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When defining and designing software 
with structured analysis and design 
methods, we need to restructure 
data-flow diagrams. Using basic editing 
operations to restructure large systems 
with voluminous data-flow diagrams is 
tedious, laborious and error-prone. It is 
necessary to have data-flow diagram 
editors that provide editing operations 
specific for restructuring. This paper 
proposes and formally specifies a set of 
operations sufficient for all 
restructuring needs. It also confirms 
that the properties of consistency and 
completeness are observed by all the 
restructuring operations, and that both 
models of data-flow diagrams are 
equivalent, before and after each of the 
restructuring operations. 

1 Introduction 

To increase engineer productivity and improve software 
quality, the software engineering community have made 
considerable research efforts towards creating better 
methods and tools. Structured ambsis and design methods 
[ 141 are widely used in defining and designing software. 
Among structured techniques, data-flow diagrams have 
been reported to be the most popular [5] and contribute the 
most favorably towards increasing productivity when 
computer-aided software engineering (CASE) technology is 
used in preference to manual methods [ 61. Not surprisingly, 
many CASE tools have been developed to help draw data- 
flow diagrams. Most of them support consistency analysis 
[7-101 and various complex drafting functions [&11], but 
none of them provide a set of editing operations sufficient 
for conveniently restructuring data-flow diagrams. In this 
paper, we investigate this problem and propose a set of 
editing operations sufficient for all restructuring needs. 

1 .I 

To accommodate large systems, structured analysis does 
not model a system in a single data-flow diagram as large 
as a football field, for example, but instead as multi-levelled 
data-flow diagrams. These diagrams form a strictly hierar- 

The need for restructuring 

chical structure, with composite processes defined in higher 
levels and their component processes defined in lower 
levels. At the top of the hierarchy is a single diagram called 
the context diagram, which contains only one process. The 
system is considered as partitioned from the process into all 
lower level diagrams, which we call transformation dia- 
grams. The levelled structure makes a system model easy to 
read and comprehend. However, the concept of levelling 
generates the necessity for restructuring. The main needs 
are listed below. 

Restructuring for appropriate Partitioning. Levelled 
data-flow diagrams allow a top-down approach to analysis, 
which helps us build a system model of data-flow diagrams 
systematically in a top-down fashion. However, the 
approach does not guarantee that the resulting model is an 
appropriate partitioning. For example, the name of a com- 
posite process may not accurately reflect everything indi- 
cated by its name in the child diagram of the process; we 
have to break it apart, or distribute all or part of its work to 
other processes. Another candidate for restructuring is a 
data-flow diagram that turns out to consist of disconnected 
networks. 

Restructuring to reduce complexity. We model a system 
as a levelled structure for readability. However, when many 
processes crowd a dataflow diagram in a system model, 
such readability is hindered; we have to split the diagram. 
Another important problem is interface complexity. It is a 
requirement that every dataflow diagram should have a 
fairly simple flow pattern. When the total number of flows 
in a diagram or the number of flows connected with a 
process is too large, we have to group some of the processes 
in the diagram together to push some flows down to a lower 
level. 

Restructuring to present particular system aspects. Most 
errors found during testing and operation are traceable back 
to poor understanding or misinterpretation of users’ require- 
ments [ 121. Effective communication with users is therefore 
important. It is helpful to present the system model in 
various aspects, by restructuring the upper levels of the 
system model according to users’ interest. Useful aspects 
are grouping related responses, grouping processes whose 
inputs and outputs are connected to a terminator or related 
terminators, and grouping processes to declare the interface 
between man and machine. 

Restructuring for function allocation. After completing 
the requirements phase, and before applying transform and 
transaction analyses [3, 41 to obtain structure charts from 
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levelled dataflow diagrams, we have to restructure them 
around candidate processors (if multi-processor architecture 
is used) and then restructure those allocated to an individ- 
ual processor around candidate tasks (if multi-tasking soft- 
ware architecture is used for the processor). Of course, 
processor modelling and task modelling do more than 
restructuring of levelled data-flow diagrams. Nevertheless, 
except for the identification of processors and tasks, func- 
tion allocation through restructuring is the earliest stage of 
the design phase. 

None of the above-mentioned restructuring needs are our 
invention. They are found in various works by DeMarco 
[ l] ,  Ward and Mellor [13, 141, Hatley and Pirbhai [15], 
and Yourdon [16], where many convincing cases requiring 
restructuring can be found. We only summarise the needs 
here for the convenience of readers. 

1.2 Requirements of restructuring operations 

Certainly, we can use basic editing operations, such as 
inserting/deleting elements, connecting/disconnecting ele- 
ments, and creating/removing diagrams, to accomplish 
restructuring. However, this approach is tedious, laborious 
and error-prone. Problems of inconsistency and incomplete- 
ness may creep in. It is not easy to keep levelled data-flow 
diagrams in balance after restructuring. It is more difficult 
to guarantee that both system models are equivalent, before 
and after restructuring. These problems become serious for 
large systems with voluminous data-flow diagrams. There- 
fore, we need data-flow diagrams editors that provide spe- 
cific operations for restructuring. An eligible set of 
restructuring operations must meet the following three 
requirements. 

0 Both system models of levelled data-flow diagrams 
must be equivalent, before and after evey, restructuring 
oberation in the set. The structuring of a system model into 
levelled diagrams is for ease of reading and comprehension. 
Composite processes in upper levels are only bookkeeping 
entities, representing ways of keeping track of connected 
sets of lower level processes. Thus, any restructuring oper- 
ation must not change the underlying network of primitive 
processes. 
0 Evey, restructuring operation in the set must maintain 
the system model properties of consistency and completeness. 
Restructuring is performed in those phases after a system 
model is completed and passes consistency and complete- 
ness analysis. Thus, the system model to be restructured is 
consistent and complete. Any restructuring operation must 
not break down the properties. 
0 The set of restructuring operations must meet the 
restructuring needs stated earlier. As restructuring oper- 
ations are used to automate laborious manual operations, 
any operation which meets some of the restructuring needs 
must be provided by one, or a simple combination, of the 
operations in the set. However, for users’ convenience, it is 
not necessary to reduce them to a minimal set. 

We have created such a set of restructuring operations. 
They have been formally specified and validated to meet all 
requirements. The formal specification and the validation 
are represented later in this paper. 

2 Specification of restructuring operations 

In this Section, we propose an eligible set of restructuring 
operations, define a formal notation based on the set, rela- 
tion, and first-order logic theories [17], and then use the 
notation to specify the operations. 

2.1 An eligible set of restructuring operations 

To meet all the restructuring needs mentioned above, we 
must have editing operations for grouping processes into 
composite processes (folding), for replacing composite pro- 
cesses with their component processes (expanding), for split- 
ting composite processes and splitting data-flow diagrams 
(splitting), for merging composite processes and merging 
data-flow diagrams (merging), and for moving processes 
from their residing data-flow diagrams to other diagrams 
(transferring). Therefore, we have at least five restructuring 
operations, including folding, expanding, splitting, merging 
and transferring. The five operations are sufficient for all 
the restructuring needs and are discussed below. A sche- 
matic illustration is shown in Fig. 1. 

0 Folding: groups a set of processes residing in the same 
data-flow diagram into a composite process, creates a child 
diagram for the composite process, and puts the set of pro- 
cesses, data flows and data stores linked with these pro- 
cesses, and their connections into the child diagram. This 
operation increases a system model of levelled data-flow 
diagrams by one level. 
0 Expanding: replaces a composite process in its residing 
diagram, with all the elements and their interconnected 
network in its child diagram. This operation decreases a 
system model by one level. 
0 Splitting: splits a composite process and its child 
diagram into two composite processes and two diagrams, 
with each new composite process being either of the two 
new diagrams. 
0 Merging: merges two composite processes in the same 
diagram into one composite process, merges their child 
diagram into one diagram, and makes the new diagram 
become the child diagram of the new composite process. 
0 Transferring: transfers a process from its current 
residing diagram into another. Of course, we cannot transfer 
the only process in the context diagram to another diagram; 
we do not allow another process to be transferred to the 
context diagram. Besides, we cannot transfer any process to 
any diagram decomposed directly or indirectly from the 
process ; otherwise, cyclic decomposition sequences will be 
introduced into the system model. 

2.2 The notation 

We shall specify each operation as an editing operator. 
Before the specification, we describe below the notation 
used, including a formal definition of the structures of data- 
flow diagrams and system models of levelled data-flow dia- 
grams, and a formula for expressing restructuring 
operators. 

2.2.1 Data-flow diagram structures: following DeMarco’s 
structured analysis [ l ] ,  we use four kinds of elements (i.e. 
processes, terminators, flows, and stores) and connections 
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1 folding 2 expanding 

3 splitting 4 merging 

5 transferring 

Fig. 1 Schematic illustration of restructuring operations 

between the elements to build a data-flow diagram. Thus, 
we have 

Definition I 

A data-flow diagram (structure) is a five-tuple (P, T F, S,  
C),  where P, T, F and S are sets of processes, terminators, 
flows and stores, respectively, and C s [ ( P  U T)  x 
(F  U S ) ]  U [(F U S )  x (P  U 771 is a connection relation. 

An initially created dataflow diagram will be (0, 0, 0, 
0, 0). In this definition, we assume that every element is 
given a label when created and it will be referred to by its 
label afterwards. For simplicity, we do not introduce a label- 
ling function for the definition. When we talk about the 
equivalence of two processes, such as p1 = p2 and pl  # p2, 
we mean whether they have the Same label, such as 
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Label(p1) = Label(p2) and Label(p1) # Label(p2). Similar 
conventions are applied to terminators, flows and stores. 

For a data-flow diagram structure x, we use the notations 
x.P, x.T, x.F, x.S and x.C to refer to its five components. 
To shorten expressions, we define X. Y as Ux E x.  Y, where 
X is a set of data-flow diagrams and Y can be P, T,  F, S or 
C. We also define four functions for obtaining the flow 
inputs, flow outputs, store inputs and store outputs of pro- 
cesses and terminators. 

Definition 2 

For a process or terminator e, in its residing data-flow 
diagram x ,  and for a set of processes and terminators E, a 
flow input function Fi(J a flow output function Fe(-), a 
stcore input function 9(-) and a store output function So(-) 
are defined as follows: 
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cash-order credible-order 

order 

credit-order 

credit-info 
X 

rejected-order 

b C 

Y = (P, r. F. s, c) F'(CLASSIFY-ORDER) = {order} 
f O(CLASSIFY-0RDER) = {cash-order, creditorder} 
S'(CLASSIFY-ORDER) = 0 
SO(CLASSIFY-ORDER = 0 

P = {CLASSIFY-ORDER. VERIFY-CREDIT} 

T =  0 
F = {order, cash-order, credit-order, credible-order, 

S = {credit-info} 
C = {<order, CLASSIFY-ORDER), <CLASSIFY-ORDER, 

cash-order), (CLASSIFY-ORDER, credit-order), 
(creditorder. VERIW-CREDIT). (credit-info. 
VERIFY-CREDIT). <VERIFY-CREDIT, credibile-order). 
<VERIFY-CREDIT. rejected-order)} 

rejected-order} F'(VERIFY-CREDIT) = {credit-order} 
Fo(VERIFY-CREDIT) = {credible-order, rejected-order} 
S'(VERIFY-CREDIT) = {credit-info} 
S'(VERIFY-CREDIT) = 0 

Fig. 2 
n A sample transformation diagram b Definition of the diagram's structure c The flowistore input/output functions 

Illustration of the data-flow diagram structure and the flowlstore inputloutput functions 

F(e)  = {f E xEl cf, e )  E x.C for some e E x.P U x.T} 

F(e) = {f E xPI (e ,  f )  E x.C for some e E x.P U x.T} 
.!?(e) = {s E x.SI (s, e )  E x.C for some e E x.P U x.T} 

F(e) = {s E x.S I ( e ,  s) E x.C for some e E x.P U x.T} 

P(E) = U , , , P ( e )  

F " 0  = U e , E F " ( 4  
90  = U. E E S (e )  

s"(E) = U .  t E .%) 

Context diagrams and transformation diagrams are special 
data-flow diagrams. The same structural format as the data- 
flow diagram structure is used to represent context dia- 
grams and transfomtion diagrams. A sample 
transformation diagram is given in Fig. 2 to familiarise 
readers with the notations and functions. 

2.2.2 System mod&: We model a system as a levelled 
structure of data-flow diagrams, where the top one is a 
context diagram and all lower level diagrams are 
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transformation diagrams. Thus, we can define a system 
model as a context diagram, a set of transformation dia- 
grams, and a mapping between these transformation dia- 
grams and their parent processes. 

Definition 3 

A system model is a three-tuple (cd, X ,  D), where cd is 
a context diagram, X is a set of transformation diagrams 
and D E  P x X is a decomposition relation, with 
P = CdP U X.P. 

An initially created system model will be ((0, 0, 0, 0, 
a), 0, 0). For a system model m, we use the notations 
m .cd, m .X and m .D to refer to its three components, and 
the notations m.P, m.T, m.F, m.S and m.C to refer 
to the sets of all processes, terminators, flows, stores, and 
their connections in it, i.e. m.P = m.cd.P U m.X.P, 
m.T = m.cd.T, m.F = m.cd.F U m.X.F, m.S = mX.S and 
m.C = m.cd.C U m.X.C. 

For every ( p ,  x )  in m.D, we use the function x.pa to 
refer to the parent process p of the diagram x, and the func- 
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tion p.kid to refer to the child diagram x of the process p .  
If p does not exist in m.P such that ( p ,  x )  is in m.D, the 
function xpa is undefined. If x does not exist in m.X such 
that (p, x) is in m.D, the functionp.kid is undefined. 

2.2.3 Formula for  expressing restructuring operators: 
before restructuring, we must make sure that such a process 
is allowed. Thus, a formula for expressing restructuring 
operators consists of a prerequisite and some editing 
actions. An operator is specified as 

operator-name(parameter1, parameter2, . . .) = = 

require a-prerequisite 
perform 

editing-action-1 
editing-action-2 
... 

end 

An editing action changes the structure of a system model 
or one of the data-flow diagram structures in the model. We 
use the notation \ t o  specify the structure to change and the 
structure after change, and use the key word where to 
indicate a newly created data-flow diagram structure if 
required. An editing action is specified as 

the-structure-to-change \ the-structure-after-chanRe, 
[where specifcation-ofa-newlycreated data- 

flow-diagram-structure] ; 

We also use the keyword then to force a list of editing 
actions to be taken one after another. For simplicity we 
allow recursive definition, and for flexibility we allow an 
action to he conditional and existentially or universally 
quantified, such as 

condition =. an-action 
(Ix)(condition s an-action) 
(VxXcondition * an-action) 

2.3 Specification of the restructuring operators 

Now, we specify the five restructuring operators with the 
notations. To ease understanding, naming of parameters 
and variables in the specification is shown in Fig. 3. The 
specification only shows what changes each of the operators 
will make to the addressed system model; no implementa- 
tions are indicated. The expression for each of the Fis and 
S,s in the specification can be reformulated in many other 
ways. For brevity, for a process (or a set of processes) ter- 
minators and all other processes that are not in the dia- 
grams directly or indirectly decomposed from the process 
(the set of processes) are called the externals of the process 
(the set of processes); the flows and stores that are con- 
nected both with the process (the set of processes) and with 
the externals of the process (the set of processes) are called 
the interfacing flows and stores of the process (the set of 
processes); and the connections between the interfacing 

1 fold (m. x,  R, p) 2 expand (m. x, p) 

x.pa 

X X 

4 merge (m. x. p, q) 

Fig. 3 Naming of parameters and variables in the specification of restructuring operators 
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I 

5.2 lower (m. x. p. vj 

5.1 raise (m, x, p, yl 

V V 

5.3 transfer (m, x, p, yl 

xo = vo xo = yo 

Fig. 3 (continued) Naming of parameters and variables in the specification of restructuring .operators 

flows and stores and the process (the set of processes) are 
called the interfacing connech'om with the process (the set 
of processes). In addition, note that we inhibit any 
restructuring operator from making changes to the context 
diagram in a system model. 

2.3.1 Thefold operator: it groups a set of processes (R), in 
a transformation diagram (x )  in a system model (m), into a 
composite process (p). The flows and stores that are only 
connected internally with the processes in the set are all 
removed from the diagram. All the connections with the 
processes are also removed, but the original interfacing con- 
nections with the set of processes become the interfacing 
connections with the composite process. The operator also 
creates a diagram (y) as the child diagram of the process (p) 

for accommodating the set of processes (R) and their orig- 
inal connected flows, connected stores and connections. 

fold(m, x, R, p) = = 
require (x E m.X) A (R  c x.P) A (R # a) 
perform 

x.c U 

A (R # x.P)  A (p $ m.P) 

x \ (x.P U {p} - R, x.T, x.F - F3, x.S - S3, 
U SI) x (PI1 U [{PI 

x (F2 U S2)] - C1) 
m \ (m.cd, m.X U {y}, m.D U {(p, y>}b 

where y = (I?, 0, F4, S4, Cl)  
end 

where 

F1 = F'(R) - P(R) 
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F2 = F(R) - F‘(R) 
F3 = F’(R) n F(R) 
F4 = F’(R) U F(R)  
S1 = S‘(R) n [S’(x.P - R) U s”(x.P - R)  U S’(x.pa)] 
S2 = S”(R) n [s’(x.P - R) U S”(x.P - R) U S”(x.pa)] 
S3 = [s’(R) U S”(R)] ~ [S’(x.P - R) 

S4 = S(R) U SO(R) 
c1 = U l e R [ ( W  U s’(r)) x {.}I U [ { r }  x (F”(r) U s”(4)l 

U sO(x.P - R) U S’(x.pa) U S”(x.pa)] 

2.3.2 The expand operator: it replaces a composite 
process (p) ,  in its residing diagram (x) in a system model 
(m), with the contents of its child diagram (p.kzd). The inter- 
facing connections with the process are removed from its 
residing diagram. The process’ child diagram and the 
decomposition relationship between the process and its 
child diagram are removed from the system model. 

expand(m, x, p )  = = 

require (x  E m.X) A ( p  E x.P)  

perform 
A (32 E m.XX(p, z )  E m.D) 

~ \ ( x . P ~ p . k i d . P - { p } , ~ . T ~ p . k i d . T , ~ . F  
U F1, x.S U 5’1, 

m \ (m.cd, m.X - {p.kzd}, m.D - { ( p ,  @.kid)}) 
x.c U p.kf4i.c - C1) 

end 

where 

F l  = p.kid.F - [F’(p) U F(p)] 

C1 = C(F‘(P) U S’(P)) x { P I 1  U [ { P }  
S = p.kid.S - [s’(p) U s”(p)] 

x (F“(P) U SYP)) l  

23.3 The split operator: it splits a composite process (p), 
in a transformation diagram (x )  in a system model (m), into 
two composite processes ( p  and q) by s e p a t i n g  a set of 
processes (R) in its child diagram (p.kzd) into a newly 
created diagram Cy). The flows and stores that are con- 
nected both with the set of processes and with the other 
processes in the child diagram (p.kld), but not with the com- 
posite process (p), are added to the transformation diagram. 
The interfacing connections with the set of processes 
become the interfacing connections with the newly created 
composite process. The interfacing connections with the 
other processes in the child diagram are added to the inter- 
facing connections with the original composite process, if 
they were not originally with it. However, the interfacing 
connections that are with the original composite process but 
not with the other processes in the child diagram, other 
than the set of processes, are removed from the transform- 
ation diagram. The newly created diagram becomes the 
child diagram of the newly created composite process (9). 
The operator adds all the connected flows, connected stores 
and connections with the set of processes to the newly 
created diagram. 

split(m, x, p ,  R, q) = = 

require (x  E m.X) A ( p  E x.P) A (32 E m.X)(@, z> 
E m.D) A (R cp.kid.P) 

A (R # 0) A (R #p.kid.P) A (q E# m.P) 

x \ (x.P U { q } ,  x.T, x.F U F1 U F2, x.S U (SI U S2), 
x.C U [(F3 U S3) x { a ) ]  U [ { q }  x (F4 U S4)] 

perform 
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U [ (Fl  U SI) x {PI1 

- [ { P }  x (E U SQl) 
U [{PI  x (F2 U sa1 - [(F5 U S5) x {PI1  

p.kid \ (p.kid.P - R, p.kid.T, p.kid.F - F7, 
p.kid.S - S7, p.kid.C - C1) 

m \ (m.cd, mX U { Y } ,  m.D U ( (4 ,  Y > } X  
where y = (R, $3, F8, S8, C1) 

end 

where 

F1 = F’(p.kid.P - R) n F”(R) 
F2  = F”(p.kid.P - R) n F’(R) 
F3 = F’(R) - F(R) 
F4 = P(R) - F’(R) 
F5 = F’(p) n F’(R) 
F6 = P(p) n F(R) 
F7 = [F’(R) U F(R)]  - F1 - FZ 
F8 = F’(R) U P(R) 
S1 = [S‘(p.kid.P - R) - s’(p)] n [S‘(R) U s”(R)I 
S2 = [S”(p.kid.P - R) - .Y(p)]  n [S’(R) U s”(R)] 
S3 = S’(R) n [ S’(p.kid.P - R) U S”(p.kid.P - R) U Si())] 
S4 = S”(R) n [ S’(p.kidP - R) U S”(p.kid.P - R) U S”(p)] 
S5 = Si@) - S’(p.kid.P - R) 
S6 = s”(p) - S”(p.kzd.P - R) 
S7 = [S’(R) U S”(R)] - [s’(p.kid.P - R) 

U S”(P.kld.P - R)] 
S8 = 9(R) U F(R) 

C1 = UrtR[(Fi(r) U S’(r)) x { r }  I U [ { r }  x (F(d U S W l  
2.3.4 The merge operator: it merges two composite pro- 
cesses ( p  and q) ,  in the same diagram ( x )  in a system model 
(m), into one composite process (p). The flows and stores 
that are only connected internally with the two processes, 
and the connections between the remaining process ( p )  and 
these flows and stores are all removed from the diagram. 
All the connections with the removed process (4) are also 
removed, but those connections that are between the 
removed process and the extemals of the two composite 
processes are added to the interfacing connections with the 
remaining process, if they were not originally with it. The 
operator also merges the child diagrams of the two compos- 
ite processes (p.kid and q.kid) into one diagram @.kid). The 
other diagram (q.kzd) and its decomposition relationship 
with the removed process are both removed from the 
system model. 

merge(m, x ,  p, q)  = = 
require (x E m.X) A (p ,  q E x.P)  A ( P  # q)  

perform 
A ( 3 ~ .  z E m.XX(P. Y ) .  (q, 2 )  E m.0 

x \ (x.P - {q } ,  x.T, xE - F1 - F2, x.S 
~ (S1 U S2), x.C U [(F3 U S3) x {P}] 

U [ { p }  x (F4 U S4)] - C1 - [ (Fl  U S1) 
x {PI1  - [ { P I  x (FZ U S a l )  

p.kid \ (p.kzd.P U q.kid.P, p.kid.T U q.M.T, 
p.kid.F U F5, p.kid.S U S5, 

p.kid.C U 9.kid.C) 
m \ (m.cd, m.X - {q.kid}, m.D - { ( q ,  9.kid)}) 

end 
where 

F1 = F’(p) n P(q) 
F2 = F(p) n F‘(9) 
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F3 = P(q) - PO) 
F4 = F(q) - F’(p) 
F5 = q.kd.F - F1- F2 
s 1  = S’(P) - [S(x.P - {p, 4 ) )  U s”(x.P - { p ,  q } )  

s2 = Y(P) - [S ’ (xS - {p, 4) )  U s”(x.P - { p ,  q } )  

s3 = [s’(q) - s’(p)] n [s‘(x.P - {A q } )  U P(x.P 

U S‘(x.pa)] 

U P(x$a)] 

- { P ,  4))  U S’(x.Pdl 

- {A 41) U S”(X.PQ)l 
S4 = [s”(q) - SO(p)] n [S’(x.P - {p ,  q } )  U S”(x.P 

S5 = p.kzd.S - [(S’(p) U s’(p)) n (s’(q) U s”(q))l 

c1 = [(F’(q) U S’(4)) x {4}1 U [ { q }  x (F”(q) U s”m1 

2.3.5 The transfer operator: it transfers a process (p), 
from its residing diagram (x) in a system model (m), into 
another diagram (y). To specify the operator clearly, we use 
two more primitive operators: the raise operator, which 
moves a process (p) from its residing diagram (x) one level 
up to the diagram (y), in which its parent process (xpa) 
resides; and the lower operator, which moves a process ( p )  
from its residing diagram (n) one level down to the child 
diagram Cy) of one of its sibling processes (y.pa). To Save 
space, detailed descriptions of these three operators are 
omitted. 

raise@, x, p ,  y) = = 
require (x, y E m . 3  A (x.pa E y.P) A ( p  E xP) 

perform 
A ({PI #X.P) 

y \ Cy.P U { p } ,  y.T,y.F U F1 U F2, y.S U (Sl U S2) 
y.c U c1 U [(Fl U Sl) x {x.pa}] 

U [ {x.pa} x (F2 U S2)] 
- [ (F3  U S3) x  pa}] - [ { x . ~ Q }  x (F4 

U W1) 
x \ (x.P - {p},  x.T, x.F - F3 - F4, x.S - S5, x.C - C1) 

end 

where 

F1 = F’(x.P - { p } )  n P(p) 
F2 = P(x.P - { p } )  n P(p) 
F3 = F’(x.pa) n P(p) 
F4 = P(x .pu)  n P(D) 
S1 = [ S‘(x.P - {p} )  - S’(x.pa)] n [ s’(p) U So(p)] 
S2 = [s”(x.P - { p } )  - S”(x.pa)] n [S’(p) U s”(p)l 
s3 = S’(x.pa) - s’(x.P - {p} )  
s 4  = P(x.pa) - s”(x.P - { p } )  
s5 = [S’(P) U s”(P)] - [s’(x.P - {p} )  U s”(x.P - {P})] 
c1 = [(P(P) U S”) x {P}l U [{PI x (PM U P(P))l 

lowexfm, x, p,  y) = = 
require (x, y E m.X) A Cy.@ E n.P) A ( p  E x.P) 

perform A ( P  #Y.PU) 

x.c U [ (F3 U S3) x { y p a )  1 U [ {y.pa} x (F4 U S4) 3 
- c1 - [(Fl U S1) x {y.Pu}] - [{y.pa} x (F2 

x \ (x.P - (p}, x.T, x.F - F1 - F2, x.S - (S1 U S2), 

U 

y \Cy.P U @},y.T,y.F U F3 U F4,y.S U S5,y.C U C1) 

end 

F1 = P(y.pa) n P ( p )  
where 

F2 = PCy.@) n F‘(p) 

F3 = F’(p) - F“(y.pa) 
F4 = P ( p )  - F’Cy.Da) 
s1 = S’(y.pa) - [Si(x.S - {y& p } ,  

s2 = P(y.pa) - [ S’(x.S - {y.pa, p } ,  

s3 = [ - S’Cy.pa)] n [ S’(x.P - {y& p } )  

S4 = [ s”(p) - S”(y.pa)] n [ s’(x.P - {y.pa, p } )  

s5 = [s’(P) U so(P)I - [S ’ ( yPU)  U S~(Y.pa)l 
c1 = [(F” U s’(P)) x {PI1 U [ {PI  x (F”(P) U s”W1 

U S”(x.S - {Y.PU, P}) U s’(x.pu)l 

U SO(x.S - {y& p } )  U s’(x.pa)l 

U s”(x.P - {y.pa, p } ,  U S’(x.pa)l 

U s”(n.P - {y& p } )  U S”(x.pa)l 

transfexfm, x, p. y) = = 

require(x,ysm.X) A ( x f y )  A ( p ~ x . P )  A ({p} #x.P)  
A 1 ( 3 o , P o , Y i ,  . . . ,Dn-i,YJ[(l < n )  A ( P o = P )  

(Po  E Y O , ~  A ... A ( # “ - I  ~Y.-IJ‘) A ((Po,Yi>, 
A Cyo=x) A Cy,=Y) A 

. . . . 0“- YJ E m.Q1 
perform 

(2x07 90 ,  Xlr ..., qk-1, xk)[(l f k) A (x0 = Y )  
A (xk = x )  A (qo E xo .P) 

A “ ’  A (qk-1 f x k - l p )  A ( < q O ? x , ) ,  
( q k -  1, xk>  E m.D) - raise@, x, , p, xk - I )  then . . . 

then raise(m, xl, p ,  xo)] 

(3Y0, P O ?  YI. ...* P”- l ,  Y,)[(l f 4 A Cy, = -4 

A . ’ .  A @ . - I  EY,-~J’) A (<Po,Yi>, ..., 
A Cyn =U) A (Po EY0.P) 

(P , - l ,  Y J  E m.D) 

then lower(m, Y.- P ,  Y J I  
lowerim, yo,  pB yl )  then . . . 

( 3 x O ! q 0 , x 1 ,  ..., ~ k - 1 ~ x k ) ( 2 Y , , p , , Y l  ,...,p,-l,Y,) 
[(I f 4 A (1 < a) A b o  =YO)  A (40 f Po) 

A (xk A CVn = Y )  
A (qOEX0-P) A ” ’  A (qk-1 Exk-1.P) A @ o E Y w P )  

A . . .  A EY.-~.P)  
A ((SO, XI>! ..., (qk-l,xk>, (PO,Yl), ..., 

0- I ,  Y.> E m . 0  

ruise(m, xlr  p ,  xo) then 

lowerim. Y.- I ,  P, Y J I  

* ruise(m, x k ,  p ,  xk I )  then . . . then 

lower(m, yo,  p, yl) then . . . then 

end 

3 Validation of the restructuring 
operators 

In this Section we formally define the meaning of consis- 
tency and completeness, and the equivalence of system 
models. We also confirm that the properties of consistency 
and completeness are observed by all the restructuring 
operations, and that both system models are equivalent, 
before and after each of the restructuring operations. 

3.1 Definition of consistency and completeness 

The structure of a system model, context diagram and 
transformation diagram must be consistent and complete, 
and regulated by a set of conventions called formation 
rules. These rules include ways of forming a system model 
from data-flow diagrams, of forming a context diagram 
from basic elements and of forming a transformation 
diagram from basic elements. They also include the bal- 
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ancing (i.e. the equivalence of flows and stores and the con- 
sistency of their connections) between composite processes 
and their child transformation diagrams, the originality of 
elements (labels) over all the diagrams in a system model, 
and the accessibility of processes to the externals. 

We formally define a formation rule as a well formed 
formula [17].  For example, we define the rule inhibiting 
any transformation diagram with more than one parent 
process as 

(Vx E m.XWVp, q E m.P)[(@, x ) ,  < a x >  E m . 0  = ( P  = d 1  
In this formula, the symbol - denotes ‘implies’ and the 
letter m refers to any system model. We also use set connec- 
tives to express well formed formulas concisely. For 
example, the rule only allowing flows and stores to be con- 
nected with processes in a transformation diagram can be 
defined in the following formula. 

x.c G [(x.F U n.S) x x.PI U [x .P x (x.F U x.S)I 

In this formula, the symol E denotes ‘is a subset of and the 
letter x refers to any transformation diagram. 

A typical set of commonly used formation rules is 
described and formally defined in Appendix 1. When a 
system model structurally conforms to all of the formation 
rules, it is structurally consistent and complete. 

3.2 Definition of equivalence of system models 

What we are really concerned a b u t  in a system model are 
primitive processes and their interfaces, through data flows 
and stores, with one another and with terminators. The 
structuring of a system model into levelled dataflow dia- 
grams is only to ease understanding. In a structurally con- 
sistent and complete system model, every composite process 
can be completely replaced by the contents of its child 
diagram. We can repeatedly apply the replacement process 
to a system model until a single data-flow diagram, consist- 
ing only of primitive processes, terminators, flows, stores 
and their connections, is obtained. We call the single data- 
flow diagram the intrinsic model of the system model and 
define two system models as equivalent if they have the 
same intrinsic model. 

Definition 4 

For a structurally consistent and complete system model m, 
its intrinsic model is a data-flow diagram structure (P, m.T, 
m.F, m.S, C), where 

P = {p  E m P i ( 3 z  E m . a @ ,  z )  E m B ) }  

= u,em.JF’(t) x { t } )  U ( i t }  x W t ) )  

U U,,,[(F’(P) U Si@)) x {PI1 U U P }  x (F”(P) 

U S ( P ) ) l  
Definition 5 

Two structurally consistent and complete system models 
are equivalent if, and only if, they have the same intrinsic 
model. 

3.3 The validation 

Since the validation for all the restructuring operators is 
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similar, we only show the validation of the fold operator 
here. Recall that the fold operator groups a set of processes 
(R), in a transformation diagram (x) in a system model (m), 
into a composite process (p), and it also creates a diagram 
Cy) as the child diagram of the process (p), for accommcdat- 
ing the set of processes (R) and their connected flows and 
stores. We refer to the system model after the operation as 
m’ and the transformation diagram changed from x as x’. 

To confirm that the foM operator observes the properties 
of consistency and completeness is to show that the system 
model after folding (m’) conforms to all the formation rules, 
on the condition that the system model up to fold (m) con- 
forms to all the formation rules. The conformity of the 
system model m’ to each of the formation rules is shown in 
Appendix 2. 

To demonstrate that the two system models m‘ and m are 
equivalent, we must show that the five components in their 
intrinsic models are equivalent. 

0 From the specification of foM,  we have m‘.cd = m.cd, 
m’.X = ( m X  - { x } )  U {x’ ,  y } ,  x’.P = x.P U { p }  - R, and 
y.P = R. Thus, we have x’.P U y.P = x.P U {p}. We then 
have m’.X.P=(m.X.P-x.P)u(x‘.Puy.P)=(m.X.P- 
x.P)  U (x.P U { p } )  = m.X.P U {p} .  Therefore, we have 
m‘.P = m’.cd.P U m’.X.P = m.cd.P U m.X.P U { p }  = m.P 
U {p}, i.e. m’ and m have the same set of processes, except 
p. Since (p, y )  E m’.D, namely, p is not a primitive process, 
m’ and m have the same set of primitive processes. 
0 As m’.cd = mxd, we have m‘.T = m’.cd.T = m.cd.T 
= m.T. 
0 Similarly, we have x’.F U y.F = [x.F - (F’(R) n P ( R ) ) ]  
U [F’(R) U P ( R ) ]  = x.F. We then have m’.X.F = (m.X.F 
- x.F) U (x’.F U y.F) = m.X.F. Therefore, we have 
m’.F = m’.cd.F U m’.X.F = m.cd.F U m.X.F. = m.F. 
0 Similarly, we have x’.S U y.S = [x.S - ([ s’(R) U 

s”(R)] - [S’(x.P - R )  U So(x.P- R) U S’(x.pa) U 

S”(x.pu)])] U [(s’(R) U S”(R)] = x.S. We then have m’.X.S 
= (m.X.S - x.S) U (x’.S U y.S) = m.X.S. Therefore, we 
have m’.S = m’X.S - mX.S = m.S. 
0 Similarly, we have n‘.C U y.C = [x.C U [(Fl U S1) 

S1) x { p } ]  U [ { p }  x (F2 U SZ)].  We then have m’.X.C = 
(m.X.C-x.C) U (x’.C U y.C) = m.X.C U [(Fl  U 

Sl) x { p } ]  U [ { p }  x (FZ U SZ)].  Therefore, we have 
m’.C = m’.cd.C U m‘.X.C = m.cd.C U m.X.C U [(Fl  U 

SI) x { p } ]  U [{p} x (F2 U SZ)] = m.C U [(Fl  U 

S1) x { p } ]  U [{p} x (F2 U S2)], i.e. m‘ and m have the 
Same set of connections, except the connections with p. 
Since p is not a primitive process, m’ and m have the same 
set of connections with primitive processes. 

Therefore, m’ and m have the same intrinsic model, i.e. they 
are equivalent. 

4 Conclusions and future work 

x { P } ]  U [{p} x (E2 U SZ)] - Cl]  U C1 = x.C U [ (Fl  U 

In this paper, we have demonstrated the significance of 
restructuring levelled data-flow diagrams in structured 
analysis and design, and the necessity for providing specific 
restructuring operations by data-flow diagram editors. An 
eligible set of restructuring operations must meet all the 
needs of restructuring; preserve the properties of consis- 
tency and completeness; and guarantee that both system 
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models of levelled dataflow diagrams are equivalent, before 
and after restructuring, We have proposed such a set and 
confirmed its eligibility. 

As the concept of sets and relations is used to define the 
structures of data-flow diagrams and system models, it is 
easy to implement system models of levelled data-flow dia- 
grams in relational databases [18, 191 and translate the 
formal specification of restructuring operators into pro- 
cedures of data manipulation statements. Indeed, we have 
developed a dataflow diagram editor that provides all the 
proposed restructuring operators [20]. The editor puts 
special emphasis on the validation and preservation of the 
consistency and completeness of levelled dataflow dia- 
grams. It provides users with a language to define their 
own formation rules; can check formation rules imme- 
diately; and can enforce formation rules, when requested, 
during editing operations. The editor also provides users 
with a language with which to define their own editing 
operators; the proposed restructuring operators are imple- 
mented in this definition language. The editor’s first proto- 
type is currently operational on an IBM PC/AT under the 
MS DOS operating system. 

Two additions can be made to current work. One addition 
is to support the composition of data. Flows may carry 
primitive data, composite data or only part of the composite 
data. Split and merge of flows are then allowed. Stores may 
deposit primitive data, composite data, or only part of the 
composite data. A store of composite data can be accessed 
with full composition or with only part of the composition. 
Another improvement is to incorporate control flows, 
control processes and state transition diagrams. Such an 
addition is useful for modelling complex real-time systems 
[21,22] and has been carried out by Ward and Mellor [23], 
Hatley and Pirbhai [ 151, and Yourdon [ 161 in their model- 
ling tools. Investigation into restructuring operations for 
both additions is proposed for our future research. 
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Appendix 1 

Formal definitions of formation rules 

A typical set of formation rules is formally defined below. 
Some variants are also described. 

Appendix 1.1 

Formation rules concemzing the hierarchial structure of 
system models 

A system model of levelled data-flow diagrams is a strictly 
hierarchical structure, with a context diagram defined at the 
top and all transformation diagrams defined in lower levels. 
At least one transformation diagram must be used to depict 
the data transformation details of the system (Ha). Every 
transformation diagram must depict the data transfonr- 
ation details of a process (Hb) but not two distinct processes 
at the same time (Hc). Nor must the same process be 
depicted by two distinct transformation diagrams (Hd). Fur- 
thermore, any transformation diagram must not depict any 
process in the diagram or in any other diagram decomposed 
directly or indirectly from any process in the diagram, i.e. 
any decomposition sequence is not cyclic (He). Listed below 
are all the formation rules concerning the hierarchical struc- 
ture of a system model (m). 

Ha. m.X # @ 
Hb. (tlx E m.X)[($ E m.PX<p, x )  E m.D)I 
Hc. (Vx E m.X)(Vb, q E m.P)[(@, x ) ,  (q, x )  E m.D) 
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=.(P = 4)1 
Hd. (VP E m.P)(Vx, Y E m.X)[((p, x ) ,  ( A Y >  E m.0 

=> (x = Y) l  
He. i ( 3 x o , p o ,  . .., x,,  pJ(1 < n) A (no, .. ., x , ~ m . X )  

(Dn, no> E m . 0 1  

A ( P o  E xWP) A . ' 

A ( P . E ~ , P )  A (<po,xi) )..., (Pn-iyxn)y 

When a system model conforms to all of these formation 
rules, it is hierarchically well formed. 

Appendix 1.2 

F o m t i o n  rules concerning the structure of context 
diagrams 

The context diagram of a system model contains just one 
process representing all of the system's functions (Ca), all 
the terminators with which the system interacts, and any 
necessary flows between the process and the terminators; 
no stores are allowed (Cb). Only connections between the 
flows and the process, as well as between the flows and the 
terminators, are permitted (a). The process must have both 
flow inputs and outputs (cd). Every terminator must be con- 
nected to at least one flow (&). A flow must not have the 
process both as its sender and receiver. (Cf). A flow must 
not have terminators, whether they are the same or not, 
both as its sender and receiver (Cg). Every flow must have 
both a sender and receiver (Ch), but at most one sender and 
one receiver (Cz]. Listed below are all the formation rules 
concerning the structure of a context diagram (cd). 

Ca. (3pXcd.P = { p } )  
Cb. cd.S = 0 
Cc. cd.C c [cd.F x (cd.P U cd.T)] U [(cd.P 

U cd.7') x cd.F] 
a. WO E cd.P)[(F'(P) # 0) A (P(P) # 0)l 
Ce. (Vt E cd.T)[F'(t) U P(t) # 03 
Cf. (Vp E cd.P)[F'(p) n F(p) = a] 
Cg. F'(cd.T) n P(cd.T) = 0 
Ch. [cdP E F'(cd.P U cd.7')] A [cd.F s F"(cd.P 

Ci. (Vq, r E cd.P U cd.T)[(q # r) * (F'(q) n F'(r) = 0) 

Note that rules Cc and Ch imply cd.F = F'(cd.P U cd.T) = 
P(cd.P U cd.7'). This fact, together with rules Ca, Cf and 
Cg, implies that F'(cd.P) = F'(cd.T), F(cd.P) = F'(cd.T), 
F'(cd.0 n F'(cd.T) = 121, and F(cd.P) n P(cd.7') = 0. 

Appendix 1.3 

Formation rules concerning the structure of 
transformation diagrams 

A transformation diagram details the data transformation 
of a composite process by its component processes and their 
connected flows, accessed stores and connections. At least 
one process is required (Ta), but no terminator is allowed 
(Tb). Only connections between the flows and the processes, 
as well as between the stores and the processes, are permit- 
ted (Tc). Every process must have both inputs and outputs, 
whether they are flows or stores (Td), but at least one of 
them must be a flow (Te). A flow must not have the same 
process both as its sender and receiver (Tf). It is not neces- 
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U cd.7')] 

A (P(q) n P ( r )  = 011 

sary for a flow to have both its sender and receiver in the 
same transformation diagram; the open end will match that 
of the diagram's parent process. However, a flow must not 
pass through a transformation diagram without connecting 
with a process (Tg), or have more than one sender or recei- 
ver (Th). Stores need not have both their readers and 
writers in the Same transformation diagram, but a store 
must not dangle in a transformation diagram without being 
accessed (Tz]. Listed below are all the formation rules con- 
cerning the structure of a transformation diagram (%). 

Tu. x.P # 0 
Tb. x.T = 0 
Tc. x.C E [(x.F U x.S) x x.P]  U [x.P x (x.F U x.S)] 
Td. (Vp E x.P)[(F'(P) U 5%) # 0) A (p(P) 

Te. (VD E x.P)[F'(p) w F(b) # @ I  
Tf. (tip E x.P)[F'(p) n P ( p )  = 01 
Tg. x.F E F'(x.P) U F"(x.P) 
Th. (W, 4 E x.P)[(P f 4) *(PO) n P(q) = 0) 

Ti. x.s L s'(x.P) U s"(x.P) 

U W P )  f 011 

A (F(p) n P(q) = 011 

Note that rules Tc and Tg imply that x.F = F'(x.P) 
U F(x.P) ,  and that rules Tc and Ti imply that x.S = s'(x.P) 
U S'(x.P). In those variants of structured analysis that use 
the Petr-net-based data-flow model to interpret the dynamic 
behaviour of a system model, every process is required to 
have both flow inputs and outputs, and so rules Td and Te 
must be changed into (Vp E x.P)[(F'(p) # 0) A (P(p) # 
@)I. We do not use such conventions. 

Appendix 1.4 

Formation rules concerning balancing 

Every transformation diagram represents a more detailed, 
but identical, view of the data transformation of its parent 
process. Net flow inputs and outputs of a transformation 
diagram must be identical to the flow inputs and outputs of 
its parent process. The conventions are specified in theflow 
balancing rule. 

Bu. (Vp E m.PXVx E m.X)[((p, x )  E m.D) 
3 (F ' (p)  = F'(x.P) ~ F(x.P)) A ( F Q )  

= F(x.P) ~ F'(x.P))] 

Similarly, the occurrences of stores in the transformation 
diagrams of a system model must also conform to conven- 
tions, called store balancing rules. They require that the 
highest level diagram where a store appears is where it is 
used as an interface between two processes (Bb); that a 
store accessed by a composite process must be a store 
accessed by some of its component processes with the same 
type of access (Bc); and that references of a composite 
process to a store must show all references of its component 
processes to the store (Bd). Thus 

Bb. (Vp E m.PXVx E m.X)(Vs)[((p, x) E m.D) 
A (x.S - (Si@) U p(P)) f 0) 

A (s E x.S - (s'(p) U S'(p))) 
* @ q ,  r E x.P)[(q # r) A (s E Si@ n Sqr))]] - ( s ' ( p )  E S'(x.P)) A (So(#) E S"(x.P))] 

5 (S'(p) n S'(x.P) L SQ)) A (SQ) n S'(x.P) G Syp))] 
191 

Bc. (Vp E m.P)(Vx E m.X)[(<p, x) E m.D) 

Bd. (Vp E m.PXVx E m.X)[((p, x )  E m.D) 
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In those variants of conventions that do not require a store 
to have both readers and writers, the term s E s'(p) n s"(q) 
in rule Bb must be replaced by the term s E (s'(p) U s"(p)) 
n (s'(q) U S"(q)). We do not use such conventions. 

When every parent-child pair, of composite process and 
transformation diagram, in a system model conforms to all 
the flow and store balancing rules, the model is in balance. 
In a hierarchically well formed system model in balance, 
inputs and outputs of every transformation diagram match 
those of its parent process exactly. 

Appendix 1.5 

Formation rules concerning the originality of elements 

The scope of every element in a system model extends to all 
the data-flow diagrams in the model. Any two distinct ele- 
ments of the Same kind are not allowed to have the Same 
label. Within a data-flow diagram, the originality conven- 
tions of elements are automatically enforced because we 
define a data-flow diagram structure as four 'sets' instead of 
four 'bags' (see Definition 1). 

However, for any two distinct diagrams in a system 
model, cross-references are required to enforce the orig- 
inality conventions. Cross-references of terminators are not 
necessary because all terminators must reside in the context 
diagram. Cross-references of processes are trivial. We can 
guarantee the originality of processes by preventing any 
two distinct diagrams from having the Same processes (Ua). 
Cross-references of flows and stores need some manipula- 
tion. The equivalence of flows and of stores, in a transform- 
ation diagram, to those connected with its parent process 
has been specified in the balancing rules. Thus, for any two 
diagrams with one's parent process residing in another 
diagram, to guarantee the originality of flows and stores 
between both diagrams requires the flows and stores in 
both diagrams to be different, except for those equivalent to 
each other as prescribed in the balancing rules. 

This concept can be expended to any two distinct dia- 
grams. For every transformation diagram, we distinguish 
between flows (stores) that are equivalent to flows (stores) 
connected with its parent process and those that are not, 
and designate them balancing flows (stores) and local flows 
(stores), respectively. To guarantee the originality of flows 
between a transformation diagram and the context diagram, 
local flows in the transformation diagram need to be differ- 
ent to any flows in the context diagram (Ub). Note that a 
context diagram has no store. To guarantee the originality 
of flows and stores between two distinct transformation dia- 
grams, both diagrams must not have the same local flows 
or local stores (Uc and Ud). Listed below are all the forma- 
tion rules concerning the originality of elements between 
any two distinct diagrams in a system model (m), with the 
assumption that the model is hierarchically well formed. 

U a . ( V x , y ~ m . X u  { m . c d } ) [ ( x # y ) ~ ( x . P n y . P =  011 
Ub. (Vx E m.X)[(x.F - (F'(x.pa) U P(x.pa))) n m.cd.F 

= 01 
Uc. (Vx, Y E m.X)[(x # Y )  

U F"(v.Pd)) = 01 

U S"Cv.fia))) = 01 

* (x.F - (F'(x.pa) U P(x.pa))) n (v.F - (F'(v.pa) 

Ud. (Vx, y E m.X)[(x # y )  - (x.S - (S'(x.pa) U s"(x.pa))) n (y.S - (S'fy.pa) 

Some readers may wonder why we do not require cross- 
references of the consistent connections of balancing flows 
and stores; the main reason is that the balancing rules not 
only specify the equivalence of flows and of stores, but also 
their consistent connections. Thus, cross-references of such 
consistent connections will be redundant. 

Appendk 1.6 

Formation rules concerning the external intevfaces of 
process groups 

Conceptually, any subset of primitive processes in a system 
model can be grouped together, representing a subsystem of 
the system. Every subsystem must interact with another 
part of the system or the terminators outside the system. A 
subsystem must have inputs from the externals and outputs 
to the externals (Ea), but it must not connect with the exter- 
nals only through stores (Eb). Listed below are all the for- 
mation rules conceming the external interfaces of any group 
of primitive processes in a system model (m). (Let m.P be 
the set of all the primitive processes in the system model m, 
i.e.m.P = {p E m . P ( i ( 3 z  E m.X)((p,z) E m.D)}.) 

=> [(Fi(Q) n (F"(m.7J U P ( m . P  - Q))) 
Ea. (VQ)[(Q E m.W A (Q # 0) 

U (s'(Q) n (S'(m.P - Q) U S"(m.P - Q))) # 01 
A [(P(Q) n (F'(m.7) U F'(m.P - 9))) 
U (S(Q) n ( S h P  - Q) U S ( m  - Q))) # 01 1 

Eb. (VQ)[(Q E m.W A (Q # 0) 
* [(F'(Q) n (P(m.T) U P(m.P - 9))) 

U (P(Q) n (F'(m.T) U F'(m.P - Q))) # 01 1 
In a system model that conforms to both rules, any compos- 
ite process, with its inputs and outputs summarising the 
extemal interfaces of all the primitive processes in the dia- 
grams decomposed directly or indirectly from itself, will 
have non-empty inputs and outputs, with one of them being 
a flow. For those variants of structured analysis that use 
the Peh-i-net-based data-flow model, rules Ea and Eb 
must be changed into (VQ)[(Q G m.P) A (Q # 0) 3 (F'(Q) 
n (P(m.T) U F"(m.P - Q)) # 0) A (F"(Q) n (F'(m.T) U 

Fi(m.P - Q)) # @)I. 

Appendix 2 

Validation of the fold operator 

In this Appendix, we validate that the system model after 
the operation of the fold operator, m', is still structurally 
consistent and complete, i.e. it still conforms to all of the 
formation rules. 

Appendix 2.1 

Validation for the hierarchical structure 

All the data-flow diagrams in a system model must form a 
strictly hierarchical structure as prescribed in rules Ha-He. 
Below, we show rule by rule that m' conforms to all of the 
ruleS. 

e Because m'.X = m.X U {y }  # 0, m' abides by rule Ha. 
0 The only change to m.X is the addition of the diagram 
y.  As m'.D = m.D U {(p, y}}, y has a parent process p .  
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Therefore, m’ abides by rule Hb. 
0 The only change to mD is the addition of the entry 
(p. y). As y is not in m.X, no (-, y )  is in m.D. Therefore, 
m’ abides by rule Hc. 
0 Similarly, a s p  is not in mP, no (p, -) is in m.D. There- 
fore, m‘ also abides by Rule Hd. 
0 As the only change to m.D is the addition of the entry 
(p, y), the only changed decomposition sequences are: . . . , 
(x.pu, x), <r, -), ..., for every composite process r in R. 
They are changed to .. ., <x.pu, x ) ,  (p, y) ,  (r, -), . .. Such 
change does not make them cyclic. Therefore, m‘ abides by 
rule He. 

Appendix 2.2 

Validation for  the structure of the context diagram 

Rules CaCi are concerned with the formation of a context 
diagram. Since the fold operator does not change the 
context diagram, the context diagram in m’ conforms to 
rules CiCi just as that in m does. 

Appendix 2.3 

Validation for the structure of transformation 
diagrams 

Except for x’ and y, all the transformation diagrams in m‘ 
are the same as those in m. Since only all the processes in 
R, as well as only all their connections, are moved to the 
diagram y, y should conform to rules Tu-Ti. Otherwise, the 
diagram x will not conform to the rules. Below, we validate 
only the diagram x’ for rules Tu-Ti. 

0 Because x’.P = x.P U {p} - R # 0, x’ abides by rule 
Tu. 
0 Because x’.T = x.T = 0, x’ abides by rule Tb. 

By the specification of Y.C, we have F’(x‘.P) = 
F’(x.P - R) U P(p) 

= F‘(x.P - R) U (F’(R) - P(R)) 
= F’(x.P) - (F’(R) n P(R)). 

As x abides by rule Tc, we have F’(x.P) G x.F. Therefore, 
F(x’.P) c x.F - (F’(R) n P(R)). According to the specifi- 
cation of x‘F, we have x’.F = x.F - (F’(R) n P(R)). There- 
fore, Fi(x’.P) E x’.F. Similarly, we have P(x‘.P) E x’.F. 
According to the specification of x‘.C, we have s’(x’.P) = 

= S’(x.P - R) U (s’(R) n [ s’(x.P - R) U s”(x.P - R) 

s’(x.P - R) U s’(p) 

U S’(x.pu)]) 
5 [S’(x.P - R) U s”(x.P - R) U S’(X.~U)] .  

As x abides by rule Tc, we have s’(x.P) EX.S and 
s”(x.P) G x.S. As (xpa, x )  abides by rule &, we have 
S’(x.pu) E s’(x.P) E x.S. Therefore, [ s’(x.P - R) U s”(x.P - 
R) U s’(x.pu)J E x.S. According to the specfication of +’.S. 
we have x’.S = x.S - ([S’(R) U S”(R)] - [s’(x.P - R) U 

S”(x.P - R) U S’(X.PU) U s”(%.pu)l). Because [S’(x.P - R) U 

S”(x.P - R )  U S‘(z.~u) J n ([S’(R) U s”(R)] - [ s’(x.P - R )  
U s”(x.P - R) U s’(x.pu) U s”(x.pu)]) = a, we have 
[s’(r.P - R )  U So(x.P - R) U S’ (x.pu)] G x’.S, i.e. s’(x’.P) 
C_ %‘.S. Similarly, we have s”(x’.P) E x’.S. Therefore, x‘ 
abides by rule Tc. 
0 Because x’.P = x.P U {p} - R and the fold operator 
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does not change the conndons  with any process in 
x.P - R, only process p needs validation for rules Td-Tf. 
As p is the parent process of the diagram y, to show that p 
has both inputs and outputs, we first show that the inter- 
faces of p summarise all the external interfaces of the pro- 
cesses in y.P, which equals R. According to the specifica- 
tion of x‘.C, we have F’(p) = F ( R )  - P ( R )  and 
.F“(p) = P(R)  - F’(R). Therefore, the flow inputs and 
outputs of p summarise all the external flow inputs and 
outputs of y.P. According to the specification of x’.C, we 
also have S’(p) 

= s’(R) n [s’(x.P - R) U s”(x.P - R) U S’(x.pu)] 
= [s’(R) n (s’(x.P - R) U s”(x.P - R))] U [S’(R) 

n S’(x.pu)] 

The first term summarises all the stores both accessed by 
x.P-R and read by R. As S’(x.pu) summarises all the 
external store inputs of x.P and x.P = (z.P - R) U R, the 
second term, S’(R) n S’(x.pu), summarises all the stores 
both accessed by the externals of x.P and read by R. There- 
fore, S’(p) summarises all the external store inputs of y.P. 
Similarly, So@) summarises all the external store outputs of 
y.P. Because the interfaces of p summarise all the external 
interfaces of the processes in y.P, they summarise all the 
external interfaces of both the primitive processes in y.P 
and those decomposed directly or indirectly from the com- 
posite processes in y.P. As m abides by rule Ea, the external 
inputs or outputs of any non-empty subset of primitive prc- 
cesses in m cannot be empty. Therefore, x’ abides by 
rule Td. 
0 As m abides by rule Eb, one of the external interfaces 
of any non-empty subset of primitive processes in m must 
be a flow. Therefore, x’ abides by rule Te. 
0 x’.P = 1.P U {D} - R. As x abides by rule Tf,  F’(q) n 
P(q) = 0 for every q in x.P - R. Furthermore, F’(p) n 
P(p) = (F’(R) - F“(R)) n (F“(R) - F(R)) = 0. Therefore, 
x’ abides by rule Tf. 
0 Uniting F’(x’.P) and P(x’.P), we have Fi(x’.P) U 

P ( x ’ .  P) 

= [F’(x.P - R) U (F’(R) - P ( R ) ) ]  U [F”(x.P - R) 
U (F”(R) - F’(R))I 

= (F’(x.P) U F”(x.P)) - (F‘(R) n F“(R)) 

According to the specification of Y.F, we have 
x’.F = x.F - (F’(R) n P(R)). As x abides by rule Tg, we 
have x.F E F’(x.P) U P(x.P) .  Subtracting F’(R) n P(R) 
from both sides, we have x.F - (F’(R) n P ( R ) )  E (F‘(x.P) 
U P(x.P))  - (F‘(R) n P(R)), i.e. x’.F E F’(x’.P) U P(x’.P). 
Therefore, x’ abides by rule Tg. 

We divide x’.P = x.P U {p] - R into two sets x.P - R 
and {p}. As x abides by rule Th, F’(q) n F’(Y) = 0 for 
any two distinct processes q, r in x.P - R or q in x.P - R 
and r in R. For every q in x . P -  R, we have 
F’(p) n F’(q) = (F’(R) - P(R)) n F’(q). The intersection 
must be empty; otherwise, a process Y in R will exist such 
that F’(r) n F’(q) # $3. Therefore, for any two distinct q, r 
in x’.P, F’(y) n F‘(r) = 0. Similarly, for any two distinct q, 
r in x’.P, F(q) n P(Y) = D. Therefore, x’ abides by rule 
Th. 
0 Uniting S‘(x‘.P) and P(x’.P), we have 
s’(x‘.P) U P(x‘.P) 
= [ S’(x.P - R) U (s’(R) n [S’(x.P - R) U S”(x.P - R) 

U Is”(x.P - R) U (s”(R) n [s’(x.P - R) U s”(x.P - R) 
U s’(x.Pu)l)l 
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U S”(x.pa)l)l 

U [So(@ n S”(x.pu)]. 

According to the specification of x‘S,  we have x‘.S = 

S’(x.pu) U S”(x.pa)]). As x abides by rule Ti, we have 
x.S c S’(x.P) U S”(x.P). Therefore, we have x’.S 

E [ s’(x.P) U s”(x.P)] - ([ S’(R) U S”(R)] 

= [ s’(x.P - R) U S”(x.P - R ) ]  U [ s’(R) n S’(x.pu)] 

x.S - ([ s’(R) U s”(R)] - [S’(*.P - R )  U S”(x.P - R) U 

- [S’(x.P - R) U S”(x.P - R) 
U P(x.pa) U s”(x.pa)]) 

= ([S‘(x.P - R) U S”(x.P - R) U S‘(R) U s”(R)] 
- [s’(R) U S”(R)I) 

U ([s’(R) U s”(R)] n [S’(x.P - R) U s”(x.P - 4 1 )  
U ([s’(R) U s”(R)I n [S’(x.pa) U Y(x .pa)] )  

= [s’(x.P - R )  U s”(x.P - R ) ]  U [Si(@ n S’(x.pu)] 
U [ s”(R) n S”(x.pu)] 

U [S’(R) n S”(x.pa)] U [S”(R) n S’(x.pa)J. 

As (x.pu, x )  abides by rule Bd, we have 
s’(x.P) n S”(x.pa) s S’(x.pa). Intersecting b t h  sides by 
s’(R), we have S ( R )  n s’(x.P) n P(x.pa) E S’(R) n S’(x.pa). 
Because s’(R) G s’(x.P), we have s’(R) n s”(r.pa) E S’(R) 
n S’(x.pa). Similarly, we have s”(R) U S’(x.pa) c S”(R) n 
So(x.pa). Subsequently, x’.S E [ s’(x.P - R) U s”(x.P - R ) ]  
U [s’(R) n S‘(x.pa)] U [S”(R) n S”(x.pu)], i.e. x’.S E 
S’(x’.P) U s”(x’.P). Therefore, x’ abides by rule Ti. 

Aopendix 2.4 

Validation for balancing 

Balancing rules require that every parent-child pair of com- 
posite process and transformation diagram are balanced 
with each other by common connected flows and stores. 
The fold operator moves the set of processes R and all their 
connections from the diagram x into the newly created 
diagram y, but leaves alone the connections of any process 
in x.P - R. Therefore, we only need to validate the bal- 
ancing of the two pairs (p, y) and (x‘.pa, x’) .  We first 
validate the balancing of (p, y) as follows. 

0 According to the specfication of y.C, we have F’01.P) = 

U, E F’(7) = F’(R) and F(y.P)  = U, E F(Y) = F“(R). 
According to the specification of x’.C, we have 
F(p) = F’(R) - P(R)  and P ( p )  = P(R)  - F’(R). Therefore, 
P(p) = F’(y.P) - P(y.P) and F(p) = P(y.P) - F’Cy.P), i.e. 
( p ,  y) abides by the flow balancing rule, rule Ba. 
0 According to the specification of y.S and x.C, the set of 
local stores in y is 

Y.S - (S‘O) U S q P ) )  
= [S‘(R) U S”(R)] - [(S’(R) n [s’(x.P - R )  

U (s”(R) n [s’(x.P - R) U s”(x.P - R) 
u”&.Pa)l)l 

U S”(x.P - R) U s’(x.pu)]) 

= [s’(R) U S”(R)] - [(s’(R) U s’(R)) 
n (s’(x.P - R) U s”(x.P - R))] 

- [(S’(R) U s”(R)) n (S’(x.)a) U s”(x.pa))l 

- (S’(x.pa) U S”(x.pa)) 
E x.S - ( s ’ ( x q U )  U SO(x.pa)) 

= [s’(R) U S”(R)] - [(s’(R) U S”(R)) 
n (S’(x.P - R) U s”(x.P - R))] 

i.e. every local store in y is a local store in x. Because the 
term (s’(R) U S”(R)) n (s’(3c.P - R) U s”(x.P - R)) has 
been subtracted, local stores in y are local stores in x 
without connection with any process in x.P-R. As x 
abides by rule Bb, every local store in x will have a reader 
and a writer, not the same one, in x. Therefore, both reader 
and writer of every local store in y must be in R, i.e. y.P, 
namely, (p, y) abides by rule Bb. 
0 According to the specification of x’.C, we have 
s’(p) = s’(R) n [ s’(x.P - R) U P(x.P - R) U S’(x.pa)] E 
s’(R). According to the specification of y.C, we have 
s’(y.P) = U,,Rs’(r) = s’(R). Therefore, s’(p) c s’fy.P). 
Similarly, we have S”(p) 5 S”(y.P). Therefore (p, y) abides 
by rule Bc. 
0 According to the specification of y.C, we have 9Cy.P) = 

U, E Y(r)  = s”(R). Intersecting s’@) and s”Cy.P), we have 

s’@) n s”f.y.P) 
= (s’(R) n [s’(x.P - R) U s”(x.P - R) U S’(x.pu)]) 

G s”(R) n [ s’(x.P - R) U s”(x.P - R) U S’(x.fiu)] 
= s”(R) n [s’(x.P - R )  U s”(x.P - R) U (S’(x.pa) 

E S“(R) n [ s’(x.P ~ R )  U s”(x.P - R) U (S‘(x.@a) 

n S”(R) 

n S”(R))I 

n S”(x.P))]. 

As (x.pa, x )  abides by rule Bd, we have S’(x.pa) n 
S”(x.P) E s”(x.pa). Thus, S(p) n S”(y.P) E s”(R) n 
[s’(x.P - R) U S”(x.P - R) U S”(x.pa)] = Y(qX specified 
in x.C. Similarly, we have So@) n s’(y.P) E S(p). There- 
fore, ( p ,  y) abides by rule Bd. 

Thus, we have validated the balancing of the pair (p, y). 
Now, we validate the balancing of <x’.pa, x ’ )  in the follow- 
ing. 

According to the specification of x’C, we have 

(F’(R) - P ( R ) )  = F‘(x.P) ~ (F’(R) n F”(R)). Similarly, we 
have F“(x’.P) = F“(x.P) - (F’(H) n P(R)). Subtracting the 
two equations from each other, we obtain F’(x’.P) - 
F“(x’.P) = F’(x.P) - F“(x.P) and P(x’.P) - F’(x’.P) = 
P(x.P) - F’(x.P). As (x.pu, x )  abides by rule Bu, we have 
F’(x.pa) = F‘(x.P) - P ( x . P )  and P(x.pa) = F ( x . P )  - F’(x.P). 
Thus, F’(x‘.P) - P(x’.P) = F’(x.pu) and Fo(x’.P) - 
F‘(x’.P) = P(x.pa). Because the fold operator does not 
change any connection with x.pa, we have 
F‘(x’.pa) = F’(x.pu) and P(x’.pu) = F“(x.pa). Therefore, 
F’(x’.P) -Fo(x‘.P) = F’(x’.pu) and F(x’.P) - F’(x’.P) = 
F“(x’.pa), i.e. (x’.pu, x ’ )  abides by the flow balancing rule 
Ba. 

Rule Bb requires that every local store of a transform- 
ation diagram is accessed by at least two processes in the 
diagram, one as a reader and the other as a writer. Consider 
a local store, say s, of the diagram x, which has been 
changed to x‘ and y. There are three cases. The first is that 
the two processes accessing s are both in x.P - R. This is 
no problem because every process in x.P ~ R is in x’.P. The 
second case is that one process is in x.P - R and the other 
process is in R. To abide by rule Bb, the store s must be 
moved all the processes in R toy. and p ,  residing in x’, is the 
parent process of y). This requirement is true because S‘(R) 
n [S’(x.P - R) U s”(x.P - R ) ]  E s’(R) n [s’(x.P - R) 
U S“(x.P - R) U S’(x.pa)] = S’(p) and s”(R) n [s‘(x.P - 

F‘(x‘.P) = (F’(x.P) - F’(R)) U F’(p) = (F’(x.P) - F’(R)) U 
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R) U s”(x.P - R)] c s”(R) n [S’(x.P - R) U s”(x.P - R) U 

S”(x.pu)] = s”(p). The third case is that all the processes 
accessing s are in R. If the store s is not connected with the 
parent process of x ,  the store must be a local store of the 
diagram y ,  i.e. it must not be connected with p ,  the parent 
process of y. This requirement is true because [S’(R) U 

S”(x.pa)] = y.S -‘(S’(p) U s”(p)), the right side of which is 
the set of local stores in y.  (The reason why the left side is 
equal to the right side has been shown above.) By the three 
cases, we conclude that (x‘.pu, x ’ )  abides by rule Bb. 
0 

s”(R)] - [S’(x.P-R) U s” (x .P-R) ]  - [S’(x.pu) U 

According to the sk f i ca t ion  of x‘.C, we have S’(x’.P) 

(F’(x.pu) U P(x.pu)) = 0, uniting the two sets of local 
flows, we obtain the set x.F - (F’(x.pu) U F“(x.pa)), which 
is the set of local flows in x. As m abides by rule Ub and 
x E m.X, local flows in x are different to any flows in the 
context diagram. Subsequently, local flows in x’ and in y are 
different to any flows in the context diagram. Therefore, m’ 
abides by rule Ub. 
0 We are aware that the union of the two sets of local 
flows in x’ and in y equals the set of local flows in x. Since 
m abides by rule Uc and x E m.X, local flows in x are differ- 
ent to local flows in any transformation diagram in m, other 
than x. In addition, m’.X = m.X U {x’, y }  - { x } .  Therefore, 

As (x.pu, x )  abides by rule Bc, we have S’(x.pu) E s’(x.P). 
Then, S’(x.P) n S’(x.pa) = S’(x.pa), the right side of which 
equals S’(x’.pu) as the fold operator does not change any 

flows. Therefore, m’ abides by rule Uc. 
0 

stores inn’ is 
According to the specification of x’.S, the set of local 

connection with %.pa. Therefore, S’(x’.pa) c S’(x’.P). Simi- 
larly, we have s”(x’.pu) c s”(x’.P). Therefore, (x’.pa, x ’ )  
abides by rule Bc. 
0 According to the specification of x‘.C, we have 
S’(x’.pu) n s”(x’.P) 

x,.S - (S’(x,9a) s”(x,,pu)) 
= x.S - ([S’(R) U s”(R)] - [S’(x.P - R) 

= (x.S - [.!?(RI U s”(R)I) U ([S’(R) U s”(R11 

U SO(x.P - R) U S’(x.pa) U So(x.pu)]) 
- (S’(x.Pu) U P(x.pa)) 

= S’(x.pu) n [s”(x.P - R) U (s”(R) n [S’(x.P - R) 

= S’(x.pu) n (s”(x.P) n [S’(x.P - R) U s”(x P - R) 

G S’(x.pa) n s”(x.P). 

n [ S’(x.P - R) U s”(x.P - R)] )  

U S”(x.pu)]) - (S’(x.fiu) U s”(x.Pu)) 

n [ S’(x.P - R) U s”(x.P - R)] )  

U s”(x.P - R) U s”(x.pa)])l 

U S’(X.PU)l) 

U ([ S(R) U s”(R)] n [ S’(x.pu) 

= (x.S - [S’(R) U S”(R)]) U ([S’(R) U s”(R)] 

As (x.pu, x )  abides by rule Bd, we have 
S’(x.pu) n s”(x.P) E S”(x.pu), the right side of which equals 
S”(x’.pu). Therefore, S’(x’.pu) n So(x’.P) E S”(x’.pu). Simi- 
larly, we have S”(x’.pu) n S’(x‘.P) E S’(x‘.pa). Therefore, 
(x’.pu, x ’ )  abides by rule Bd. 

Appendix 2.5 

Validation for the originality of elements 

Since the fold operator has partitioned the diagram x into x’ 
and y, in order to demonstrate that m‘ conforms to the orig- 
inality conventions of elements, we must consider cross- 
references between x’ and y, between x‘ and z’s, and between 
y and z’s, when z is a diagram in m’ other than x’ and y. 

0 According to the specfication of x’.P and y.P, we have 

- (S’(x.pu) U S4(x.pu)) 
E x.S - (S’(x.pu) U S”(x.pa)) 

i.e. every local store in x’ is a local store in x. We are aware 
that every local store in y is a local store in x. As m abides 
by rule Ud and x E m.X, local stores in x are different to 
local stores in any transformation diagram in m, other than 
x. In addition, m‘.X = m.X U {x ’ ,  y }  - { x } .  Therefore, local 
stores in x‘ and in y are different to any local stores in any 
transformation diagram in m‘, other than x’ and y.  Further- 
more, intersecting the two sets of local stores in x’ and in y ,  
we have [x’S - (S’(x’.pu) U s”(x’.pu))] n b.S - (S’(p) U 

s”(p))] = [(x.S- [s’(R) U s”(R)]) U ([S’(R) U s”(R)] n 
[S’(x.P - R) U s”(x.P - R ) ] )  - (S’(x.pu) U s”(x.pu))] n 
[[S’(R) U s”(R)] - [(S’(R) U s”(R)) n (S’(x.P - R) U 

s”(x.P ~ RI)] ~ (S’(x.pu) U So(x.pa))] = a, i.e. x‘ and y 
have no common local stores. Therefore, m’ abides by rule 
Ud. 

x‘.P = x.P U { p }  - R and y.P = R. Intersecting both, we 
have Uniting 
both, we have x‘.p y , p  = (x ,p ~ R) R = x.p Validation f o r  the external interfaces of process groufls 

x ’ . ~  n y . ~  = ( x . ~  u { p }  - R) n R = D. Appendix 2.6 

U {p} .  Note that p 4 &.P, and so‘-p 4 z.P for every 
z E mX U {m.cd}. As x abides by rule Uu, we have 
(x.P n z.P) = 0 for every z E mX U {m.cd} - { x } ,  i.e. 
m’X U {m’.cd} - {x’ ,  y } .  Therefore, x’.P n z.P = 0 and 
y.P n z.P = 0 for every z E m’.X U {m’.cd} - {x’, y}. As 
a result, m’ abides by rule Uu. 
0 According to the specification of x‘F, the set of local 
flows in x’ is x‘.F - (F’(x’.pu) U P(x’.pa)) = x.F - (F’(R) 
n P(R)) - (F’(x.pu) U F“(x.pu)). According to the specifi- 
cation of y.F and x’.C, the set of local flows in y is 

(P(R) - F‘(R))) = F’(R) n F(R). Because (F‘(R) n P(R))  n 
y.F - (F‘@) U P@)) = (F’(R) U P(R)) - ((F‘(R) - P(R))  U 

Rules Ea and Eb are concerned with the external interfaces 
of any subset of primitive processes in a system model. 
Since the fold operator neither deletes, creates any primitive 
processes, nor changes any connections with primitive pro- 
cesses in m, m’ conforms to rules Ea and Eb, as does m. 
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