0, . . . , N/2 - 1 
r - .  

After several iterations, this procedure will converge, and 
the polynomial that best approximates the desired filter 
response will be obtained. The impulse response could 
then be calculated by taking the 2N points IDFT. This 
approximation is based on the odd-polynomial tech- 
nique, so the best approximation P*(x) is guaranteed to 
be odd-symmetry with respect to w = x/2, and the 
inverse transformation would be 

n = even 

(54) 
3.3.3 Normalisation 
Since the definition of the half-band filter is F(Z)  = 
H,(Z)H,(Z-'), the spectrum of F(Z)  will be I H,(w) 1'. It 
can be easily seen that F(w) must be non-negative for all 
w. An adjustment is required to make F(w) greater than 
zero for w in [x/2, x ] .  This can be achieved by adding the 
stop band deviation to the impulse response f(0).  If 
f ( 0 )  = 0.5 is to be maintained, a scaling to all the impulse 
responses can be first applied and then a separate bias is 
added tof(0). The scaling factor and the bias factor were 
chosen to be (1 + p)-' and p respectively. The filter 
before and after adjustment is shown in Figs. 1 and 2, 
respectively. 

4 Numerical results and conclusions 

The impulse responses of the half-band filters designed by 
the proposed odd-polynomial based algorithm and the 
Parks-McClellan algorithm were comnared. The devi- 

ation p and the filter coefficients of three filters are listed 
in Tables 1, 2 and 3 with passband cutoff frequencies at 

1 '"L .o 

-0.2- 
0 0.1 0.2 0.3 0.4 0.5 

frequency, radians 
Fig. 1 Halj-bundfilter before impulse response adjustment 

'0 l-ulQmu 0.1 0.2 0.3 0.L 0.5 

frequency, radians 
Fig. 2 Halj-bandfilter &er impulse response adjustment " 

Table 1 : Coefficients of half-band filter: up = 0.2; 63 taps 

f ( n )  Odd-polynomial method P-M method P-M and fix DELF 

0 0.5000000 
1 0.31 688331 14447524 
2 o.oooo00o 
3 -0.1 01 89228831 68539 
4 o.oo0ooO0 
5 5.68660839661 00550 x 1 0-' 
6 0.000oooo 
7 -3.640349475373161 9 x lo-' 
8 0.0000o0o 
9 2.441 9601 528327786 x 1 O-' 
10 0.000oooo 
1 1  -1.6553439221 261 703 x lo-' 
12 0.000o0o0 
13 1.1121337371768617 x lo-' 
14 0.o0ooO00 
15 -7.3105661915249653 x 10.' 
16 0.0000000 
17 4.6535299490812190 x lo-' 
18 o.o0Oo0oo 
19 -2.84031926656081 68 x lo-' 
20 0.000oooo 
21 1.6441 6972946771 11 x lo-" 
22 0,20815364 x 
23 -8.9026472022364720 x 1 O-a 
24 0.o0o0000 
25 
26 0.0000000 
27 -1.9523598087233321 x 
28 0.000o0oo 
29 7.2256687490477233 x 
30 0.0000000 
31 
Deviation 5.8635426463977397 x 1 0-E 

4.421 67409081 40399 x 1 0-4 

-1.9781 40636441 1270 x 1 0-' 

0.49997663 
0.31 688333 
0.22997244 x 
-0.1 01 89227 
-0.21 782890 x 1 0-4 
0.56866088 x lo-' 
0.1 9965335 x 

-0.36403461 x lo-' 
-0,17579249 x 
0.24419587 x lo-' 
0.1 4952601 x lo-' 

0.50000000 
0.31 688380 
0.75975381 x 10.'' 

-0.10189371 
-0.731 53564 x 1 0-14 
0.56868309 x lo-' 
0.68201617 x 
-0.3640631 3 x lo-' 
-0.62368541 x 1 0-14 
0.24422762 x lo-' 
0.55508948 x 
-0.1 6556697 x 10 ' -0.1 6553388 x lo-' 

-0.12161705 x lo-' -0.48492956 x 
011121307~10-' 0.11124457 x lo-' 
0.951 74840 x 10 - 0.41351402 x 10 ' 4  

-0.73133593 x 10.' 

0.46558763 x 10 
0.29498009 x 10.'' 

-0.73104931 x 10.' 
-0.70589279 x -0.35042516 x 
0.46534820 x 10- ' 
0.501 57642 x 

-0.28402353 x 10.' -0.28421 697 x 10.' 
-033100121 x -0 25090159 x 
0.16441241 x 10.' 
0.2081 5364 x 1 O5 

0.16455292 x lo-' 
0.21314520 x lo-'' 

-0.89019217 x 10.' 
-0.11609320 x -0.19186592 x 10.'' 

-0.89118005 x 10.' 

0.44213563 x lo-' 
0.61545419 x 10.' 0.17472796 x 

0.44273468 x 10.' 

-0.19518295 1 -0.19554197 x 10 
-0.24318148 x 10.: 
0.722501 65 x 10 0.72396340 10.' 
0.10312851 lo.* 

5.871 0522358252987 x 10.' 0.0000059 

-0.16955132 x lo-" 

0.16111451 x 10.'' 
-0.19752272 x 10.' -0.19827561 x 10.' 
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Table 2: Coefficients of half-band filter: W. = 0.2: 31 t a m  

A‘ 
w,’ / 

I I I 

f ( n )  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 1  
12 
13 
14 
15 
Deviation 

Odd-polynomial method 

0.000oooo 
0.31 56775975760746 
0.000oooo 

0.0000000 
5.1521577152782043 x lo-’ 

-9.841 741 7341 069860 x 1 O-* 

1.7205509741 091 583 x lo-’ 
0.0000000 

0.o0o0000 
4.6470034769669449 x 10.’ 
o.o0oo0oo 
-2.1047008418378838 x lo-” 
1.34868527527791 99 x 1 0-3 

-9.42390492641 27355 x 

P-M method 

0.49999567 
0.31 567876 
0.47849695 x 1 0-5 
-0.9841 6379 x lo-‘ 
-0.41 355751 x 1 0-5 
0.51 521 795 x lo-’ 
0.51 690321 x 1 0-5 

-0.29778452 x lo-‘ 
-0.20391 174 x 1 0-5 
0.17204932 x lo-’ 
0.28744002 x lo-’ 
-0.94219386 x lo-’ 
-0.73721880 x lo-’ 

0.0000000 

o.oooo00o 
-2.9870007475233616 x lo-‘ 

0.46465782 x lo-’ 
0,19344144 x 

1.349337841 7375243 x 

-0.21042776 x lo-* 

P-M and fix DELF 

0.50000000 
0.31 567777 
0.59987857 x lo-‘’ 
-0.9841 7448 x lo-’ 
-0.25964893 x lo-’’ 
0.51521801 x lo-’ 
0.52825128 x lo-’” 

-0.29780828 x lo-’ 
-0.20592846 x lo-‘’ 
0.1 7205631 x lo-’ 
0.47453081 x lo-‘’ 

-0.94244290 x 1 0-’ 
-0.13430117 lo-’’ 
0.46479407 x lo-’ 
0.50586775 x lo-’’ 
-0.21068203 x lo-’ 
0.001 3528 

Table 3: Coefficients of half-band filter: W. = 0.2; 16 taps 

f ( n )  Odd-polynomial method P-M method P-M and fix DELF 

0.000oooo 0.50001 572 0.50000000 
0.31 393551 69302561 0.31 392599 0.31 391401 
0.000o0o0 

0.0000000 0.1 5855960 x lo-‘ 0.0000oooo 
4.41 15594365228733 x 1 0-’ 
o.oooo00o 

0.1 3742684 x lo-“ 
-0.93403660 x lo-’ 

-0.46259293 x lo-’’ 
-0.9341 5821 x lo-’ -9.34356747871 55573 x 1 0-’ 

0.441 10376 x lo-’ 0.44101428 x lo-’ 
0.10384331 x -0.64763010 x lo-’’ 

-2.6477022404434195 x -0.26487629 x lo-‘ -0.26488660 x lo-’ 
Deviation 2.37231 71792209918 x 10.’ 2 3774135388997422 x 10 ’ 0.0237781 

0.18, 0.20 and 0.23, respectively. The deviation of the 
filter designed by the odd-polynomial based method is 
smaller than that of the P-M method. A better numerical 
accuracy is thus obtained. The third column of the Table 
is obtained by setting the DELF of the original Parks- 
McClellan program to 0.001. This made the dense grid of 
points replacing the frequency axis symmetric about n/2. 
With this setting, the even terms of the filter coefficients 
by the P-M method were calculated to be zero to within 
the computer accuracy. 

The barycentric interpolation formula of the odd- 
polynomial based method has 3/4 fewer multiplications 
than that of the P-M method. The odd-polynomial based 
method searches only one-half of the extreme points, so, 
in every iteration, there is a saving of 3/8 on the multipli- 
cations. That is, in every iteration, the odd-polynomial 
based method will be 3/8 times faster than the P-M 
method. 

Another difference is the number of iterations required 
by the two methods. The P-M method uses only the 
N + 1 extreme points for iteration. It needs an internal 
exchange among the N + 2 extreme points. The odd- 

Fig. 3 

-A- odd-polynomial method 
. - A - -  P-Mmethod 
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Computing time againstfilter length 
uJp = 0.18 

polynomial based method uses all the extreme points for 
iteration because of its symmetry property. It will thus 
require fewer iterations than the P-M method. For 
example, in Table 1, it takes only Seven iterations for the 
odd-polynomial based method and 12 iterations for the 
P-M method. A comparison between the computing time 
is shown in Figs. 3, 4 and 5, where an average gain of 

’r 
/A 

n2 t 
/‘ 

/ 
/ 

,E 1 
/ - 1  

I I I 
IO 20 30 40 

length 

Fig. 4 
WI = 0.20 
-A- odd-polynomial method 
- - A - -  P-Mmethod 

Computing time againstfilter length 

/ 
/ 

/ 
/ 

Fig. 5 
wp = 0.23 
-A- odd-polynomial melhod 
- - A - -  P-Mmethod 

Computing time againstfilter length 

499 



four for the proposed method over the P-M method is 
obtained. 
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