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The Optical Soliton Transmission Amplified by 
Bidirectional Raman Pumps with 

Nonconstant Depletion 
Senfar Wen, Tsun-Yee Wang, and Sien Chi 

Abstract-A numerical method is proposed to solve the cou- 
pled equations between the soliton and bidirectional Raman 
pump waves. The pump depletion due to the soliton is obtained 
without using the constant depletion approximation. With this 
method, the soliton propagation in a Raman-pumped fiber can 
be solved accurately. It is found that the constant depletion ap- 
proximation is valid at a small depletion rate, which requires 
low soliton power (or long pulsewidth), small material loss, and 
a short-pump period. In a periodically Raman-pumped fiber, 
there exists a stable signal energy, which is very sensitive to the 
pump intensity. We have also studied the stability of the soliton 
propagation with nonconstant pump depletion. It is found that 
the stability predicted by nonconstant depletion (NCD) and 
constant depletion assumption (CDA) are generally different. 

I. INTRODUCTION 
HE OPTICAL soliton has been proposed as a disper- T sionless carrier for high-bit-rate fiber communication 

systems [ l ] .  In a lossy fiber, the soliton disperses. To 
compensate the fiber loss in long distance transmission, 
periodically bidirectional Raman pumps were proposed 
and proved to be an effective method to compensate the 
loss and maintain the pulse shape of the soliton [ 2 ] ,  [3]. 

The theoretical study of the system amounts to solve 
the coupled equations between the soliton and Raman 
pump waves. In the literature, the depletion of the pump 
wave by the soliton is often assumed to be a constant or 
to be ignored [ 2 ] ,  [ 3 ] .  The constant depletion approxi- 
mation (CDA) is valid when the depletion and the vari- 
ation of the soliton energy are small and the relative ve- 
locity between the soliton and the pump wave is large. 
For the small relative velocity, the local interaction be- 
tween the soliton and the pump wave can not be ignored 
and changes the pulse shape of the soliton [4]. In this pa- 
per, we propose a new numerical method to solve the cou- 
pled equations when large relative velocities are involved. 
With this method, the pump depletion is accurately pre- 
dicted and the soliton transmission in the Raman pumped 
fiber can be studied in a wide range. 
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11. COUPLED WAVE EQUATIONS AND THE NUMERICAL 
METHOD 

The soliton and the forward Raman pump wave in a 
fiber satisfy the following coupled dimensionless wave 
equations [2], [4]: 

- - -iF,q, - iKGlqs124s (2) 

where the variables and the coefficients are normalized in 
the following way: 

t; = X - ’ Z ,  T = T - ’ ( t  - k i z ) ,  

and 

( 3 )  

(4) 

In (1)-(4), 4,y and 4,, are the electric field envelopes of the 
soliton and the forward pump wave; A, and Xp are the 
wavelengths of the soliton and the pump wave; t and z are 
the time and propagation distance along the fiber; T ,  X ,  
and Q are the time, distance, and electric field scale fac- 
tors; k,:, k,” and k;, k: are the derivatives of the propaga- 
tion constant k with respect to the angular frequencies 
evaluated at w, and up, respectively, U, and wp are the 
angular frequencies of the soliton and the pump wave, the 
first derivative is reciprocal group velocity, the second 
derivative is proportional to the group dispersion; y, and 
yp are the loss coefficients of the fiber at X, and X p ;  n2 is 
the Kerr coefficient and equals to 1.22 x (V/m)-2 

A S  

A, 
V = (k; - k ; ) X T - ’ ,  K = -. 
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for fused silica; g is the Raman gain coefficient which is 
maximum when the frequency difference between pump 
wave and the carrier wave of soliton is 440 cm-' [5]. The 
maximum gain g = 9.75 x 10-'4/A, (m/W) where A, 
is in the unit of microns. 

We define the soliton energy as 

where AT is the period of qs, and forward pump intensity 
If = 1qPl2. By assuming the periodical boundary condition 
and large relative velocity between the soliton and the 
pump wave, (1) and (2) can be reduced to 

aE 
- + 2(r, - G ~ ) E  = o at 

(7) 

Note that E / A T  is the soliton's average intensity. The 
coupled equations, (6) and (7), can be analytically solved 
for rs = rp [6]. In the following, we consider a numerical 
method to solve the coupled equations without assuming 
rp = rp. Furthermore, both forward and backward pump 
waves can be solved simultaneously by this method. 

From (7), we have the forward pump intensity 

I,(() = If" exp [-Pftl (8) 

where If" = If(( = 0) is the initial forward pump intensity 
and 

 KG - 
pf = 2rp + ~ Er 

AT 

is the forward pump loss rate where 

(9) 

is the forward mean soliton energy from the initial to the 
present position. On the right-hand side of the equal sign 
in (9), the first term is the material loss rate at the pump 
wavelength and the second term is the pump depletion 
loss rate. The pump depletion loss rate depends not only 
on the present soliton energy but also on the history of the 
soliton as the definition of Er in (10) shows. This indicates 
that the pump intensity at ,$ depends on how the pump 
wave is depleted from ( = 0. To consider bidirectional 
pumps, we assume the fiber length to be E ,  and the back- 
ward pump wave is injected into the fiber from (". 

Similarly, we have the backward pump intensity 

I d ( )  = Ibo exp [Pb(,$ - ( o ) ]  ( 1  1) 
where Ibo = Ib((  = 4,) is the initial backward pump in- 
tensity and 

is the backward pump loss rate where 
. P€" 

is the backward mean soliton energy. 

and total pump intensity become 
Therefore, the coupled equation for the soliton energy 

I = If0 exp [-pf(l + Ibo exp [Ph(( - t o ) ]  (l5) 
where the coupling is through E contained in pr and Pb. 
Because only the energy relation is considered in (14) and 
(15), the coupled equations can be applied to the Raman 
amplification problem discussed in [6]. 

We solve (14) and (15) by the iterative method. From 
(14), we have the iteration formula 

E(( + A t )  = E ( ( )  exp [2(-rs + GI(()) At]. (16) 

From (9), (12), (15), and (16), with the initial soliton en- 
ergy E, = E( ( = 0) we obtain the-first st_ep soliton energy 
- solution pi)((). In the first step, Efand Eb are taken to be 
E'(() = E(() and E b ( ( )  = E(() rather than their original 
definitions in (10) and (13) because E,(()  can not be cal- 
- culated unless E along ( is previously known. E'(() and 
Eh(()  are taken to be their original definitions in the fol- 
lowing iterative steps because the approximate soliton en- 
ergy along the fiber is obtained. Substituting E'"(() into 
the iterative equations, we have the second step soliton 
energy soliton E'2'(() .  The iterative process repeats until 
the mean error r2 €0 

6 = [i lo [E('") - F - ' ) l 2 d (  

of the mth step is below a tolerable value. From the final 
step solution E"', both the forward and backward pump 
depletion loss rates can be obtained. Therefore the cou- 
pled equations for the soliton and the pump waves are 
reduced to (15) and 

aq 1 a2q 
a( 2 aT i - + - a + q1qI2q = -irq + iGZq (17) 

where the subscript s for the soliton is dropped. 
Equation (17) can be numerically solved by the beam- 

propagating method [7]. The method assumes the peri- 
odic boundary condition, and AT in (5) is the period. The 
initial condition to solve (17) is taken to be 

AT AT 
5 7 < -  q ( r ,  ( = 0)  = p&& sech ( p r ) ,  -- 2 2 

(18) 

where p is an arbitrary constant, q is the fundamental so- 
liton with amplitude p and pulsewidth (FWHM) T ,  
= 1.76T/p(ps). Note that, from (4) and (18), the pulse 
amplitude is inversely proportional to the time scale T. In 
this paper, the period AT is taken to be 35.2/p(20 pulse- 

I- - 
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widths separation). The initial soliton energy E, = 

For periodically bidirectional pumps, it is generally as- 
sumed that the pump waves of equal intensity are injected 
at each distance of 4, into the fiber in both directions that 
along and against the direction of the soliton propagation. 
Then the pump intensity at the nth pump period is 

2?rcx/V. 

1 = m x p  b f [ E  - (n - l)Epll 

+ exp ( P b t E  - nEpl)>, n = 1, 2, 3 - * * (19) 

where Z, is the injected pump intensity. The pump loss 
rates pf and Pb are obtained by the iterative method with 
the initial soliton energy 

The coupling loss from a pump period to the next period 
is neglected for simplicity. 

111. COMPARISON WITH THE CASE OF CONSTANT 
DEPLETION ASSUMPTION 

In this section, we will work out some examples with 
the numerical method shown in last section and check the 
validity of the CDA. The CDA is valid when [2] 

rc,, << 1 (20) 
then the pump loss rates in (19) can be taken as 

where En, is the initial soliton energy at the nth pump 
period and p, is in fact the pump loss rate at 4 = (n - 
1) 5,. When the condition (20) is valid, the attenuation of 
the soliton is small. This leads to a small variation of the 
soliton energy when the fiber loss is compensated by the 
Raman pump. To compensate the fiber loss within a pump 
period, the integrated gain from the pump waves must be 
equal to the integrated fiber loss (2I'E,,). The integrated 
gain for the nth pump period is 4Z,G/p, [ l  - exp 
( - p c  E p ) ] .  Therefore, the required initial pump intensity 
to compensate the fiber loss is [2] 

However, the condition (20) is not valid for the inter- 
ested range of parameters. For the minimum fiber loss 0.2 
dB/km and 40 km pump period, FE,, = 0.92 does not 
satisfy (20). By the following numerical examples, it is 
shown that CDA can be applied well even if (20) is not 
satisfied. 

In the following, we take X, = 1.55 pm and A, = 1.46 
pm. The fiber losses are taken to be ys = 0.3 dB/km and 
y,, = 0.5 dB/km. The dispersion at the soliton wave- 
length is taken to be 2 ps/km/nm which corresponds to 
k: = -2.55 ps2/km. Taking a = 1, 7 = 1, and X = 10 
km in (4), we have the scale factors T = 5.0 ps and Q = 
6.36 X lo5 V/m. For the 25 pm2 effective cross section 

0 1 2 3 4 

i 
Fig. 1. Soliton energies E and E, and pump intensities I and I,  versus dis- 
tance E for p = 1, E,, = 4, and I,, = 3.1682. It is noticed that the curves 
for E and E, are almost overlapped, so are the curves for I and I , .  

of fiber core, the given electric field scale factor Q cor- 
responds to 20.0 mW power scale factor. The other coef- 
ficients in (15) and (19) are r = 0.345, rp = 0.576, 
= 0.26, and K = 1.06. The numerical values given here 
are used throughout this paper except specially specified. 

With the initial condition given by (18), Z, given by 
(22), and the coefficients given above, we solve (17), (14), 
and (19). Fig. 1 shows the soliton energy E and pump 
intensity Z with respect to distance 4 for p = 1 and E,, = 
4 (40 km). In Fig. 1, the soliton energy (E,) and pump 
intensity (Z,) obtained by CDA are also plotted. Fig. 2 
shows the depletion loss rates of the pump waves. We 
define the depletion loss rate uJ = ~KGE,/AT, j = f, b.  
The depletion loss rate obtained by CDA, U, = 
~KGE, /AT,  is also shown in Fig. 2 where U, is in fact the 
initial depletion loss rate. From Fig. 1, it is seen that the 
two sets of curves are almost overlapped. Because the 
evolution of E is almost the same as E,, the evolution of 
q is also. This shows, in this case, that CDA is applied 
well although FE, = 1.38 and (20) are not satisfied. With 
the initial pump intensity given by (22), the soliton energy 
calculated by CDA recovers to its initial energy at E = 
E,/2 and E,,. In this numerical example, the soliton en- 
ergy is very close to the initial energy as is expected by 
CDA; E(E = 2) = 1.990 and E(E = 4) = 1.997. In Fig. 
2, U, = 0.031; uj is larger than uc because the soliton is 
amplified from the beginning and the forward pump wave 
is more seriously depleted than at the beginning. At the 
end of the pump period 4 = E,,, uf is still larger than a,; 
this indicates the mean soliton energy over the pump pe- 
riod is slightly larger than E,. As to the backward pump 
wave, the soliton energy is less than E, within the back 
half pump period so ub is less than U, - ab(,$! = 0) is equal 
to uf(( = E,,) since both E h ( [  = 0) and Ef(( = E,,) are the 
mean soliton energy over the pump period. We define U, 
= uf(< = E,)  = ab([  = 0). It is found that, if a, > U,, 
E([ = E,,) < E,(E = E,,), and vice versa. In Fig. 2, U, = 
0.032 is larger than U, and, in Fig. 1, E(E = 4) < E,([ 
= 4). This is because larger U, means larger mean soliton 
energy over the period and leads to higher depletion. In 
next numerical example, we will show that € ( E  = E , )  > 

- I -- ~ 
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Fig. 2.  Forward and backward depletion loss rates (u,and U,,) in Fig. 1 .  

E,(4 = 4,) when U, < U,. In Fig. 2, maximum ur = 
0.0405 and minimum ub = 0.0245. It is noticed that the 
material loss rate 2r, is 1.152 which is much larger than 
ufand U,. This is the reason why CDA is applied well in 
this case. For 

the contribution of the pump loss rates from the pump 
depletion can be neglected. 

Fig. 3 shows an example with the same parameters as 
Fig. 1 except p = 5 .  For p = 5,  U, = 0.783 which is 
close to 2r,. Equation (23) is not satisfied in this case and 
it is expected that CDA is invalid. The invalidity can be 
clearly observed in Fig. 3. Fig. 4 shows the pump deple- 
tion loss rates in Fig. 3 where maximum uf = 1.168, min- 
imum a b  = 0.497, and U, = 0.7815 which is less than U,. 
For U, < U,, it is expected that E(4 = 5,) > E,(t = 4,) 
as discussed above. In Fig. 3, along the fiber E is almost 
less than E, every where except at the last section where 
E is pumped to catch up with E, and is larger than E, 
finally. At the end of the pump period, E(4 = 4) = 10.10 
which is slightly larger than E,(( = 4,) = E, = 10. The 
soliton energy recovers to its initial energy at 4 = 1.737 
and 3.995. Fig. 5 shows the envelope of (q (  at 4 = 4, 
where the envelope obtained by CDA is also plotted. It is 
seen that the peak amplitude of the envelope at 4 = 4, is 
slightly larger than the result obtained by CDA. The dif- 
ferent evolutions lead to different envelopes at the end of 
the pump period after propagating several pump periods. 
We will consider the envelope evolutions in Section V. 

The soliton considered in Fig. 1 ( k  = 1 )  is initially 
with 8.8 ps pulsewidth and 20 mW peak power. The so- 
liton considered in Fig. 3 ( p  = 5) is initially with 1.76 
ps pulsewidth and 500 mW peak power. The more soliton 
power, the more pump wave is depleted. High depletion 
loss rate leads to the invalidity of CDA. For CDA to be 
valid, the soliton power along the fiber must all be small 
enough. For large r and/or r,, the soliton needs to be 
greatly amplified from the beginning to endure high loss 
in the middle of the pump period where the pump inten- 
sity is small. The same is true in the case of a very long 
pump period. These conditions may cause high soliton 
power and high depletion loss rate some where in the fiber 
and make CDA invalid. Fig. 6 shows the case with the 

2r, >> ab a b  (23) 
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Fig. 3 .  Soliton energies E and E, and pump intensities I and I ,  versus dis- 

tance E for p = 5 ,  E,, = 4 and I,, = 5.1373. 
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Fig. 4. Forward and backward depletion loss rates (u,and U,,) in Fig. 3.  
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Fig. 5 .  Envelopes of the soliton ((41) for p = 1 ,  E,, = 4, and I,, = 3.1682 
at [ = E,. The envelope of the soliton obtained by CDA is also shown by 
dashed line for comparison. 

same parameters as in Fig. 3 except rp is increased up to 
4.032 (3.5 dB/km). In Fig. 6, 2r, is about ten times 
greater than U,, but the deviation of the solution from that 
obtained by CDA is more serious than the deviation in 
Fig. 3. The soliton energy at the end of the pump period 
is 9.62. 

In this section, only one pump period is considered. 
After propagating several pump periods, the error resulted 
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Fig. 6 .  Soliton energies E and E, and pump intensities I and 1, versus dis- 
tance 5 for p = 5 ,  E,, = 4, r,, = 4.032, and I,, = 23.4785. 

Fig. 7. Signal energies ( E )  at the end of the Nth pump period for various 
initial signal energies with p = 1 ,  t,, = 4, and I,, = 3.1682. The initial 
signal energies are shown at N = 0. The signal energies all approach to E 
= 1.951. 

from assuming CDA should accumulate. In the next sec- 
tion, it is shown that the error of the soliton energy at the 
end of a pump period reaches a stable value. For the prac- 
tical soliton-based communication system [3], the mate- 
rial loss at soliton wavelength and pump wavelength is 
about 0.2 dB/km, and the solition pulsewidth is larger 
than 10 ps, and the pump period is less than 50 km. It is 
found that, for these data, CDA is valid for the commu- 
nication system. 

IV. STABLE SIGNAL ENERGY IN THE PERIODICALLY 
RAMAN-PUMPED FIBER 

In Section 111, the initial soliton is exactly the funda- 
mental soliton; the pump power is given by (22) which is 
designed to compensate the fiber loss exactly under CDA; 
only the propagation in the first pump period is consid- 
ered. In the followings, we will study more general cases. 
The initial soliton is not necessary the fundamental soli- 
ton or the initial pump intensity is not necessarily given 
by (22). In this section, we will study the evolution of the 
soliton energy for several pump periods. 

In this section, we solve the coupled equations of the 
soliton energy and pump intensity, (14) and (19). It is 
noticed that the energy increment is in fact not necessarily 
equal to the increment of the soliton energy. The energy 
increment may be radiated away from the soliton due to 
the combined effect of the dispersion and the Kerr effect. 
Furthermore, the radiated wave is amplified by the Raman 
pumps and shares the energy increment. 

In the following, the coefficients are the same as in 
Fig. 1 .  Fig. 7 shows the signal energies at the end of every 
pump period for various initial signal energies. For dif- 
ferent initial signal energies Ei, the corresponding initial 
pump intensities are set to be the same and given by (22) 
with E, = 2 in p, Z, = 3.1682. In Fig. 1 (Ei = 2), at 
the end of the first pump period, the energy is 1.997. From 
Fig. 7, it is seen that, after propagating several tens of 
pump periods, the energy at the end of a pump period 
reaches the stable value 1.95 1 .  For different initial signal 
energies, the energies all reach the same value. This can 
be easily realized that the initial pump intensity Z, = 

3.1682 completely compensates the fiber loss of the signal 
with Ei = 1.95 1 .  The stable energy with loss completely 
compensated is designed by E,,. Both the signal with 
higher energy decays and the signal with lower energy 
grows to the same stable energy level. 

Fig. 8 shows the signal energies at the end of every 
pump period for Ei = 2 and various I,. For I ,  = 3.5 ,  the 
signal energy is pumped up to E,, = 9.985. For I ,  = 3 . 1 ,  
the signal energy decays to E,, = 0.292. For I, = 3.0, 
the signal energy decays to zero, i.e., the pump intensity 
can not compensate the fiber loss of the signal. 

If CDA is valid, the relation of E,, and I, can be ob- 
tained by solving (22) where p ,  is given by (21) and E, is 
replaced by E:,, where E:, is the E,, obtained from (22). 
In (22), the fiber loss of the soliton is completely com- 
pensated by Raman pumps. For p, tp >> 1 ,  from (2 1 )  and 
(22) we have 

where E:, is the E,, obtained under this approximation. 
Because there is no negative light power, E:, becomes zero 
if it is negative by (24). Equation (24) shows the linear 
relation of E:, and Z,. From (24), we see there is a thresh- 
old I, to maintain the signal energy. This threshold I, des- 
ignated by Zfh is I T P t p / G .  The threshold value obtained 
by solving (14) and (19) is designated by zth and by solv- 
ing (22) is designated by 

Figs. 9 and 10 show E,, versus I,. The range of I, in 
Fig. 9 is from three to ten, while the range of Z, in Fig. 
10 is from 3 to 3.5  to show the range that can not be 
clearly observed in Fig. 9. Near threshold pump intensity, 
E:, is very different from E:,. E:, coincide with E:, for I ,  
> 5 .  From the figures, we see Ith = ZL = 3.08 while l i h  

= 3.06. For I, < 4.66, E,, < E:,, and, for I, > 4.66, 
E,, > E:,. We let the pump intensity as I,,, when E,, = 
E&. As discussed in last section, the result shows U, < 
U, for I, > 4.66. 

From Fig. 9, it is seen that a slight change of the pump 
intensity may cause a large change of the signal energy. 
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Fig. 8 .  Signal energies ( E )  at the end of the Nth pump period for the initial 
soliton energy E, = 2 and various initial pump intensities I<, with p = I 
and t,, = 4. 

3 4 5 6 7 8 9 1 0  
Io 

Fig. 9. Stable signal energy E,, versus initial pump intensity for I,, = 3 to 
10. 
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Io 

Fig. 10. Stable signal energy E,, versus initial pump intensity for I,, = 3 
to 3 . 5 .  

For example, I, = 3.1 corresponds to E,, = 0.292. If I, 
is increased from 3.1 to 3.5, the signal energy is pumped 
up to 9.985. It is amplified about 34 times, while the pump 
intensity only change 1.13 times. Therefore, careful con- 
trol of the pump power is necessary for the soliton-based 
communication systems. This effect can be observed by 
using the experimental apparatus set up in [8]. In the ap- 
paratus, a fiber is closed on itself with an all-fiber version 

of a Mach-Zehnder interferometer. The signal wave re- 
circulates around the loop and the pump waves are in- 
jected into the loop bidirectionally. 

V. STABILITY OF THE SOLITON PROPAGATION IN THE 

PERIODICALLY RAMAN-PUMPED FIBER 
In this section, we study the stability of the soliton 

propagation in periodically Raman pumped fiber with 
nonconstant depletion (NCD) and compare the results with 
the case of CDA. With CDA, the stability properties have 
been studied in [3]. It is found that the stability depends 
on the ratio of the perturbation period (the pump period L 
= [ , X )  and the soliton period z,. The soliton period is 
defined by 

z, = (7r/2>p-2x (25) 

where X = (T2/ -IC:). It is known that the fundamental 
soliton solution of (17) with CY = 11 = 1 and r = G = 0 
is 

q(7, 4 )  = p sech ( p 7 )  exp [ i (p2/2) t l .  (26) 

From (26), the soliton experiences a phase change of 7r/4 
when it propagates z ,  distance. It is found that the soliton 
is unstable for L / z ,  G 8 because it corresponds to 27r 
phase change of the soliton when it propagates L distance 
and leads to a resonance between the perturbation period 
(L)  and the soliton phase. The soliton is stable for L / z ,  
<< 1 where the perturbation period is small compared 
with the soliton period. 

The stability property can be represented by the relation 
of 6s and L / z ,  where 6S is the ratio of the area change of 
the soliton at the end of the first pump period and is de- 
fined by 

(27) 

where the area of a soliton is defined by S(4) = j 1 q(r ,  [)I 
dr . 

Fig. 11 shows 6S versus L / z ,  for L = 40 km. The nu- 
merical values of the parameters are the same with those 
in Fig. 1 except p is varied and initial pump intensity I, 
is chosen to make the soliton energy recover at the end of 
the pump period. In (27), S(0) = ?r nevertheless p is var- 
ied. In Fig. 11, the dashed curve represents the result ob- 
tained by CDA, where the initial pump intensity I, is given 
by (22). It is noticed that L / z ,  = 8p2/?r. In Fig. 11, the 
horizontal axis represented by p is also shown. We have 
known that CDA is valid only when p is small as is dis- 
cussed in Section 111. It is seen that the two curves over- 
lapped for p less than about 1.5. For larger p ,  the two 
curves are different and there are resonant peaks. The 
peaks are nearly at the multiples of 7.5 in unit of L / z ,  for 
the curve with NCD. It is noticed that the peaks obtained 
by CDA are advanced with respect to those obtained by 
NCD. The resonant peaks can be explained as follows. 

In (25), the soliton period zo is, in fact, only valid in 
lossless fibers. In a Raman-pumped fiber, the amplitude 
of the soliton varies along the fiber. If the pulse shape of 
the soliton is maintained well, from (26) we can define 
the effective soliton amplitude as pe = E / 2  where E is 

6s = [W,) - Wbl/S(O) 
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Fig. 1 1 .  Area change ratio of the soliton 6s versus L/z,, and p. 6s obtained 

by CDA is shown by the dashed line. 

the average energy of the soliton over the pump period. 
From (25), the effective soliton period can be defined as 

Ze = (27r/E2)X. (28) 
The resonant peaks occurs when L / z ,  is the multiple of 

8 where the phase shift of the soliton is the multiple of 
27r. Fig. 12 shows the average energy of the soliton in 
- Fig. 11 where the result obtained by CDA is denoted by 
E,. In Fig. 12, the dashed line represents the initial energy 
E,. It is seen that E, > E for all p.  Larger average energy 
corresponds to shorter effective soliton period or faster 
phase change. In Fig. 12, E, > E for all p values, which 
means L / z ,  obtained by CDA is larger than that obtained 
by NCD. This is the reason that, in Fig. 11, the resonant 
peaks obtained by CDA are advanced. We define the nor- 
malized phase change ratio r = L / z ,  (mod 8). The res- 
onance occurs when r = 0, which corresponds to the phase 
shift of the soliton is the multiple of 27r. Fig. 13 shows r 
versus L/z,. It is found that the resonant peaks in Fig. 13 
fit those in Fig. 11 well for L / z ,  < 40. It is noticed that 
the resonant peaks obtained by NCD occur near the mul- 
tiples of 7.5 rather than 8.0. The resonant peaks occur 
periodically because in Fig. 12 E is close to E,. It is also 
found that in Fig. 11 the valleys occur when the phase 
shift of the soliton is the odd integer multiple of ?r. It is 
noticed that E < E, for p > 4.4 where p = 4.4 corre- 
sponds to I,, in Fig. 9. 

Large 6s corresponds to large pulse shape change of the 
soliton and unstable soliton propagation. To obtain stable 
soliton propagation, usually the region 6s in Fig. 11 near 
and below zero is chosen. Fig. 14 shows the envelope of 
the soliton with p = 1 at 4 = 200 (2000 km) and that 
obtained by CDA for comparison. It is seen that the en- 
velopes of the two solitons are almost the same. For 
smaller p ,  not only the envelopes are more alike, but also 
the pulse qualities are better and the noise waves are re- 
duced. 

The other region in Fig. 11, the large positive 6s re- 
gion, corresponds to unstable soliton propagation. The 
resonant peaks in the region corresponds to the extrema 
of the unstability of the soliton propagation. The resonant 
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Fig. 12. Average soliton energy E versus p. The average soliton energy 

obtained by CDA E, and the initial soliton energy E,, are also shown. 
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Fig. 13. Normalized phase change ratio r versus L/z,, where r = L / z ,  
(mod 8). The ratio obtained by CDA is shown by the dashed line. 
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Fig. 14. Envelopes of the soliton ((91) obtained by NCD and CDA (the 
dash line) for p = 1 ,  5, = 4 at 5 = 200 (2000 km). 

peaks of the two curves are different. In some cases, the 
peak of one curve corresponds to the valley of the other 
curve. Figs. 15 and 16 show the evolution of the so- 
liton with p = 5 for NCD and CDA, respectively. 6s is 
at the valley for NCD and at the peak for CDA. It is seen 
that the soliton calculated by NCD can maintain its pulse 
shape well until 1120 km ( 4  = 112), while the result cal- 
culated by CDA is only 520 km. On the contrary at p = 
4.82 where 6s is at peak for NCD and at valley for CDA, 
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The initial pump intensity I,, = 5.1094. 
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:lope evolutions of the soliton for p = 5 ,  l,, = 4 
The initial pump intensity I,, = 5.1373. 

with CDA. 

the soliton calculated from CDA can be maintained bet- 
ter. The propagation distance over which the soliton with 
CDA can still maintain its pulse shape is 640 km, while 
that with NCD is only 440 km. 

VI. CONCLUSION 
In this paper, we have shown a numerical method to 

solve the coupled equation of the soliton and Raman pump 
waves. In this method, we only assume a large relative 
velocity between the soliton and Raman pump wave. For 
bidirectional Raman pumps, both forward and backward 
pump depletion rates can be obtained. In literature, they 
are assumed to be constant. It is found that the constant 
depletion approximation is valid for small depletion rate, 
which requires low soliton power (or long pulsewidth), 
small material loss and a c b r t  pump period. 

In periodically Raman-pumped fiber, a stable signal en- 
ergy exists. The signal energy is the total energy that in- 

relation of the stable signal energy and pump intensity is 
obtained. It is found that stable signal energy is very sen- 
sitive to the pump intensity. A slight change of the pump 
intensity may cause a large change in the signal energy. 
The stability of the soliton propagation in the Raman- 
pumped fiber is also studied. It is found that the stability 
predicted by NCD and CDA are generally different. 
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