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A STUDY OF UPSTREAM-WEIGHTED HIGH-ORDER 
DIFFERENCING FOR APPROXIMATION TO FLOW 

CONVECTION 

YENG-YUNG TSUI 
Department of Mechanical Engineering, National Chiao Tung University, Hsinchu 30049. Taiwan, R.O.C. 

SUMMARY 
This paper is concerned with a number of upstream-weighted second- and third-order difference schemes. 
Also considered are the conventional upwind and central difference schemes for comparison. It commences 
with a general difference equation which unifies all the given first-, second- and third-order schemes. The 
various schemes are evaluated through the use of the general equation. The unboundedness and accuracy of 
the solutions by the difference schemes are assessed via various analyses: examination of the coefficients of the 
difference equation, Taylor series truncation error analysis, study of the upstream connection to numerical 
diffusion, single-cell analysis. Finally, the difference schemes are tested on one- and two-dimensional model 
problems. It is shown that the high-order schemes suffer less from the problem of numerical diffusion than the 
first-order upwind difference scheme. However, unboundedness cannot be avoided in the solutions by these 
schemes. Among them the linear upwind difference scheme presents the best compromise between numerical 
diffusion and solution unboundedness. 

KEY WORDS Finite difference High-order schemes Numerical diffusion Solution unboundedness 

1. INTRODUCTION 

In a lot of fluid flow problems the flow velocity in part of the domain of interest is so high that the 
flow transport is dominated by convection. In the numerical simulation of fluid flow, such as the 
finite difference method, the difference approximation to the terms in the governing equations 
representing convection is so important that not only does the accuracy of the final solutions 
depend on the choice of approximation but the stability of the solution procedure is also affected. 

Traditionally the second-order-accurate central difference (CD) and first-order-accurate 
upwind difference (UD) are used to simulate the first-order derivatives of the convection terms.' 
The basis of the central difference is that the face value transported across a cell surface is 
approximated by linear weighting between the nearest two nodal points (Figure l(a)). The major 
problem encountered by the central difference scheme is that unphysical oscillations may appear 
in the solution as the Reynolds (or Peclet) number becomes sufficiently large and thus the solution 
may diverge unless special treatments are undertaken.2 The remedy has been to use the upwind 
difference in regions where the convection becomes dominant.3i4 For the upwind difference 
a zero-order extrapolation from the upstream point is made to give the convected face value 
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(Figure l(b)). By using the upwind difference, all the coefficients linking the principal node to the 
neighbouring nodes are of the same sign. As a result, the coefficient matrix is diagonally dominant 
and no solution oscillations occur. Taylor series analysis indicates that the leading truncated term 
of the upwind difference is of second-order differential form with the coefficient linearly 
proportional to the grid size. Thus the upwind difference inherently has the nature of dissipation. 
It can be seen that the upwind difference is equivalent to the ‘non-dissipative’ second-order- 
accurate central difference with added dissipation. The dissipative nature helps to smooth out 
disturbances and stabilize the solution. However, the stability is achieved at the expense of 
accuracy: the numerical dissipation may obscure the physical processes. For example, in the case 
of high Reynolds number the eddy viscosity may be overshadowed by the artificial viscosity of the 
numerical diffusion. This problem becomes more serious when the streamlines are not aligned 
with the grid co-ordinates.’ Because of this, numerical procedures using the hybrid up- 
wind/central difference for turbulent recirculating flows have been found to underpredict the 
dimensions of the recirculation region.6i7 The effect of numerical diffusion can be alleviated by the 
exercise of grid refinement. However, the cost sometimes is too high, especially when a 
complicated geometry is involved and/or the flow is three-dimensional. A more promising 
approach is to adopt an upstream-weighted higher-order difference instead of the upwind 
difference. 

In the past few years several high-order difference schemes have emerged and have been used in 
predictions of the full Navier-Stokes equations. Two of them are second-order-accurate: the 
quadratic upwind difference (QUD) (or the QUICK scheme, as named by Leonard’) and the 
linear upwind difference (LUD).9. lo The two schemes proposed by Agarwal” and Kawamura 
and Kuwahara’ are one order higher, i.e. third-order-accurate. 

In the linear upwind difference the face value is yielded via a two-point extrapolation with the 
two points in question located in the upstream direction (Figure l(c)), while the quadratic upwind 
difference is based upon a three-point quadratic interpolation with two points upstream and one 
point downstream of the cell face (Figure l(d)). These two schemes have been tested and evaluated 
by a number of research workers.6-10* 13-22 In general, the two schemes give better results than 
the hybrid upwind/central difference using the same grids. However, although much less serious 
than with the central difference, overshoots and/or undershoots may appear in the solutions 
because the coefficient matrices are not diagonally dominant. The oscillations are obvious when 
the schemes are applied to simple one-dimensional and twodimensional model equations which 
mimic the Navier-Stokes equations for high-Reynolds-number flow. Another major drawback of 
these high-order schemes is that they require more iterations and thus more computer time to 
converge than the hybrid scheme, since iterative methods such as the point and line relaxation 
methods and Stone’s strongly implicit procedurez3 are used. The other two schemes, which are 
more ‘accurate’ than the QUD and LUD in terms of truncation error, have not attracted much 
attention and their characteristics have not been fully unveiled yet, though they have been 
successfully applied to recirculating flow calculations by their inventors. 1* l2 Therefore they 
deserve further exploration. 

In this study a general difference scheme is devised. From this scheme the above-mentioned 
schemes can easily be deduced by assigning appropriate values to the relevant parameters. In 
addition, new difference schemes can also be derived. A total of eight difference schemes are 
considered. Another advantage of using the general scheme is that it is not necessary to repeat the 
same practice in the analysis for each of the schemes. The study includes examination of the 
coefficients of the difference equation, Taylor series analysis, upwind connection to numerical 
diffusion, single-cell analysis and one- and two-dimensional model problem studies. 
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2. GENERAL DIFFERENCE FORM 

Consider the convection of a general scalar entity 4 in the x-direction, ua4/ax, where u is the flow 
velocity. The spatial derivative may be approximated in the following manner: 

where 4e and 4w are the face values at the east and west surfaces of the considered cell respectively. 
Different schemes are obtained through different approximations to the face values, obtained 
by linear weighting of the neighbouring nodal values. As discussed in the above and shown in 
Figure 1, the face values of the UD, CD, LUD and QUD schemes are evaluated by zero-order 
extrapolation, linear interpolation, linear extrapolation and quadratic interpolation respectively. 
By assuming the velocity u to be positive, these schemes can be expressed as follows: 

upwind difference (UD) 

central difference (CD) 

linear upwind difference (LUD) 

quadratic upwind difference (QUD, i.e. the QUICK scheme of Leonard*) 

4 e = i + E  +$4P-i4W, 
4 w = i 4 P + i 4 w  - i 4 w w *  

The upwind difference can be arranged to give 

The second term in brackets is an approximation to (Ax/2)a2~/axz, implying that the upwind 
difference is equivalent to a central difference with artificial dissipation. The coefficient Ax/2 
represents the viscosity of the artificial dissipation. If the multiplier 3 is replaced by an arbitrary 
value a, we have 

This is a general first-order difference scheme because its truncation error is aAxa2~/ax2. 
Obviously a must be greater than zero to give positive artificial viscosity. By this scheme the 
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transported values at the cell surfaces are evaluated as 

4 e = 3 ( 4 E +  4P)-a(4E-$P) ,  (84 

4w=3(4P+4w)-a(4P-4w) .  (8b) 

(9) 

The above expressions can be recast into the following form, e.g. 

4 w  = f 4 p  + (1 - f )4w,  
wheref= 4- a. It is clear that for 0 < f < 1 (i.e. -+ < a <$) a linear interpolation between 4p and r$w 
is employed to yield 4w (Figure 2(b)). For f < O  (i.e. a>+) a value obtained through linear 
extrapolation from 4p and 4w to a point w' upstream of the point W is implied (Figure 2(a)). The 
case f >  1 (i.e. a< -+), which is the most unfavoured, implies that 4, is obtained by linear 
extrapolation to a point downstream of the point P (Figure 2(c)). 

The CD, LUD and QUD can be cast into the following form: 

which is equivalent to setting 

where 

0 for the CD, 
a= 3 for the LUD, i & for the QUD. 

Since the artificial dissipations represented by the second and third terms on the right-hand side of 
equation (10) cancel each other, it is at least second-order-accurate irrespective of the value of a. 
The leading truncated term of the difference approximation is (&- a ) A ~ ' 8 ~ 4 / 8 x ~ .  It is obvious 
that this term disappears when a=&, which is the scheme proposed by Agarwal." In order to 

--t -3 

Figure 2. Schematic illustration of interpolation/extrapolation practices implied by a for the general first-order scheme: 
(a) a>+; (b) -+<a<+; (c) a< -3 
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enhance the order of accuracy when a not equal to &, the third-order derivative of the leading 
truncated term can be discretized as 

Thus a third-order scheme can be obtained: 

where 

/3 = 0, y = 0 first-order scheme, equation (7), 
a = fl, y = 0 second-order scheme, equation (lo), 
a = /?, y = a -*: third-order scheme, equation (1 3). 

(1 5 4  

(15W 

The face values are evaluated 

'e=3 ($E + AJ-a(&E-'P) + B(4P-  'w) + 4 Y ( ~ E -  M - 4  Y(&- 

4 w = 3 ( 4 P +  4W)+ p('W -6-1 + i Y ( 4 E -  'P)-$ Y(4W - 4WW). 
The expressions for 'e and 'w are of the same form except that the nodal points involved are 
shifted by one grid size. Therefore the conservative property of the differential equation is 
preserved. It needs to be noted that the second-order central difference is a special case of the 
general first-order difference scheme: a= B = y = 0; and the third-order Agarwal scheme is a special 
case of the general second-order scheme: a = j3 =; and y = 0. A summary of the assignment of the 
parameters for the different schemes is given in Table I. In the table the Agarwal scheme is denoted 

Table I. Assignments of parameters for various schemes. 
~ ~______ ~~~ 

y=o y Z a - 1  6 

/3=0 /?=a /?=a 
(first-order scheme) (second-order scheme) (third-order scheme) 

a=O CD CD - 
a =3 UD LUD ELUD 

q = l  6 - CUD(*) CUD(*) 
a=& - QUD EQUD 

CUD($) a=$ - - 



UPSTREAM-WEIGHTED HIGH-ORDER DIFFERENCING 173 

as CUD(&) (cubic upwind difference) and the Kawamura-Kuwahara scheme as ELUD (extended 
LUD). Two additional third-order schemes, which correspond to a = 4 and respectively and will 
be discussed later, are also shown and denoted as CUD(*) and EQUD (extended QUD). 

3. EXAMINATION OF THE COEFFICIENTS 

Consider a one-dimensional transport equation: 

where is the diffusivity. By using the standard central difference approximation for the diffusion 
and equation (14) for the convection, the difference analogue of the above equation is given by 

A P 4 P =  A E 4 E  + A W ~ W  + A E E ~ E E  + Aww4ww 
The coefficients are defined as 

A ,  =( -++ a + y )  + 1/Pe, 

A ,  =(++a + 2 8 -  y)+ I/Pe, 
A --1 

EE- 2 7 ,  

A,,= - B + h  
A , = 2 a + / I + 2 / P e = ~ A c ,  c=E, W, EE, WW, 

where Pe = u A x / T  is the cell Peclet number. The coefficients for each difference scheme are listed 
in Table 11. In Table I11 the coefficients are divided by the central coefficient for infinite Peclet 
number. For the pure transport problem the values of transported quantities in the interior of the 
flow field should be within the range bounded by boundary values. To ensure diagonal dominance 
of the coefficient matrix as well as ‘boundedness’ of the solution, all the coefficients of equation (18) 
should be of the same sign. Violation of this regulation may cause unboundedness in the solution, 
i.e. solution oscillations. Besides, when a relaxation method is used to solve the system of discrete 
equations, it may result in numerical instability, since the coefficient matrix is not diagonally 
dominant, unless underrelaxation is taken. To indicate to what extent the difference schemes 
deviate from diagonal dominance and boundedness, the last column of Table I11 gives the ratio of 
the absolute sum of the neighbouring coefficients to the central coefficient. Some interesting points 
can be drawn from the tables. 

First we examine the first-order scheme. It is obvious from Table I11 that the weighted 
coefficient A,/Ap is non-negative and CIA,I/Ap is equal to one when a>+. Hence upstream 
extrapolations (a 2 +, see Figure 2(a)) do not impair diagonal dominance. Since the truncation 
error is linearly proportional to a, the zero extrapolation of the standard upwind difference (a =$) 
is the most accurate among the extrapolations. 

It is seen from Table I1 that the east coefficient A, of the central difference becomes negative 
when the cell Peclet number becomes larger than two. It is unconditionally unbounded as Pe 
approaches infinity because the central coefficient A, is zero and thus the neighbouring weighted 
coefficients A,/A, and A,/Ap become positive and negative infinities respectively. For the other 
second-order schemes Table I11 reveals that a constant negative coefficient A,,/A, (= -8 
emerges, ruling out any possibility for these schemes to avoid unboundedness. Furthermore, the 
principal coefficient &/Ap (=&-ka) becomes negative for O <  a <*. From Table I1 it can be seen 
that A, is negative when Pe > 3 for the CUD(;) (a =k) and Pe >$ for the QUD (a =&). As for a 2 4, 
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Table 11. Coefficients for various schemes in one-dimensional steady flow 
-~ 

Scheme Coefficient 

A ,  A,, A,  

General form 

First-order 
(p=y=O) 
UD 
(a=+) 
Second-order 
@=B, Y=o) 
CD 
(a=B=O) 

LUD 
(a = B =+) 

QUD 
(a = B = f )  
Third-order 
(a= j ,  y=a-&) 

ELUD 
( a = B = f )  
CUD($ 
(a =B=$)  
CUD (1/6) 
(a = B=+) 
EQUD 
(a = B =& 

(-++a + y) + 1/Pe 

(a+)+ 1/Pe 

1/Pe 

(a+)+ 1/Pe 

-f+ 1/Pe 

1/Pe 

-)+ 1/Pe 

(-3 + h) + 1/Pe 

f +  1/Pe 

1/Pe 

-f+ 1/Pe 

-&+l /Pe  

-tr 
0 

0 

0 

0 

0 

0 

1-101 
12 2 

-f 

-1 12 

0 

28 

(2a + B) + 2/Pe 

2a + 2/Pe 

1 + 2/Pe 

3a + 2/Pe 

2/Pe 

$ + 2/Pe 

) + 2/Pe 

3a + 2/Pe 

f + 2/Pe 

1 + 2/Pe 

+ + 2/Pe 

a + 2/Pe 

the LUD scheme (a=*) is the most accurate according to the Taylor series truncation error 
analysis. Comparing z(Ac( /Ap suggests that the unboundedness of the LUD solution is the least 
serious. The QUD is most likely to suffer from this problem, seriously undermining stability. The 
CUD(&) is in between. 

For the third-order schemes the weighted coefficient Aw/Ap is negative, but no longer constant 
as for the second-order schemes. It varies from -8 for the ELUD to --& for the EQUD. The 
third-order schemes, not including CUD(*), require four points, two upstream and two down- 
stream, to evaluate the convected face values, while for the second-order schemes not more than 
three points, two upstream and one downstream, are involved. Hence the far east downstream 
coefficients AEE/Ap of the third-order schemes are non-zero: -4 for the ELUD, -A for the 
CUD($) and for the EQUD. As for the coefficient A,, it becomes negative for the EQUD when 
Pe is larger than y. For infinite Pe the weighted coefficient AE/Ap is 8, 0 and -$ for the ELUD, 
CUD($) and EQUD respectively. It is interesting to note that the sum of the far neighbouring 
coefficients Aww/Ap + A,E/Ap is the same for each third-order scheme and its corresponding 
second-order scheme, and so is the sum of the principal coefficients Aw/A,+ AE/Ap. 
The absolute sum (Ac(/Ap is plotted against 01 for all the schemes in Figure 3. The three curves 

represent the three general difference schemes. When a is close to zero, the values of the s u m  for all 
the schemes approach infinity, implying that the solutions of all the schemes would be unbounded. 
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Table 111. Weighted coefficients for various schemes in one-dimensional steady flow at infinite Peclet number 

Scheme Coefficient 
~ 

AWWIAP A w l 4  A€IAP A€EIAP 1 IA,l/AP 

CD 
(a  = 8 = 0) 0 cn -cn 0 cn 

- 
- (B -4Y) ++a + 28-y f + a + y  -Y 

General form 

First-order 
(8=7=0) 0 ++ f- 114a 0 1/24! (i), 1 (ii) 

2a+p 2a+b 2a+B 4a + 28 

UD 
(a=O) 0 1 0 0 1 
Second-order 
(a=8, y=O) 4 1 + 1/6a $-- 1/6a 0 1 + 1/3a (i), f (ii) 
LUD 
(a = = f) -4 3 0 0 - 5 3 

1 0 Y 
Third-order 
(a=B, y = a - i )  -(Q+1/36a) f+2/9a $-2/9a -++ 1/36a J (iii), 3+4/9a (iv), & (v) 

ELUD 

CID($) 

CUD(+) 

- 2 1 9 9 -v $ (a = 8 = f) 

3 (a = p =+) -a 3 0 12 

(a=B=i)  -4 2 -3  0 3 

-2  

1 1 _- 

2 

EQUD 
(a = b=$) 1 10 - -T 18 4 

(i) For O < a S t .  
(ii) For a&. 
(ii) For or>$. 
(iv) For ; l a s f .  
(v) For O<aS+. 

The two curves representing the first- and third-order schemes collapse into one for ash. They 
intersect with the other curve at a =b. In the range &<a <+ the curve for the third-order scheme 
lies between those for the other two schemes. It remains constant for a 23 and intersects with the 
curve for the second-order scheme again at a =$. On the basis of this observation it is argued that 
the LUD, ELUD and CUD($) may behave similarly. The sum of the first-order scheme is less than 
those for the high-order schemes for LY 2 b. It reaches and remains unity when a increases to 3 and 
beyond. 

4. TAYLOR SERIES ANALYSIS 

Aside from round-off error the solution of a difference equation does not satisfy the original 
differential equation. The actual equation solved is called the modified equation24 and is obtained 
by expanding each term of the difference equation into a Taylor series about the point where the 
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- Ibc l  
I 

AP 
6- I 

nd order  scheme 
3rd o rde r  s c h e m e  

-- 
1 -  \------ 

1 st  o r d e r  s c h e m e  
I I  - a  

1/81/6 1/3 1/2 
Figure 3. Variation of the ratio 1 JAJA, with a for the first-, second- and third-order schemes 

equation is located. Consider the case of purely convective transport 

u-=o. d 4  
dx 

Its modified equation solved by the difference equation (14) is 

d 4  
dx 

U-= E,, 

where 

-1 @4 E,= -y[(2n-2)/3-2a]u(Ax)"-' - 
(n=2 ,4 , .  . . )  n. dx" 

The term E, is the truncation error introduced by the difference equation. To be clearer, the first 
few terms of E ,  are given by 

As Ax becomes zero, the error vanishes and the modified equation is reduced to the original 
differential equation. Hence the finite difference equation is consistent with the given differential 
equation as Ax approaches zero. 
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The order of accuracy of a scheme is normally defined by the lowest-order power of the 
increment A x  of the truncation error. The even-order spatial derivatives have dissipative nature.24 
The first-order upwind scheme has a second-order derivative as its leading diffusion term with the 
coefficient linearly proportional to Ax. The lowest order of numerical diffusion for the second- and 
third-order schemes is a fourth-order derivative, of which the coefficient is proportional to the 
cube of Ax. Since the parameter y does not appear in the even-number terms, any second-order 
scheme and its corresponding third-order scheme have the same numerical diffusion, and the 
central difference, for which a = /.3 = 0, is non-dissipative. 

In multidimensional flow the streamlines do not usually coincide with the grid lines. In the 
presence of skewness of the flow direction with respect to the grid co-ordinates, there exists cross- 
stream numerical diffusion in addition to the streamwise numerical diffusion discussed above. The 
cross-stream numerical diffusion of the upwind difference has been studied by a number of 
 researcher^.'^*^^*^^ In the following the approach used by Le~chziner'~ is applied to the general 
difference scheme. 

Consider a two-dimensional convective transport 

a4 84 
ax ay 

u -+ u -=o, 

where u and u are the velocity components in the x- and y-directions. If the velocities u and u are 
assumed to be constant, the streamlines are straight lines at an angle O=tan-'(u/u) to the x-axis. 
Using a transformation to transfer the above equation from the Cartesian co-ordinate system (x, JJ) 

to the streamline co-ordinate system (t, q) ,  where < and q are the co-ordinates parallel and normal 
to the streamlines respectively, we obtain 

where V= u/cos 8 = u/sin 8 is the magnitude of the resultant velocity along the streamlines. It is 
obvious that 4 is a constant along each streamline; however, it can be different on different 
streamlines. The modified equation can be derived by using the same transformation and ignoring 
all the derivatives involving a/a < to the difference analogue of the above equation to obtain 

where 

-1  V a@ I [(2"- 2) (7 - /.3) + 13 - sin (28) (~0s"- 8 -sin"-' 8) (Axy-' -. 
( n = 3 , 5 , . . . )  n.  2 a v  + (26) 

The cross-stream error E,  depends on the normal derivatives an4/aqn. It is also interesting to note 
that this error is a function of the flow angle 8. More about this error and the effect of the flow 
angle will be given in the later sections. 

It should be pointed out that although the lowest-order power of Ax is referred to as the order of 
accuracy in the analysis, it cannot be truly representative of the error of the difference schemes. 
The effect of the high-order truncated terms may be as important as the lowest-order term and 
cannot be ignored. Evidence of this will be seen later. 
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5. THE UPWIND CONNECTION TO NUMERICAL DIFFUSION 

It has been shown by the Taylor series analysis that all the difference schemes except the central 
difference inherently have dissipative character, which is of second order for the upwind difference 
and of fourth order for the others. Pulliam2' has demonstrated that the UD scheme is equivalent 
to the non-dissipative CD scheme with a second-order artificial dissipation and that the LUD 
scheme is equivalent to a five-point central difference, not the standard three-point CD, with an 
added fourth-order dissipation. A similar concept can be generalized to the other upstream- 
weighted schemes given above as follows. 

It is emphasized here that the difference scheme given by equation (14) is applicable only for 
positive velocity. For negative flow velocity u the corresponding difference is of the form 

By denoting equation (14) as a backward differencing V 4  and equation (27) as a forward 
differencing A 4 ,  a general form suitable for any flow direction is given: 

Obviously the right-hand side reduces to the backward differencing u Vr$ for u > O  and the forward 
differencing uA4  for u<O. The mean and half of the difference of the backward and forward 
differencings are given as 

+ (V 4 + A 4) = -3 (B - 7) 4 E E  + (+ + B -7) & -(+ + B -7) dw + 8 (B -Y) 4ww, 
W 4  -Ad = + B 4 E E  - (a + PI 4 E  + 

(294 

(29b) + B) 4 p  - (a + 8) 4w + 9 B4ww. 
Expanding each term on the right-hand side of the above equations into Taylor series yields 

where 

E,,,,= 1 -[(2"-2)/l-2a] -1 lul (Ax)"-':. an 4 
( n = 2 , 4 , .  . , )  n! ax 

The error term Edd is the same as the sum of the odd-number terms of E,  given by equation (21) 
and the other error term E,,,, is the same as the sum of the even-number terms of E,. The mean 
u(V4 + A4)/2 is a non-dissipative central difference scheme, which represents the standard CD 
scheme for the first-order upwind difference, a five-point second-order central difference for the 
second-order schemes and a five-point fourth-order central difference for the third-order schemes. 
The other term lul (V4 -A4)/2 is the added artificial dissipation, representing a second-order 
numerical diffusion for the first-order UD and a fourth-order diffusion for the high-order schemes. 
The dissipation term disappears when the standard CD is adopted. It is noted that (i) according to 
equation (29a) the embedded central differences for all the third-order schemes are identical since 
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P - y  is a constant (=&) for these schemes and (ii) because equation (29b) is independent of y, the 
dissipation is the same for any second-order scheme and its corresponding third-order scheme. 

6. SINGLE-CELL ANALYSIS 

As mentioned before, the high-order terms in the Taylor series analysis may not be small when 
compared with the low-order terms. This point will be clear in the analysis of this section. Here 
attention is confined to a single cell with mesh interval Ax = 0.25. The exact values are imposed on 
all the neighbouring nodal points apart from the central one. The solution at the central point, &, 
by the chosen difference schemes is then evaluated. Such analysis is done on one-dimensional and 
two-dimensional cases. The CD scheme is excluded from this analysis. 

6.1. One-dimensional analysis 

The following one-dimensional equation is under consideration: 

The analytical solution of this equation is 4 =x"+'. The errors between the numerical solutions 
and the analytical solution for the difference schemes are compared in Figure 4. 

It is noted that d"$J/dx"=O for n2m-t  1 if m is an integer. If the solution 4 is a quadratic 
function (m = l), all the high-order schemes give the exact solution as shown in Figure 4 since all 

L 
0 

w 
k 
k 

0.05 

-0  

- 0.05 

-0.1 

-0.15 

- 

- 

0 2 4 6 8 10 12 14 16 18 20 

Power m 
Figure 4. Variation of solution mor with power for various schemes for the 1D single-cell analysis, 4 = x"+ 
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the derivatives in the truncation error E,  given by equation (21) become zero. Similarly, the exact 
solution is obtained for all the third-order schemes if 6 is of cubic form (rn = 2). It is also seen from 
the figure that the predictions by the high-order schemes are more accurate than that by the UD 
for the power less than about three. When the power becomes sufficiently large, the prediction 
errors of the UD and the second-order schemes approach zero, but not those of the third-order 
schemes: the errors produced by the ELUD, CUD(# and EQUD are -6, -& and & respectively. 
The reason is as follows. When m is large, the analytical values of 6 are virtually zero at nodal 
points WW, W, P and E and unity at point EE; thus & = A E E & E / A p = A E E / A p .  According to 
Table 111 the ratio &/Ap is zero for the first- and second-order schemes, including the CUD(& 
and non-zero for the third-order schemes. 

Figure 5 presents the leading nine components of the error E, for each difference scheme against 
the power m. The term E,,, is the sum of the nine error components. If the power is large enough, 
all the error components of the UD approach zero, whereas for the high-order schemes the high- 
order components, in turn, dominate. It is noted that an increase of the power means an increase of 
the gradient of the solution. Also seen from the figure is that for all the schemes apart from the n = 3 
of the QUD the signs of the even-number error components are opposite to those of the odd- 
number error components. The two sets of components of the second-order schemes, including the 
CUD(:), have nearly the same magnitude. When the power m becomes sufficiently large, their 
counter-contribution to the error results in attenuation of the total errors of the second-order 
schemes as shown in Figure 4. For the third-order schemes the differences between the magnitudes 
of the even-number and odd-number error components are substantial. Thus the total errors do 
not decay with an increase of m. It is emphasized here that the error E,,, shown in the figure is a 
sum of truncated errors. It cannot represent the actual error when the power is larger than about 
12 because the error components with order higher than 10 have been too large to be ignored. 

6.2. Two-dimensional analysis 

The case considered here is the two-dimensional convection problem given by equation (23) in 
the region -05 Sx, y 10.5. By assuming the flow to be uniform, 4 is independent of the streamline 
co-ordinate 5, as shown by equation (24). It is assumed that 

4 = (1 + v )", (33) 
where is the co-ordinate normal to the streamline co-ordinate. The origin of the co-ordinates is 
set at the central point. Thus the analytical solution is 4p= 1. The effect of flow angle on the 
numerical solution for different powers is illustrated in Figure 6. For a quadratic distribution 
(m = 2) all the difference schemes except the UD give the exact solution (Figure 6(a)) because all the 
derivatives of the cross-stream truncation error E ,  given by equation (26) vanish. Similarly, the 
calculations of the third-order schemes are free from error for m = 3 (Figure 6(b)). Figure qc) 
presents the results for m = 9. Generally speaking, the UD scheme has larger cross-stream error for 
all flow angles. All the schemes give error-free solutions at 0" flow angle and have the largest errors 
at 45" angle. The LUD is the most accurate and the QUD the most unfavoured scheme. However, 
for another case 

(34) 
shown in Figure 7, the situation is somewhat different. The QUD stands the best while the LUD is 
the most unpreferred. Besides, the largest cross-stream errors occur at about 22.5" flow angle for 
the high-order schemes and about 35" angle for the UD scheme. 

Figure 8 displays the variation of the error components of the cross-stream truncation error E ,  
with flow angle for the case 4 =(1 +q)'. The odd-number error terms vary like sinusoidal 

4 = (1 - vI9, 
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Figure 5 (Continued) 

functions with their peaks at 22.5" flow angle. The even-number errors increase almost 
monotonically with the flow angle. Since the odd-number and even-number errors have different 
signs (n = 3 for the QUD is exceptional), they make counter-contributions to the total errors. In 
contrast, for the case 4 = (1 - q)', not shown here, the signs for the two sets of errors are of the same 
family; their contributions to the total errors are additive. 

7. MODEL TEST PROBLEMS 

The analysis in the last section was limited to a single point. All the errors of the solution are 
attributed to the truncation error of the discretization. In actual calculations the domain of 
solution is partitioned into a number of cells. Any error produced at one point will propagate and 
affect the other points. The single-cell analysis does not reflect the effects of error propagation and 
accumulation. In order to evaluate the difference schemes, tests must be performed over a 
representative mesh. The problems chosen here are one- and two-dimensional linear transport 
equations with or without sources, for which the analytical solutions are available. Solutions of 
these model problems are obtained using the PDMA (penta-diagonal matrix algorithm), which is 
an extension of the TDMA (tri-diagonal matrix algorithm). It is a direct solver when applied to 
one-dimensional cases. For the two-dimensional cases a line-by-line relaxation is used to sweep 
across the whole domain in an alternating direction manner. In the following the CD is excluded 
from the study. 
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Figure 7. Variation of solution error with flow angle for various schemes for the 2D single-cell analysis, 4 =(1  - s ) ~  



i! L 

I 
I 

I 
I 

I 
I 

i;
 

a,
 

I 
I 

I 

k
 

E
 

Fi
gu

re
 

15
 

10
 

5 0 -5
 

&
 

a,
 

4
 

k
 
0
 

k
 

k
 

a,
 

8 4 0 -4
 

-8
 

- 1
2 
7
 

0 
5 

10
 

15
 

20
 

25
 

30
 

35
 

40
 

45
 

A
ng

le
( d

eg
re

es
) 

A
ng

le
 ( d

e g
 re
 e s

 ) 
(4

 
UD

 
(b
) 

LU
D 

8.
 V

ar
ia

tio
n 

of
 le

ad
in

g 
tr

un
ca

tio
n 

er
ro

r 
te

rm
s 

w
ith

 f
lo

w
 a

ng
le

 fo
r 

va
rio

us
 s

ch
em

es
 fo

r 
th

e 
2D

 s
in

gl
e-

ce
ll 

an
al

ys
is,

 
=(

1+
 v

)~
: (a)

 U
D

 (b
) L

U
D

 (c
) 

Q
U

D
 

(d
) 
EL
UD
;(
e)
CU
D(
ik
(f
)C
UD
(&
(g
)E
QU
D 



2 1
 

2 k
 

a,
 

4
 

L
O

 
0
 

k
 
k
 

Q
) 

-1
 

2 3
 2 

-2
 

-3
 

- 
- 

I 
I 

I 
I

I
I

I
I

I
I

 
1

1
1

 
3
 

0 
5 

10
 

15
 
20
 
25
 
30
 
35
 

40
 

45
 

A
ng

le
( d

eg
re

es
) 

0 -3
 

-6
 

-9
 

Fi
gu

re
 8

 (
C

on
tin

ue
d)

 



UPSTREAM-WEIGHTED HIGH-ORDER DIFFERENCING 189 

rl N m * 
1 I I I N d 0 

s u r ~ a ~  i o i i a  *unq 

4 0 In Ec 
I I I I 

u) 
t 

0 
-J. 

In 
p3 

0 rn 

In 
N 

0 
N 

2 

E: 
In 

0 



190 

I 

Y.-Y. TSUI 

I I 1 1 1 I I I 2 

1 2 
k 
Q) 
-4 

k O  
0 
k 
k 
a, 

-1 

2 
3 
b -2 

-3 

c \ \  n= 6 

t 1 
I I I I I I  l l l ~ l l l l l l l l ~  

Angle( degrees) 
0 5 10 15 20 25 30 35 40 45 

( g >  EQUD 
Figure 8 (Continued) 

7.1. One-dimensional model cases 

The steady one-dimensional transport equation has the form 

d4 d24 u-=r--+s, OSXSI. 
dx dx2 

Three test cases are examined. 

(3 5)  

Case I: Convection and di_trusion in absence of source. This case is subject to the boundary 
conditions 4=0, 1 at x=O, 1 respectively. The analytical solution is obtained as 

1 - exp (Px) '= 1 -exp(P) 3 

where P = u/T is the Peclet number of the flow. This case has been widely used for testing difference 
schemes. The computational domain is divided into five cells. Figure 9 shows the results for Peclet 
numbers P =  10 and 50, i.e. for cell Peclet numbers Pe=2 and 10. When the Peclet number, or 
more precisely the cell Peclet number, is small, the high-order schemes yield better results, as 
shown in Figure 9(a). However, undershoots can be seen in the solutions by the ELUD and 
CUD(*). As the Peclet number increases, the oscillations become prominent in the solutions of all 
the schemes except the UD and LUD. The solutions by the QUD and EQUD are most 
unacceptable owing to serious spurious oscillations. 
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Case ZZ: Convection with plane source (without diffiion) 

1 at x=0.5, 
0 elsewhere. 

s= { 

4= { 
The analytical solution is 

0 for x<0.5, 
1 for ~ 2 0 . 5 .  

(37) 

(38) 

This case was employed by Syed et a l l 8  to evaluate the QUD and CUD(&). Figure 10 shows the 
results of the present calculations for Ax=O-l. The UD yields the exact solution and the LUD 
underpredicts after the mid-length of solution domain. The solutions by the other schemes exhibit 
oscillations in the first half of the computational domain and similar behaviour to that of the LUD 
in the other half. It is interesting to note that the shapes of the oscillations are very similar to those 
in Figure 9(b) for the case of pure convection and diffusion with large Peclet number. 

Case ZZZ: Convection with linear source (without dzfliion) 

-80~+24,  01~S0.4, 
s= [ 8 0 ~  - 40, 0.4 IX  50.5, 

0, x 2 0.5. 

The analytical solution is 

- 40x2 + 24x, 0 5 x 10-4, 
4=  { 40x2 - 4 0 ~  + 12.8, 0.4 I x I 0.5, 

2.8, x 2 0.5. 

Figure 10. 
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Comparison of calculations by various schemes for the 1D convection model case 
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with plane source 
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This kind of model problem has been chosen by Leonard' and Shyy16 to evaluate the QUD and 
LUD schemes. From the results shown in Figure 11 it is obvious that the UD computation has 
substantial error while the solutions by the high-order schemes are close to the exact one, with the 
LUD being the best. It has been shown by Leonard' that the UD prediction for this case is 
identical to the CD computation for the convection/diffusion case with cell Peclet number Pe = 2 
owing to the fact that the artificial viscosity r=uAx/2  is embedded in the UD scheme. 

7.2. Two-dimensional model cases 

The two-dimensional convection/diffusion transport equation is given as follows: 

Here two cases are considered. 

Case IV: Convection of a step discontinuity in a unijbrmflow. This model problem was first 
used by Raithby','' and then widely employed to test the cross-stream numerical diffusion of 
difference schemes. In this case the diffusion terms are neglected and the flow is assumed uniform 
at an angle 8 to the x-axis. This equation can be reduced to 

a4 a4 -+tan 8 -= 0. 
ax a Y  

The analytical solution is that 4 is constant along each streamline. Thus the solution is equal to 
the inlet value, which is a function of the co-ordinate normal to the streamlines. By assuming the 

4 

3 

.- 

g 2  

1 

0 
0 0.5 1 

X 
Figure 11. Comparison of calculations by various schemes for the 1D convection model case with linear source 



1 
1 

0.
5 

0 

0.
5 

0 

Y 
(a

) 
8=

16
.7

" 
Fi

gu
re

 1
2.

 C
om

pa
ri

so
n 

of
 c

al
cu

la
tio

ns
 b

y 
va

ri
ou

s 
sc

he
m

es
 fo

r 
th

e 

Y 
(b

) 
B=

45
" 

2D
 c

on
ve

ct
io

n 
m

od
el

 c
as

e 
w

ith
 u

ni
fo

rm
 fl

ow
: (

a)
 l3

= 
16

.7
";

 (b
) 8

=4
5"

 



UPSTREAM-WEIGHTED HIGH-ORDER DIFFERENCING 195 

convected inlet value to be a step function, in inlet boundary conditions are specified as 

0 at y=O, O s x s l  and x=O, O s y < y o ,  
1 at x=O, y o < y s l ,  

where 
1-tan8 

Yo= * 

(43) 

(44) 

The results at the mid-plane (x=05) are shown in Figure 12 for 8= 16.7" and 45". The large 
numerical diffusion of the UD results in a large smearing error when compared with the high- 
order schemes. However, overshoots and undershoots cannot be avoided in the solutions of the 
high-order schemes. Similar to the results in the one-dimensional flow, the QUD and EQUD have 
the largest unboundedness problem but the steepest gradients. Comparing Figures 12(a) and 12(b) 
reveals that as the flow angle increases, the solution becomes flatter and the oscillatory behaviour 
is less obvious for all the schemes owing to the increasing cross-stream diffusion. 

Case V: Convection and diffusion of a step discontinuity in a recirculatingflow. This problem 
was devised by Smith and Hutton" in a meeting to evaluate more than 20 different numerical 
schemes. It has been adopted by RunchalZ9 to evaluate his CONDIF method. This test problem 
retains an important feature of the recirculating flow: the streamline curvature, A schematic 
diagram of the problem is illustrated in Figure 13. The governing equation is given by equation 
(41). The velocity components are prescribed as 

u = 2y( 1 - XZ), (454 

u= -2x(l-y2). (45b) 
The boundary conditions on the east, west and north faces of the domain of solution are 
prescribed as 

4=1-tanhC at x = + l ,  O s y s l  and y = l ,  - 1 s x s l .  (446) 

$=l+tanh [(2x+l)C] at y=O, - 1 s x s O .  (47) 

The inlet condition at the south face is 

In the above the constant C is taken to have the value 10. Thus 4 is essentially zero on the 'solid' 
boundaries and a step profile with 4 = 0 for x < - 0.5 and 4 = 2 for x > - 0.5 at the inlet boundary. 

Y,"  
A 

'X,  u 
x = - l  I N L E T  0 OUTLET x = l  

Figure 13. Schematic illustration of the 2D recirculating flow problem 
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At the outlet the zero-gradient condition is imposed. The computational domain is divided into 
20 x 10 cells with mesh interval Ax = Ay = 0.1. The &distributions by the difference schemes for 
flow Peclet numbers P = 100 and lo00 are shown in Figure 14. Also show in the figure are a set of 
numerical data which are used by Smith and Hutton as representative of the exact solution. Again 
it demonstrates the prevailing of the numerical diffusion for the UD scheme. For the low-Peclet- 
number case the solutions by the high-order schemes agree well with the exact solution. When the 
Peclet number is increased to P =  1O00, the calculations show substantial differences from the 
exact one. Besides, overshoots and undershoots appear in the solutions. To improve the accuracy, 
the mesh is refined to give Ax = Ay = 0.05. As shown in Figure 15, the results obtained by the high- 
order schemes are close to the exact solution in the region of steep gradient. The amplitudes of the 
wiggles are also much reduced. 

8. CONCLUSIONS 

Analysis and evaluation have been performed on a general difference scheme which represents a 
number of first-, second- and third-order schemes. The main conclusions can be drawn as follows. 

1. 

2. 

Examination of the coefficients of the difference schemes shows that it is impossible to get rid 
of negative coefficients for the upstream-weighted high-order schemes and thus unbounded- 
ness cannot be avoided in the solutions by these schemes. 
The formal order of accuracy cannot ascertain the accuracy of a given scheme because the 
high-order terms in the truncation error may dominate the error when the gradient of the 
solution is steep. 

0 0.5 

X 
1 

Figure 15. Comparison of calculations by various schemes for the 2D recirculating flow model case for P= loo0 and 
AX = Ay=@O5 
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3. Each of the upstream-weighted high-order schemes can be regarded as a non-dissipative five- 
point central difference with a fourth-order numerical dissipation. The fourth-order 
dissipation is not able to smear out the high-frequency errors. This confirms the previous 
conclusion that it is impossible for these schemes to suppress oscillations. 

4. In the choice of the high-order schemes the LUD scheme show the best compromise between 
numerical diffusion and unboundedness. The solutions of the QUD and EQUD suffer from 
the largest oscillations. According to our experience with use of the PDMA as the solution 
solver in solving two-dimensional cases, the LUD is the most cost-effective, while the QUD 
and EQUD require the largest underrelaxation during the solution iteration and thus much 
more computer time. 
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