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This paper is the second in a series describing propagation of electromagnetic radiation in phase-conjugate

oscillators.

We apply the formulation developed in the first paper to study the phase-conjugate resonator

(PCR) and the Fabry—Perot cavity with an intracavity phase-conjugate mirror (PCM). Our results show that
nondegenerate oscillation occurs in the PCR for large parametric gains and fixed separation between the
conventional reflector and the PCM. The bandwidth is considerably reduced from that of a PCM alone. In
the phase-conjugate oscillator, oscillation will occur at the pump frequency only if there is no separation be-
tween the conventional mirrors and the phase-conjugate element and if the nonlinear medium fills the entire

Fabry-Perot cavity.

INTRODUCTION

In Part I of this series! we formulated the power reflectiv-
ity and transmissivity as well as the oscillation condition
in phase-conjugate oscillators. These oscillators consist
of conventional Fabry-Perot cavities with an intracavity,
transparent Kerr medium that is pumped externally by a
pair of off-axis, counterpropagating pump beams. An ex-
ternal signal with a frequency different from that of the
pump beams is injected into the cavity along its axis.
Nearly degenerate four-wave mixing (NDFWM) generates
a wave that is a phase conjugate of the signal beam. Addi-
tional waves arise owing to the presence of the conventional
end mirrors of the cavity. Externally driven, intracavity
four-wave mixing in Fabry-Perot resonators has been con-
sidered before by Agrawal? and Yaholam and Yariv® for
saturable absorbers and photorefractive media, respec-
tively, and for equal frequency of the interacting waves.
In contrast to our study, Refs. 2 and 3 studied the external
driving field that bounces back and forth between the two
mirrors of the cavity as the counterpropagating pumps for
the nonlinear medium, while another external, weak signal
that is not part of the cavity probes such a device, thereby
combining NDFWM with cavity operation.

We apply our general formulation of nondegenerate op-
eration of phase-conjugate oscillators to the special case of
a phase-conjugate resonator (PCR), a Fabry—Perot cavity
with one conventional mirror, and a phase-conjugate mir-
ror (PCM). This device has been studied extensively.*®
References 4—-6 examined the transverse modes in a PCR.
References 7 and 8 looked at the fields inside and outside
a PCR without taking into account the nature of the non-
linear process responsible for phase-conjugate reflection.
Reference 9 examined the effects of a noisy probe field in-
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cident upon a phase-conjugate Fabry-Perot resonator.
Our theory describes nondegenerate oscillation in a PCR
by taking into account the four-wave mixing process re-
sponsible for generating the phase-conjugate wave. Ana-
lytic expressions are obtained for power reflectivity and
transmissivity as well as for the oscillation condition,
showing the dependence of these parameters on the linear
and parametric gain of the PCM, mirror reflectivities, and
separation between mirrors and the PCM. Numerical
plots are presented to illustrate this parameter dependence.

PHASE-CONJUGATE OSCILLATORS
BOUNDED BY ONE CONVENTIONAL
REFLECTOR AND ONE
PHASE-CONJUGATE MIRROR

Figure 1 shows a linear optical resonator bounded by a
PCM and one conventional mirror, r,. The PCM is a
transparent Kerr medium with linear gain (or loss), and it
is pumped externally by a pair of off-axis, counterpropa-
gating laser beams of frequency w. A weak probe field at
frequency w + 8, where 6 << w, is incident upon the PCM
from the left. The field E; at frequency w — 8, which
propagates backward to the left of the PCM, is generated
by NDFWM at the PCM. The field E, at frequency
o + 8, which propagates backward to the left of the PCM,
is generated by reflections off the conventional mirror of
the beam transmitted by the PCM. Waves G; and Gs, at
frequencies w + & and w — 8, respectively, propagate in
the forward direction to the right of the conventional mir-
ror and can be similarly interpreted. Following the for-
mulation developed in Ref. 1, the complex phase-conjugate
reflectivity r, and transmissivity ¢, and the coherent re-
flectivity r, and transmissivity ¢, are given by

© 1991 Optical Society of America




1422 dJ. Opt. Soc. Am. B/Vol. 8, No. 7/July 1991

NONL INEAR PUMP BEAM As
"ED'UM/ / MIRROR 13
4
E, hw)+g A, g/ Wil |wtd G,
" _,Az (&) W-o G
W-0 3

E‘@(i)_'li(_; A‘

0/ ¢

PUMP BEAM As tb

Fig. 1. Basic geometry of a linear phase-conjugate resonator by
NDFWM. In this case the incident probe wave, whose frequency
w + & is slightly detuned from that of the pump waves (both at
frequency w), will result in a conjugate wave with an inverted
frequency w — 8. g is the linear nonsaturating background
(intensity) net gain coefficient.

Leeet al.

By Egs. (1) and (2) the complex phase-conjugate reflec-
tivity r, and transmissivity ¢, and coherent reflectivity r,
and transmissivity ¢, are given by

rp = =i tanfft—— el
»= |«| My = || ? tan?|«|l
it i tore*®

= K + ) ——E——,
t ” tan(k| seclx|! exp[ik(l + b)] 1 |raf? tan?inll
rs = sec’|x|l exp[2ik(l + b)]_rz* ’

1 — |ry)® tan?x|l
. 2

= —ik(l + D)) 4
b = secll exp[~ik(l + Ol @

@

where k& = k; = k;. Note that, if r, = 0, then we recover
the results of Refs. 1 and 9 for DFWM in a PCM. Identi-
fying tan®|x|! and sec®|«|/ as the phase-conjugate power re-
flectivity and coherent transmissivity of a PCM,*® we
note that Eq. (5) below is similar to the results obtained in
Ref. 8 for the fields in a PCR. The differences arise be-
cause Vesperinas® considers the external probe field to be
incident upon the mirror instead of upon the PCM and
does not account for the nonlinear process responsible for

B |rof*a*
= E* B 1+ exp(—2iAkb) — Kkiko*B2|ry|? ’
, _ Ga _ —iks®ars*(1 = rexp(~iAkl/2)exp(~iAkb + iky(l + b)]
P El* tz[exp(—ZiAkb) - K]Kz*ﬁ2|r2|2]
.= Ey _ a?expli(k, + k2)( + )]
*E* exp(—iAkb) — kik2*BYry|%exp(iAkb)
. _ G _ (L= rd)atexpl=iky(l + b)lexp(iAkl/2exp(2iAkb)
B ta[exp(2iARD) — k1*koB*?|rf?]
where
it = ) X Oty exp(gl/2) = ¥ exp(gl/2),
1
a=3$, Ak=k1—k2,
2 . . [sl
B= 5} smh(Z) ’

s = [~(Ak — ig)* — 4rxia*T2,
D = (—g — iAk)sinh(sl/2) + s cosh(s}/2). @)

The oscillation condition is
K1K2*B2|7'2|2 = exp(—2lAkb). (3)

Note that the power reflectivities R, and R,, power
transmissivities T, and T}, and the oscillation condition are
independent of the phase introduced by reflection or trans-
mission at mirror 2, where R, = |r,|% B, = |r|% T, = [t,]%,
and T, = |t,|%. Note that in the absence of mirror 2
(re = 0)r, = t, = 0, while r, and £, reduce to the results of
Ref. 1 for a PCM, with the exception that wave G; is now
measured at [ + b instead of 1.

We now discuss four different operation conditions:
WMAE=0,g=0,k1=k2=k;(2)Ak =0,g # 0,k; = k3 = k;
(8) Ak # 0,8 = 0,k1*q > 0;(4) Ak = 0,8 # 0,k:%3 > 0.
For each case, we discuss the complex phase-conjugate
reflectivity and transmissivity, coherent reflectivity and
transmissivity, and oscillation condition.

Condition (1). Ak = 0,g = 0,,; = 1, = K
Condition (1) is the case of degenerate four-wave mixing
(DFWM) in the phase-conjugate element of the PCR.

phase conjugation at the PCM.
By Egs. (2) and (3) the oscillation condition is

|raf? tan®k|l = 1. (5)

Equation (5) is identical to the result obtained in Ref. 9
and shows that, if mirror 2 is perfectly reflecting, oscilla-
tion occurs at ||l = m/4, which is lower by a factor of 2
than that for a PCM alone.

Note that for the PCR the oscillation condition [Eq. (5)]
and the four power coefficients in Eq. (4) are independent
of separation & between the PCM and the conventional
mirror.

Condition (2). Ak = 0,g # 0,k; = 1; = Kk

Condition (2) is the case of DFWM in the nonlinear medium

with linear gain or loss in addition to the parametric gain.
If one substitutes Eq. (2) into Eq. (3) and simplifies, the

oscillation condition becomes

20x* — (/21"

g + 2lkry| ©

tan{[|x|® — (g/2)°T"4} =

Equation (6) shows how the presence of linear gain (or loss)
will affect the values of parametric gain required for os-
cillation in a PCR.
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Fig. 2. Parametric gain |«'|l versus linear gain gl at the oscilla-
tion condition for Ak = 0 and several values of conventional mir-
ror’s reflectivity: |rg|® = 1, 0.8, 0.5, and 0.1.

The resonator oscillation frequency w is also independent
of the separation between the two reflectors for DFWM in
the PCM.

In Fig. 2 we plot the parametric gain '/ required for
oscillation versus the linear gain or loss gl for several val-
ues of conventional mirror reflectivity: |rs|% = 1, 0.8, 0.5,
and 0.1. When there is no linear gain or loss (g = 0) and
Ire|? = 1, the coupling strength required for oscillation is
7/4, as expected from Ref. 9 for a PCM in the presence of
a perfectly reflecting mirror. Linear absorption losses in
the medium substantially increase the threshold value of
|«'|l at which oscillation will occur. ' If the medium were
somehow to exhibit linear gain instead of absorption, then
the threshold value of the coupling strength would be cor-
respondingly lowered owing to the additional gain avail-
able from the medium. Also, for a given linear gain or
loss in the nonlinear medium, the threshold value of |«’|!
for oscillation increases as losses at the conventional mir-
ror of the PCR increase.

Condition (3). Ak # 0,8 = 0,k0,* > 0
Condition (3) is the case of NDFWM in the PCM of
the PCR.

The oscillation condition can be separated into an am-
plitude part and a phase part. The equality of the ampli-
tude part yields

A 2 + 4 *)1/2
4|r2|2K1K2* sinz———( k 2K1K2 ) l

(Ak2 + 4K1K2*)1/2

= AR? + 4kyks* cos? L, (7

2
and the equality phase part yields
_ Ak (Ak2 -+ 4K1K2*)1/2
tan(bAk) = BF T de )" an ) . 8

Owing to NDFWM in the PCM of the PCR, the oscillation
condition is now a function of separation b between the
PCM and the conventional mirror. For practical applica-
tions, if we choose b = 0 (i.e., the conventional mirror is
placed exactly at the back of the PCM), and if we consider
nondegenerate oscillation (A% # 0), then Eq. (8) requires
that (Ak? + 4k,k.*)2l = 2pm, where p is an integer. This
however cannot satisfy Eq. (7) because «ik»* is a real and
positive number. Hence, if b = 0, oscillation will occur
only at the pump frequency when Ak = 0. As shown in
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Fig. 2, the minimum parametric gain required for oscilla-
tion will occur for a perfectly reflecting conventional
mirror when |r;|> = 1. Hence for this special case the os-
cillation condition of Eq. (7) can be simplified to

AR?

cos(AR? + 4k = — -
4K1K2*

&)

Since the magnitude of the cosine function cannot ex-
ceed unity, by Eq. (9), oscillation can be achieved only
when the absolute value of the maximum wave number de-
tuning |A%| is equal to or less than 2(x k%)% Let kix* =
k2 then Eq. (9) can be solved for k! as a function of Akl/27
by numerical methods and we can obtain b/! from Eq. (8).

We plot the phase-conjugate power reflectivity R,
versus normalized wavelength detuning ¥ = Akl/27 =
(—AA/2)(2rl/A%) in Fig. 8. The dotted-dashed curve rep-
resents the case of no conventional mirror, i.e.,, an ordi-
nary PCM based on NDFWM, with a parametric gain of
/2. The solid curve corresponds to a linear resonator
with a PCM and a perfectly reflecting conventional mirror
placed exactly at the back of the PCM. The parametric
gain for this curve is /4. Note that the introduction of
the mirror not only reduces the parametric gain required
for oscillation but also dramatically decreases the band-
width of the filter. This is because feedback from the
mirror in the form of reflected light along the axis of
the resonator increases the internal gain available from
the PCM, thus increasing the finesse of the resonator.'’
Oscillation occurs at pump frequency in both cases. A
larger value for parametric gain above this threshold value
(k! = 1.11065, as in the dashed curve of the same figure)
shows that nondegenerate oscillation is now possible at
ARl/2m = +£0.853, but for the fixed separation of b/l =
0.70722. The bandwidth of the dashed curve is less than
that of the solid curve.

Condition (4). Ak # 0,8 # 0,k;*k; > 0

Condition (4) is the case of NDFWM in the externally
pumped nonlinear medium with linear gain or loss be-
sides the usual parametric gain.
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Fig. 3. Phase-conjugate power reflectivity R, versus normalized
wavelength detuning ¥ for linear gain g = 0. The dotted-
dashed curve represents the case of no conventional mirrors and
kl = m/2. The solid and dashed curves correspond to alinear reso-
nator with a PCM and a perfectly reflecting conventional mirror
at its two ends with nonlinear gain «I = m/4 and «I = 111065,
respectively. Note that when nonlinear gain is above /4, non-
degenerate oscillation is possible and the bandwidth of the dashed
line is narrower than the other two lines.
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Fig. 4. Phase-conjugate and coherent power reflectivities R,
versus normalized wavelength detuning ¥ with r. = -1, k'l = 1,
for gl = —0.2, b/l = 2,37018 and gl = 0.2, b/l = 0.57008.
These graphs show that for constant nonlinear gain «'l, it is pos-
sible to detune the frequency of oscillation if we vary linear gain
gl and choose a suitable b/l.
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Fig. 5. Phase-conjugate power reflectivity versus normalized
wavelength detuning at oscillation to show the effect of different
b/l

Numerical plots of the phase-conjugate reflectivity of
the PCR are shown in Fig. 4 as a function of normalized
wavelength detuning ¥ respectively for r, = =1, k'l =1,
and linear gain gl = +0.2. For filter applications, linear
gain (gl > 0) is better than linear loss (g! < 0) because
the central peak (at Akl/27 = 0) is smaller for linear gain
than for linear loss, and the sidelobe structure is reduced.

We may rewrite Eq. (3) as

Kikg*BYro|? = exp[—i(2Akb + 27rp)], (10)

where p is an integer. The b// has a multiple-valued solu-
tion for the phase part of Eq. (10) when «’'l, gl, and ¥ are

fixed. We plot the phase-conjugate power reflectivity ver-

sus normalized wavelength detuning in Fig. 5 to show the
effects of different values of b/ corresponding to p = 0,1
on the mode spacing at the oscillation condition. This fig-
ure shows that, when we increase p (i.e., increase separa-
tion b/1), we will produce the detrimental effect of decreas-
ing the mode spacing and increasing the power reflectivity
in sidelobes other than that at the oscillation frequency.

PHASE-CONJUGATE OSCILLATOR

Figure 6 shows an optical resonator t}?t consists of two
partially reflecting mirrors, r; and rp, and an intracavity
PCM that provides linear gain (or loss) besides parametric
gain through FWM.

Leeet al.

Condition (1). g = 0,k = k; = 0,Ak = 0,R,R, # 0
Condition (1) is the case of a Fabry—Perot cavity, with no
intracavity PCM.

The coherent reflection and transmission are

_ r2* exp(ikd) + ri* exp(—ikd)
* T ri*ro* exp(ikd) + e(—ikd)

_ _l_ 1+ r12r22 - r12 - 7‘22
tity | rirs exp(—ikd) + exp(ikd)

ts (€8Y)

whered = [ + a + b,and & = k; = k;. These two equa-
tions can reduce to Airy’s formula. Note that ¢, = 0 if
ro? = 1, since there is no transmitted wave G, if mirror 2
is perfectly reflecting. Also note that r, = ¢, = 0, as
expected in the absence of the intracavity PCM.

Condition (2). g # 0,x; = 1 = 0,Ak = O,R; R, # 0
Condition (2) is the case of a Fabry-Perot cavity with an
intracavity linear gain medium. ’

By using r; = \/—Iﬁ, re = \/ITZ, we can write the oscilla-
tion condition as

1 + R1R; exp(2gl) — 2V R, R, exp(gl)cos(2kd) = 0,
(12)

where R; and R, are real numbers. Solving this equation,
we obtain

VR, R; exp(gl) =1, (13a)

which means that laser round-trip gain must be equal to
unity, and

2n%(l +a+ b) = 2pm, (13b)

where p is an integer. Hence in a Fabry-Perot cavity
with an intracavity gain medium the net phase change
acquired in one round trip must be an integral multiple
of 2m

Condition (3). g = 0,5, = x; = K,Ak = O,R, R, # 0
Condition (3) is the case of DFWM in the PCM bounded by
two conventional mirrors (see Ref. 7).
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Fig. 6. Basic geometry of linear phase-conjugate oscillator by
NDFWM. In this case, the incident probe wave, whose frequency
w * § is slightly detuned from that of the pump waves (both at
frequency w), will result in a conjugate wave with an inverted
frequency @ ¥ 8. g is the linear nonsaturating background
(intensity) net gain coefficient.
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By using the formulation developed in Ref. 1, we obtain
the phase-conjugate reflection coefficient
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can reduce it to
(1 — RiR.)AR(AR? + 4k sin(AR? + 4k = 0, (18a)

L

—'tl(l - 7‘1*2) (1 + R2)l
I«

tan|x|l

Tp

- t#%1 + Ry R, — tan?k|l(R, + Ry) + (1 + tan’|kl|) [rir; exp(—2ikd) + ri*rs* exp(2ikd)]}'

(14)

Equation (14) shows that when x = 0, then r, = 0, which
means that, when there is no four-wave mixing, the phase-
conjugate wave cannot be generated. Note also that, if
R; = 0, we recover the results for r, [Eq. (4)] for the PCR.
IfR; = 1, thenr, = 0 because in that case phase-conjugate
light cannot be transmitted to the left by mirror 1.

Similarly, we can obtain the coherent reflection coeffi-
cient

2VR: Ry(AR? + 4k®)cos[(k1 + ko)l + €] + (R1R2 + 1)
(AR + 4y l)
2
(AR + 4™
g T

X (Ak2 cos(Ak? + 4k + 4ik? co
— 4k* (R, + Ry)sin? 0. (18b)

Note that when Ak = 0 Eq. (18a) is always satisfied and

_ (1 — tan?x|])[rs* exp(2ikd) + Rir; exp(—2ikd)] + 1y tan?k|l + r* + Ry(ry* tan®lk|l + ry)

Ts 1+ RiR, — tan?k|l(R; + R;) + (1 + tan’|kl|)[rir exp(—2ikd) + ri*ry* exp(2ikd)]

15)

where R; = || and i = 1,2. Note that this equation re-
duces to Airy’s formula as given by Eq. (11) when [«|l = 0.
For oscillation to occur the denominator of Eq. (15) must
be zero. The resulting equation can reduce to the result
of Yeh.!

Condition (4). g # 0,x;, = k; = K,Ak = 0,R, R, # 0.
Condition (4) is the case of DFWM in a transparent
medium with linear gain (or loss) and parametric gain
bounded by two conventional mirrors.

In Fig. 7 we plot the threshold parametric gain |«’|l
as a function of the normalized cavity length ¢ =
k(l + a + b) = kd with r, = =1, r; = V0.9, and linear
gain (or loss) gl = +0.05268. Note that for cavity lengths
in which ¢ = ym, oscillation can still occur for y not an
integer, and the minimum threshold occurs when v is an
integer. In Fig. 8 we plot the parametric gain «’'l versus
the linear gain gl at threshold oscillation conditions for
varius y when |r| = =1, || = V0.9. The effects of gain
(or loss) on oscillation are evident. When vy is an integer
(minimum threshold) and the linear gain of the medium
reaches its threshold value gl = 1/2 In(1/R; R;), then
k'l = 0 for oscillation, as given by Eq. (13a).

Condition (5). g = 0,Ak = 0,]ki;| # 0,R1R; # 0
Condition (5) is the case of NDFWM in the transparent
nonlinear medium bounded by two conventional mirrors.
Consider condition (1) of this section, with a = b = 0,
kike* = k2, and adjust the phase of r; and r; such that

rirs exp[—i(ky + ko)l] + ri*ro* expli(ky + k)]
= 2|rrocos[(k: + ko)l + £], (16)

where ¢is the total phase of reflection from mirrors r; and
re. The oscillation condition reduces to

2(@?|rirslcos{(ky + ko)l + £] + RiR(@*) — «*(B*T
+1 - k¥BYAR, + Ry = 0. (17)

By separating Eq. (17) into real and imaginary parts, we

Eq. (18b) reduces to the result of Ref. 12. )
For RiR, <1 and Ak # 0, sin(Ak? + 4«*)Y® = 0, and
Eq. (18b) reduces to

1+ RiR;
cosf(ky + ko)l + €] = ————
[( 1 2) g] zvm
Ri=0.9 ; Re=1
15T
l A A tk=0
I'E 7 ) A
F f\ —— gt=-0.05268
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Fig. 7. Threshold parametric gain «'l required for oscillation as
a function of normalized cavity length ¢ = k(I + a + b) with
rs = —1 and r, = V0.9 for linear gain (g! = 0.052 68) and linear
loss (gl = 0.052 68).
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Fig. 8. Parametric gain «'l versus linear gain gl at threshold
oscillation conditions for varius v, where kd = ym, r; = —1, and

ri=V 0.9.
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or

Ak2{2vR1R2 COS[(kl + kz)l + f] + R1R2 + 1}

+ 4K2{2 VR R, COS[(k1 + kz)l + §] - R - R, = 0, (19)
which is not possible for Ry R; < 1. Hence, when a =
b = 0, oscillation can occur only for A2 = 0. Hence non-
degenerate oscillation is not possible if the nonlinear
medium fills the entire Fabry-Perot cavity.

For condition (2) of this section, let 7, = VR;, ry = ~1,
and «? = k1i,% ab # 0, where R, is a real number and
k* = 0,/2V ufe x3dslg. Then the oscillation condition
simplifies to
«*(B*)* Ry exp[iAk(b — a)] + exp[—iAk(b — a)l}

— exp[iAk(a + b)] — Ri[(a*)® — k*(B*7]* exp[—iAk(a + b)]

= —2VR(a*)? cos[(k1 + ko) (I + a + b)]. (20)

Comparing the imaginary parts of Eq. (20), we obtain

2(AR? + 42y

2
2 2)1/2

" (Ak2 cos(Ak® + 4x®)" + 4i® cos2(Ak%l)

X sin Ak(a + b) + Ak(AR® + 4®)? sin(AR? + 4%

X cos Ak(a + b) = 0, @1)

and, comparing the real parts of Eq. (20), we obtain

4k? sin ! sin Ak(D — a)

27’1 2 2
it R R (AR® + 4x?)cos[(ky + k2) (I + a + b)]

2 231/2
= —4x? Sin29k_124_'<)_

+ [Ak2 cos(Ak? + 4k®)Y¥ + 4«2 cos

X cos Ak(a + b) — AR(AR? + 4x?)'2 _
x sin(Ak? + 4x®)YY sin Ak(a + b). 22)

lcos Ak(D — a)

(AR + ity J
— !
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By canceling Ak(b — @) and from Egs. (21) and (22), we
can obtain a single formula that is a function of «i, Ak,
(k1 + k2)l, and (¢ + b)/l only. Then we can use Mueller’s
iteration scheme of successive bisection and interpolation
to find «l for a given Akl (a + b)/l, and (&, + ks)l. Actu-
ally, because (%, + k;)! is much greater than Akl when
we change (a + b)/l the term cos(k; + k2)(I + a + b) on
the left-hand side of Eq. (22) will oscillate much faster
than cos Ak + a) and sin Ak(b + a) of Eq. (21) and the
right-hand side of Eq. (22). So, when a pumping frequency
is chosen [i.e., (k; + k)l = constant], we can choose X
and Y as independent variables such that

X = sin[Ak(a + b)],
Y = cos[(k, + k2) (I + a + b)] (23)

and introduce integers (p and q) such that

a+b 1 a1
1+ T Tt kz)(cos Y + 2mq),
sin™X + 2mp
ARl = -———(a Y (24)

Then we can solve «! by using Eqgs. (21) and (22).
Figure 9 shows the XY plane versus nonlinear parametric
gain «l for (ky + ko)l = 10000, (p,q) = (1,10000), r, =
V0.9, r, = —1, and reflection index 7 = 1.62 at the oscil-
lation condition. Note that ¢ must be greater than
(k1 + k2)l such that (a + b)/! is positive, that, using
Eq. (21), we can obtain (b — a)/l, and that Ak! is depen-
dent on (p, g), so that the solution of Eqgs. (21) and (22) for
«l is also dependent on (p, q).

Condition (6). g # 0,Ak # 0,kk,* = K%, R, R; # 0
Condition (6) is the case of NDFWM in the transparent
nonlinear medium that exhibits linear and parametric
gain and is bounded by two conventional mirrors.

7

Fig. 9. XY plane versus nonlinear parametric gain «! for (&, + k3)l = 10000, (p,q) = 1,10000), r; = V0.9, r, = —1, and n = 1.62 at the
oscillation condition, where X = sin[Ak(a + b)], Y = cos[(k1 + k2)(! + a + b)], and (p, q) is’defined in Eq. (24).
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Fig. 10. Normalized wavelength detuning ¥ versus parametric

gain «'l and linear gain gl for the oscillation condition at
cos[(k; + k2)l]=1,R; = 04,R, = 04,anda = b = 0.

For example, let @ = b = 0 and k1ks* = «% ry and r; are
real. The oscillation condition reduces to

RiRja® — kiko'B*F + 1 = ki2*B(Ry + Ry)
+ 2(127'17'2 COS[(k1 + kz)l] = 0. (25)

Equation (25) can also be separated into two equations for
real and imaginary parts and functions of cos[(k; + k2)],
«'l, gl, and Akl. Then we can use Brown’s method for de-
termination of «'l and gl from these two equations for
constant cos[(k; + k2)!]. For example, Fig. 10 shows the
normalized wavelength detuning ¥ versus parametric
gain «'l and linear gain gl for the oscillation condition at
cos[(k; + k2)l] =1and R; = 04, R, = 0.4. Because it is
a multiple-valued solution, it is possible to have many
pairs of gl and «'l for a particular value of ¥ (not shown
in this figure).

CONCLUSION

We have developed a general theory of electromagnetic
propagation in phase-conjugate oscillators. Specifically,
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we have treated the propagation of electromagnetic radia-
tion in a resonator bounded by one conventional reflector
and one phase-conjugate mirror and resonators containing
an intracavity phase-conjugate element. Wavelength de-
tuning and linear and parametric gains are considered.
Phase-conjugate power reflectivity, coherent power reflec-
tivity, and threshold oscillation conditions are derived.
The results indicate that (1) nondegenerate oscillation is
possible (A% = 0) for the cases in which gl = 0 (as in
Fig. 1 for b = 0, Fig. 6 for ab # 0, and all cases of gl # 0)
and oscillation will occur only at pump frequency (A% =
0) for the cases in which gl = 0 (as in Fig. 1 for b = 0 and
Fig. 6 for ab = 0); (2) we can use small «'! to generate
self-oscillation and simultaneously produce the coherent
and phase-conjugate waves.
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