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Comments on “Probability Estimation in Arithmetic
and Adaptive-Huffman Entropy Coders”

Glen G. Langdon

This comment points out some omissions in [1] of credit related
to scaled-count estimators that perform count-scaling when the count
of the less probable symbol (LPS) reaches a limiting value. In prior
work, e.g., Gallager’s adaptive Huffman code [2], the counts are
scaled based on the total count reaching a limiting value. In [3],
however, two algorithms (SS-adap and SSS-adap) are published that
scale counts when the value of the LPS-count reaches a limiting
value. Since [3] only treats binary distributions, our only interest
here concerns the binary distribution aspects of [1].
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An Adaptive Inverse Halftoning Algorithm

Li-Ming Chen and Hsueh-Ming Hang

Abstract—A class of inverse halftoning algorithms that recovers gray-
scale (continuous-tone) images from halftone images is proposed. The
basic structure is an optimized linear filter. Then, a properly designed
adaptive postprocessor is employed to enhance the recovered image
quality. Finally, a multistage space-varying algorithm is developed that
uses the basic linear filter structure as before but with spatially adaptive
parameters.

Index Terms—Halftoning, linear filter, postprocessing.

I. INTRODUCTION

Halftoning is a technique converting gray-scale (continuous-tone)
images into binary (two-level) images [1]. The two most popular
classes of (forward) halftoning techniques areordered ditheringand
error diffusion [1]. However, in many image processing applications
we need to recover gray-scale (continuous-tone) images from halftone
images, the so-calledinverse halftoningprocess. Our goal in this
correspondence is to design a high-performance inverse halftoning
algorithm that can work with different types of halftoning techniques
and image contents.

Several inverse halftoning techniques have been reported, for
example [2]–[4]. They range from simple heuristic schemes to
complicated iterative schemes. A different approach is taken in
this correspondence. We borrow the techniques used in adaptive
signal processing [5], image noise reduction, and image compression
[6] and apply them to the inverse halftoning problem. There are
three concepts adopted by our inverse halftoning schemes. First, the
inverse halftoning algorithm design is viewed as an inverse system
identification problem using noisy observed data [5]. Second, an
adaptive noise removal algorithm based on local image variance
is employed to improve the reconstructed image quality [7]. The
resultant images have higher peak signal-to-noise ratio (PSNR)
and are more pleasant to our eyes. Third, because the image data
characteristics is space-varying and localized, the concept of image
classification followed by class-dependent processing is adopted [6].
Namely, instead of a single reconstruction filter, a few filters, each
tuned to a specific type of local image characteristics, are used for
reconstruction.

II. I NVERSE HALFTONING USING INVERSE MODELING

In this correspondence, the forward halftoning process, a nonlinear
quantization operation, is treated as an unknown noisy plant. The
inverse halftoning process is thus viewed as an image restoration
procedure that attempts to recover the original gray-scale images
from the distorted (halftone) images. Under this formulation, inverse
halftoning becomes a typical system identification and signal restora-
tion problem in adaptive signal processing [5] and, therefore, our goal
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becomes to identify the best inverse model of the forward halftoning
process.

Our first attempt is using a linear sliding-window filter (SWF)
structure (FIR filter) with the optimal weights derived by minimizing
the reconstruction mean square errors. For each to-be-processed
pixel located at(k; l), a two-dimensional (2-D) window centered
around (k; l) is chosen as the filter support. For simplicity, this
window, S, has a rectangular shape. If the window size ism � n,
S = f(i; j); �m=2 < i � m=2 and�n=2 < j � n=2g. The filter
weights associated with this window form a vector and is denoted
by WWW = fW (i; j); (i; j) 2 Sg. In the reconstruction phase, the
reconstructed pixel is computed by linearly combining the halftone
pixels inside the window, as follows:

Î(k; l) =
(i; j)2S

b(k� i; l� j)W (i; j) (1)

where Î(k; l) represents the reconstructed gray-scale pixel, and
b(i; j), the binary pixel. This procedure is repeated for every pixel
in the image, i.e., this window is slid across the image one pixel at
a time. In the training phase,WWW is derived using the well-known
least-mean-square (LMS) algorithm [5]. The training data vector,
bbbt = fb(k � i; l � j); (i; j) 2 Sg, is made of the halftone image
pixels inside the filter supportS at every legal pixel location(k; l),
where t is a sequential index assigned to pixel(k; l). A complete
block of training data consists of the original gray-scale image pixel,
It = I(k; l), and the corresponding halftone training vectorbbbt. Then
WWW is obtained by applying the following formula to the entire set
of training data blocks iteratively [5],WWW t+1 =WWW t +2�"tbbbt; where
"t is the reconstruction error at(k; l); "t = It � bbbTt WWW t, and� is
a small updating rate parameter (around10�8). The above iterative
procedure terminates when the mean-square-error (MSE) decrease is
insignificant from the previous iteration.

III. A DAPTIVE POSTPROCESSING

Examining carefully the images reconstructed by using the
SWF scheme described in the previous section, we can find small
“lumps”—clusters of brighter or darker pixels. They are generally of
several pixels wide and occur often in the smooth regions. Shift-
invariant linear filters cannot be used to remove them because
linear filters with low cut-off frequency cause excessive blurring.
Median filters are not effective in this situation either because these
reconstruction noises are clusters of several contiguous pixels wide
rather than being impulsive. In order to retain sharp-edge images, we
choose a spatially varying postprocessing algorithm designed based
on image local variance. It is a modified version of a previously
known algorithm [7].

At each pixel location(k; l), a small neighborhood (window)R
surrounding it is chosen. We compute the mean� and the standard
deviation� of the pixels insideR. Then, the center pixelI(k; l) is
modified according to the following rule:

If

� �K

then

I
0(k; l) =�+

�

� +K
[I(k; l)� �]

else

I
0(k; l) = I(k; l) (2)

where the window size is 5� 5. Although the parameterK was
decided by the noise variance in [7], for simplicity, we chooseK

value empirically between 25 and 200. The major difference between

Fig. 1. Adaptive inverse halftoning structure using image classification and
sliding-window filters.

TABLE I
PSNR (dB) PRODUCED BY FIXED SWF

our algorithm and [7] is that we split pixels into two groups according
to their local variance and the low-variance pixels are not adjusted
while [7] adjusts every pixel all the time. The above operation (2)
is repeated on every pixel over the entire image. When the window
R falls in an edge or texture region, its local variance tends to be
larger than that of smooth regions. Therefore, its pixel value is less
likely to be adjusted. Hence, such an algorithm provides the desirable
smoothing effect without overly blurring edges. Compared to the
original algorithm in [7], this modified version has a better visual
quality.

IV. A DAPTIVE INVERSE HALFTONING ALGORITHM

Because forward halftoning systems are nonlinear depending upon
image local structures, the performance of a single shift-invariant
reconstruction filter is limited by its fixed parameters. If different
inverse filters are designed aiming at handling different types of
image contents, better recovered images can be obtained. Thus, the
concept of a piecewise linear system is adopted. We first classify
image pixels into a few categories (segments, pieces) according to
their local variances and then different sliding-window filters are
designed for each of them separately.

Since smooth image regions have already been recovered rather
well by a single SWF, we expect that the improvement offered by
this multifilter approach mainly resides in the nonsmooth regions.
Another advantage of this approach is that it is less sensitive to
image contents variation. When a small area of an image is examined,
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Fig. 2. Reconstructed Lena picture using SWF, SWF with postprocessing, and SV-SWF. Top left: original. Top-right: reconstructed using SWF. Bottom
left: reconstructed using SWF with postprocessing. Bottom right: reconstructed using SV-SWF.

TABLE II
PSNR (dB) PRODUCED BY FIXED SWF AND POSTPROCESSOR

it often can be classified into one of the generic classes of image
patterns such as smooth areas, vertical edges, and horizontal edges.
These generic classes are often similar, although the global contents
of two images can be very different (Lena image versus jet image).
Thus, the image classifier and reconstruction filters designed based
on one set of training images can be applied to the other images
without significant performance loss.

A. Reconstruction Using a Space-Varying
Sliding-Window Filter (SV-SWF)

The general space-varying SWF (SV-SWF) inverse halftoning
architecture is shown in Fig. 1. The processing steps are summarized
below.

TABLE III
PSNR (dB) PRODUCED BY SV-SWF

1) Reconstruction Phase:We first computeÎ(k; l), a rough ap-
proximation of I(k; l), by applying a space-invariant SWF to the
binary pixels centered at(k; l), and then computêI 0(k; l) using the
postprocessing algorithm described in Section III. And then, pixel
(k; l) is classified into one of the predesigned categories by the
local variance classification scheme (see Section IV-B). Once we
know which category the pixel(k; l) belongs to, the corresponding
SWF weights (in Fig. 1) can be retrieved and convolve withb(k; l)

and its neighbors and the reconstructed pixelÎ�(k; l) is obtained.
We may apply another postprocessing step tofÎ�(k; l)g; however,
becausefÎ�(k; l)g is often very close to the original gray-scale image
fI(k; l)g, this additional postprocessing step usually does not provide
noticeable improvement.
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Fig. 3. Reconstructed jet picture using SWF, SWF with postprocessing, and SV-SWF. Top left: original. Top right: reconstructed using SWF. Bottom left:
reconstructed using SWF with postprocessing. Bottom right: reconstructed using SV-SWF.

Fig. 4. Halftoned Lena and jet images using error-diffusion method.
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Fig. 5. SWF tested on various halftoning techniques, Lena image.

Fig. 6. Performance of different filter sizes and inverse schemes on Lena.

2) Training Phase: The entire inverse halftoning procedure is
made of several sliding window filters. In the training phase, we
find the best weights in each SWF based on the classified training
data. Every pixel in the original image is classified into one of the
predesigned categories according to the local variance classification
algorithm. And then, the corresponding halftone pixelb(k; l) together
with its neighbor pixels inside the filter support and the original image
I(k; l) constitute a block of training data. Separate SWF is designed
by applying the LMS algorithm (described in Section II) to the
associated set of training data blocks.

B. Classification Based on Local Variance

A few classification schemes have been tested. The one we found
quite effective and at the same time does not require extensive
computation is based on local variance. One consideration worth
mentioning here is that we conduct classification on the gray-scale
images rather than on the binary images. This is because the gray-
scale pixels have more variety and contain more information than the
binary pixels of the same window size.

We classify pixels according to its local variance. The number of
partitioned groups and the threshold values used to separate them are

(a)

(b)

Fig. 7. Postprocessing evaluation. (a) Block size, Lena. (b)K value—using
a 7 � 7 SWF.

chosen empirically. It is found sufficient to merely partition data into
three groups: low-variant, middle-variant, and high-variant regions.
Therefore, two thresholds,�1 and�2, need to be specified. A larger
number of classes provides little gain in PSNR. This is because a
finer partition of image local features such as edges with different
orientations can not be distinguished using just the first- and second-
order statistics. The typical parameters we use are�1 = 10 and
�2 = 100. Compared to the simple SWF reconstruction, the SV-
SWF scheme equipped with image classification has roughly a 1 dB
gain in PSNR.

V. SIMULATION RESULTS

We have described postprocessing technique and the adaptive
structure of our algorithm. In total, we could have four inverse
halftoning schemes: i) SWF, ii) SWF with postprocessing, iii) SV-
SWF, and iv) SV-SWF with postprocessing. In this section, we focus
on the performance evaluation of these algorithms. Because the fourth
algorithm—SV-SWF with postprocessing—does not offer significant
improvement over the SV-SWF algorithm, the simulation results we
present here are mostly related to the first three algorithms. The issues



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 8, AUGUST 1997 1207

Fig. 8. Scan line of Lena in the smooth regions; coordinates: (200, 450) to
(300, 450).

to be discussed are robustness, window size, postprocessing, and the
reconstructed signal characteristics.

A. Image Quality

Two sets of typical reconstructed images using SWF, SWF with
postprocessing, and SV-SWF are shown in Figs. 2 and 3. In these
experiments, pictureLena, 512 � 512 and 8 b/pixel, is used as
the training picture in designing the filter weights and classification
categories. The other two pictures, pepper and jet serve as theoutside
pictures. Limited by the space, only some of the processed pictures of
Lena and jet are printed here. It is clear that the contents of these three
pictures are quite different. In this and the following experiments, if
not noted, all the halftone pictures (Fig. 4) are generated by the error-
diffusion method with Floyd–Steinberg kernel [1]. One may notice
that Fig. 4 is a photo of a binary image recorded by a firm recorder
instead of a printed two-tone image. This is because a photo can
faithfully represent a gray-scale image and, thus, it is used to show
both the original and the reconstructed images.

All the reconstructed images have rather good subjective quality.
With careful examination, small “lumps” are visible on the SWF
reconstructed images. This artifact can be largely reduced by post-
processing. The side effect of postprocessing and SV-SWF is that
they may sometimes remove fine textures such as the rocky features
in the jet picture. Overall, the output pictures of either SWF with
postprocessing or SV-SWF are very close to the original gray-scale
pictures.

B. Robustness

Owning to the diversity of picture contents and forward halftoning
techniques, it is expected that the performance of the proposed
algorithms would depend on both picture contents and halftoning
techniques. In our experiments, different sets of training data and
halftoning methods (except for the clustered-dot dither) often result in
only minor variation on the magnitude and shape of the reconstruction
filters. Hence, although the SWF weights are training-data dependent,
the performance degradation of a properly designed SWF on the
outside-training pictures is often acceptable. We first examine the
effect of picture contents variation.

Three pictures, Lena, pepper, and jet, are used as training pictures
to generate three separate sets of filters (of size 7� 7). Then these

Fig. 9. Scan line of Lena including several edge regions; coordinates: (200,
210) to (300, 210).

Fig. 10. Power spectral density functions of the original gray-scale image,
the halftone image, the SWF reconstructed image with postprocessing, and
the SV-SWF reconstructed image of Lena.

filters are applied to all the three test pictures. The results (PSNR) are
shown in Tables I–III. As indicated by these data, the PSNR decrease
(from their own best trained result) is less than 1 dB. The SV-SWF
method is particularly less sensitive to picture variation (less than
0.5 dB). Therefore, when the test pictures are generated using the
same error diffusion methods, the sliding window filters designed for
one picture is adequate for the other pictures for inverse halftoning
purpose.

We next look into the forward halftoning issue. Lena is used as
the test picture. It is halftoned by five different methods: two dither
matrices in Fig. 11 and three error diffusion kernels: Floyd–Steinberg
(1975); Javis, Judice, and Ninke (1976); and Stucki (1981) [1]. Typ-
ically, error-diffusion methods produce better visual quality halftone
images (on nearly ideal display monitors). Dither method with
dispersed-dot matrix comes next. Clustered-dot dither matrix often
produces the poorest subjective image quality because a large amount
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Fig. 11. Ordered dither matrices. Left: 8� 8 clustered-dot dither matrix. Right: 8� 8 dispersed-dot dither matrix.

of information is lost due to the strong cluster constraint posed by
the dither matrix. Fig. 5 shows the results of SWF designed for
the above five halftoning techniques separately. As we expect, the
error-diffusion halftoned pictures have the best reconstructed PSNR.
Dispersed-dot dither method has a lower but close performance.
Clustered-dot dither method is quite a bit lower. Also shown on
the same plot is the window (block) size effect. It is particularly
important to use a larger (greater than 8� 8) window size for the
clustered-dot dithering.

On the other hand, the filter weights (7� 7) trained on one
halftoning method degrade modestly on the other methods if the
clustered-dot method is not counted. Table IV shows the results of
five halftoned pictures of Lena processed by the filter weights derived
using its own data, the Floyd–Steinberg data, and the dispersed-
dot data. Except for the clustered-dot dithering case, the PSNR
differences are around 1–2 dB. It is interesting to notice that for
the outside halftoning data the postprocessing is able to increase
PSNR quite effectively and its PSNR is often slightly larger than that
of the SV-SWF scheme. We may, thus, conclude that the pictures
synthesized by three error diffusion kernels have rather similar
characteristics in terms of their performance in inverse halftoning.
Therefore, filters designed for one halftoning kernel works reasonably
well for the other. The clustered-dot dithered picture has very
different characteristics; hence, the inverse filters designed based
on error-diffused pictures perform poorly on it. The dispersed-dot
dither method lies between the above two extremes but closer to the
error-diffusion method.

C. Window Size

As indicated by Figs. 5 and 6, the inverse halftoning results depend
on the filter window size. For error-diffusion and dispersed-dot
halftone images, window size of 5� 5 or larger is adequate. The
window size needs to be larger (8� 8) for cluster-dot dithered
images. Schemes with postprocessing seem to reach their perfor-
mance plateau at 4� 4 window size, a value smaller than the other
schemes without postprocessing. For the SV-SWF scheme, larger
window size increases PSNR slightly; however, a 6� 6 sliding-
window is often close to the performance upper limit. If we like to
reduce computational complexity, a 5� 5 SWF with postprocessing
is adequate in producing good quality pictures in most cases.

D. Postprocessing

The adaptive postprocessor described in Section III improves both
objective and subjective image quality, especially in the smooth areas.
In our experiments, good results are obtained at the (postprocessing)
window size around 5� 5 and the parameterK around 100. A
largeK value blurs the reconstructed images, whereas a very small
K value cannot effectively remove the undesirable “lumps.” In

TABLE IV
PSNR (dB)OF LENA GENERATED BY VARIOUS HALFTONING TECHNIQUES

addition to the quite noticeable subjective improvement, the proposed
postprocessing scheme can increase PSNR up to 1 dB gain, as shown
in Fig. 7(a). In this figure, the binary pictures are again produced by
the Floyd–Steinberg error diffusion kernel and the gray-scale images
are reconstructed by an SWF with 7� 7 weights trained on Lena.

To see more clearly the effectiveness of postprocessing, two scan
lines of the processed Lena are shown in Figs. 8 and 9. Fig. 8 shows a
smooth region example, while Fig. 9 shows an edge region example.
The proposed adaptive postprocessor can reduce the reconstruction
errors generated by the SWF method in the smooth regions and leave
the edge region almost untouched to retain the edge sharpness. Also
demonstrated in these two figures are the advantages of using the SV-
SWF method. It automatically selects adequate reconstruction filters
to recover the smooth monotone regions and the high-contrast re-
gions separately. Therefore, postprocessing cannot provide significant
further improvement on the SV-SWF reconstructed pictures.

E. Power Spectrum Analysis

In order to explain the motivation behind our adaptive algorithm,
we compute the power spectra of the reconstructed images gener-
ated by different inverse halftoning methods using one-dimensional
periodogram averaging (subroutinespectrumin Matlab). Four sets
of power spectra are shown in Fig. 10. In each set of the curves,
the middle solid line is the average spectrum, the upper and the
lower dash lines indicate the 95% confidence interval. Typically,
high-frequency noises are injected into the halftone images via the
halftoning process. In order to reduce the aforementioned noises,
the traditional space-invariant lowpass filter cuts off the frequency
components higher thanfs=4. This results in seriously blurred
pictures due to the lack of high-frequency image components.
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The proposed SWF is the optimum linear filter that minimizes the
mean squared errors between the original image and the reconstructed
image. However, it is chosen for the entire picture. Although the low-
frequency response is retained very well, it suppresses excessively
the high-frequency components. In the case of SV-SWF, it applies
narrowband filters to the smooth regions and wideband filters to the
high-contrast regions. Therefore, a certain amount of high-frequency
components (in the edge regions) is properly recovered. As a result,
we obtain sharper images.
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