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Approximate solutions for the transient response of a shell and tube heat exchanger to step change 
in shell fluid temperature and tube fluid velocity are derived. It has been shown that other previously 
published limited or approximate solutions are derivable from the exact solutions. The limiting 
asymptotic “no wall” solutions for both response to shell fluid temperature and tube fluid velocity 
change are also deducible from a limiting tube wall time constant solution. Some of the approximate 
solutions presented include the use of simple exponential forms of equations that enable the quick 
estimation of the time required to  reach a given degree of approach to the final steady state. The 
error between the exact and the approximate exponential form of solutions are in most cases less 
than 2%. All the previous derived exact and approximate solutions presented here are applicable 
to crosscurrent, cocurrent, or countercurrent flow heat exchangers with one infinite thermal capa- 
citance rate fluid. 

Introduction 
The design, operation, and control of heat exchangers 

would be facilitated by equations describing the transient 
response. Unfortunately the basic dynamic equations in- 
volve simultaneous partial differential equations for which 
the analytic solutions are complex and difficult to obtain. 
In most cases, numerical methods such as method of 
characteristics (Tan and Spinner, 1984) are used to cal- 
culate the transient response for heat exchanger with co- 
current, crosscurrent, or countercurrent flow. 

For the case of heat exchangers with one infinite capa- 
citance rate fluid, London et al. (1959) present some results 
from analog simulation. Myers et al. (1970) gave extensive 
results from finite difference calculations. Rizika (1956) 
gave an exact analytic solution for this case, but the so- 
lution is applicable only for time less than one residence 
time. Limiting and approximate solutions were also 
presented by London et al. (1959) and Myers et al. (1970). 
All the above studies deal only with response to fluid 
temperature change. 

Exact analytic solutions for the transient response of a 
shell and tube heat exchanger to change in both fluid 
temperature and tube fluid velocity changes have been 
previously published (Tan and Spinner, 1978). Shah 
(1981) has statsd that these solutions are equally applicable 
to a heat exchanger having an infinite capacitance rate 
fluid. Graphs prepared from these exact solutions have 
also been published (Tan and Spinner, 1978; Shah, 1981). 

The purpose of this paper is to present some useful 
approximate solutions which give results that are in good 
agreement with the exact solutions. The applicability of 
these solutions with regard to the values of the design 
parameters will be investigated, and the magnitude of error 
introduced compared to the exact solution will be dis- 
cussed. Limiting asymptotic solutions as applied to the 
case in which the product of Cf (limiting dimensionless 
tube wall time constant) becomes very small will be ex- 
amined. It will be shown that all the previous published 
approximate solutions for response to shell fluid temper- 
ature change are directly derivable from these exact so- 
lutions. It will be shown that the limiting “no wall” solu- 
tion is obtainable from the approximate solution for a small 
value of the product Cf. 
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The use of a simple exponential form of equation as an 
approximate solution not only facilitates the evaluation 
of the transient history of the exchanger but also provides 
a simple method of estimating the time required to reach 
a given degree of attainment of the final steady state. For 
compactness, all the derived new approximate solutions 
will be expressed in terms of the previous notation (Tan 
and Spinner, 1978). 

Transient Response to Step Change in Shell Fluid 
Temperature 

In a previous paper Tan and Spinner (1978) derived the 
following exact solution to the transient response of step 
change in shell fluid temperature: 

exp -a - - - R1 (e* - + [ (if ) 

where U is the fractional attainment of the final steady 
state, with 

R 1 =  J[ 2 (1 + Q) + [ (1 + Q ) 2 -  4(1 T]l”] - f )  

Since C is the dimensionless thermal capacity ratio of 
tube wall to tube fluid and f is the fractional heat-transfer 
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resistance on the shell side, then Cf is the dimensionless 
tube wall time constant and l/R1 and 1/R2 are the 
"effective time constants" for the coupled tube fluid and 
wall system. 

The normalized final steady state value is given by 
P = 1 - exp[-(l - fla] 

The two mathematical functions d1 and $ are defined 
by 

d l ( x , ~ )  = J'do(X,y) dX = 1 - AXY) 

dO(x,y) = exp(-x - ~ ) 1 ~ [ 2 ( x y ) ~ / ~ ]  where 

Both J and # can be easily generated by the following 
simple algorithms: 

X O  = 1 - exp(-x) and X k  = kXk-l - x k  exp(-x) 
for k 1 1 

X o  = 1 - exp(-x) and X k  = xc  - kXcl for k 2 1 

Note that J is a well-known tabulated function whose 
values are readily obtainable (Helfferich, 1962; Sherwood 
et al., 1975). It was mentioned in the previous publication 
(Tan and Spinner, 1978) that neglecting the term con- 
taining the $ function would lead to at most 2% relative 
error for a practical range of parameters. More specifically, 
the range was 1 < a < 3, C < 3, f < 0.2. Thus eq 1 without 
the # term is a good approximation for design purposes 
since J or d1 are known tabulated functions and the nu- 
merical evaluation could be readily carried out if tables 
were available. Alternatively the J function could be easily 
calculated with a programmable calculator or microcom- 
puter using the algorithms given. 

For engineering application, it would be worthwhile to 
consider the possibility of using an equation that is in a 
simpler form. Myers et al. (1970) had successfully used 
a first-order exponential function to approximate the 
transient response for 8* 1 1. They compared 27 cases of 
solution with those obtained from a finite difference nu- 
merical method. The difference between the exponential 
form of equation and the finite difference solution was 
almost indistinguishable on the graphs presented. Since 
exact analytic solutions are available, it would not be 
difficult to compare the approximate solution for an ex- 
tensive range of values of the parameters C, f ,  and a. The 
method used by Myers et al. (1970) in formulating an 
exponential form of equation as an approximating solution 
was followed. However, a more compact equation for the 
evaluation of the constant used in the exponential function 
was obtained. The derivation by Myers et al. was based 
on the exact solution for transient response for the first 
time domain as presented by Rizika (1956). In this regard 
it should be noted that the first three terms of eq 1 which 
provide the first time domain (e* < 1) response are readily 
rearranged in the following form: 

1 U = - 4 1  - exp(-X)[sinh (X/Y) + cosh (X/Y)]) (2) II" 

y=- R1 + R2 =- 1 + Cf [ ( 1 + -  kf )2 -- 4(l& t 7 ] - 1 ' 2  

%-R2 Cf 

The f i s t  three terms of eq 1 are thus identical with the 
analytical solution derived by Rizika (1956). However, eq 
2 not only provides the exact solution for the first time 
domain (8* < 1) but also constitutes part of the solution 
for the entire time domain. The approximate solution 
proposed by Myers et al. could thus be expressed in the 
following form using the present authors' notation: 

(3) U = 1 - (1 - U,) exp[-K(B* - l)] 
An equivalent form of eq 3 is 

U = U1 + (1 - Ul)(l - exp[-K(B* - l)]) (3A) 

with 

where Ul is the fractional attainment of the final steady 
state at one throughput time. 

Since 1 - U, represents the fraction of remaining tran- 
sient after one throughput time has elapsed, the second 
term of eq 3A can be viewed as a simple exponential 
growth function that describes the transients of the term 
1 - U, for the time region of 8* 1 1. Equation 3 contains 
only one adjustable parameter, K, and therefore can be 
readily determined from one independent relationship. 
Myers et al. obtained the value of K by matching the 
derivative of U with respect to 8* at 8* = 1. Since eq 3 
is to be applied for the time domain of 8* 1 1, it would 
be more appropriate to use the derivative evaluated from 
eq 1 for matching purposes. After differentiating eq 1 for 
8* 1 1 and letting 8* approach 1, the following value of K 
was obtained: 

K =  (4) 
R1R2[ exp(-R2a) - exp(-Rla)] a 

p(1 - Ui)(Rl - R2) 

By substituting the values for Ul and P 
K =  

R1R2[exp(-R2a) - exp(-Rla)]a 
R1 exp(-R2a) - R2 exp(-Rla) - (Rl - R2) exp[-(1 - t7.1 

(4A) 

Myers et al. (1970) used Rizika's exact solution for the 
first time domain for determining the slope at 8* = 1. The 
value of K expressed in the same hyperbolic functions but 
using the present authors' notation is 

2C(1 - f). 
T"(1 - UJ(1 + cfl K =  - Y exp(-z) sinh (Z/Y) (4B) 

where 
1 + Cf z=-  

2Cf a 

and Y is defined in eq 2. 
Equations 4 and 4B are identical; however, it is felt that 

the form of eq 4 is more convenient to use. It is noted that 
in eq 4 the "effective time constant" of the approximate 
equation consists of P(1 - Ul), which is the fraction of 
remaining transient after 8* 2 1 and the quantity, (R ,  - 
R2)/R1R2, which is the difference of the two "effective time 
constants", l /R1 and 1/RP The constant K incorporates 
all the parameters C, f, and a. The fact that the derivatives 
dU/d8*lrll are identical when derived from both time 
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Limiting "No Wall" and Small Cf Solutions. For 
extremely small values of C and f where both C and f are 
finite, practically no transient exists after the first time 
domain. In such a case the third term in eq 6 could become 
negligible and a two-term equation would be sufficient to 
describe the dynamic response. Thus, for Cf < 0.05, the 
third term in eq 1 is negligible. In this case the first 
"effective time constant", l/Rl, has become very much 
smaller than the second "effective time constant", 1/R2. 
Finally, for Cf approaching zero, the solution reduces to 
the %o wall" solution. This latter solution was obtained 
(Tan and Spinner, 1978) on the assumption that either C 
or f is zero, i.e., conditions different from the cases where 
the value l/Cf is large but both C and f are finite. The 
final =no wall solution" can thus be obtained by substi- 
tuting either C or f equal to zero in eq 6. 

Asymptotic Solution for Large Value of Cand Cf. 
For very large C (C > 100) and assuming f is not too small 
(Cf > 20), the value of R1 approaches 1 and R2 approaches 
(1 - f) /Cf. Since R2 is extremely small compared to Rl, 
the coefficients of exponential terms exp(-Rla8*) and 
exp(-R2a8*) are approximately equal to zero and unity, 
respectively. The value of l/Cf - R2 can be shown to 
approach 1/C. Thus, for large values of Cf, the asymptotic 
solution as obtained from eq 1 is 

domain solutions (as shown in Appendix 1) verifies that 
there is continuity in both U and its derivative a t  8* = 1. 
The advantage of eq 3 is its simplicity. For engineering 
application, it is useful to obtain a rough estimation of the 
time required to reach a certain degree of fractional at- 
tainment of the final steady state. From eq 3 the time 
required to obtain U fraction of the final steady state is 

( 5 )  

For large values of a and Cf, e.g., a > 10, Cf > 2, and 
f < 0.5, it can be shown that K is approximately equal to 
Rna, thus simplifying the evaluation of value of K for eq 
3. Extensive calculations with eq 3 for more than 100 cases 
of different values of C, f ,  and a showed very good 
agreement with the exact solution. Discussion of these 
calculated results and the criteria for using this approxi- 
mate design equation will be covered in a later section. 
The drawback in using eq 3 is the need for preliminary 
calculation of R1, R2, P, and 1 - VI before K can be 
determined. In addition, the basic parameter effects 
cannot be readily determined. Ideally if the values of R1 
and R2 could be related to C and f without use of the 
quadratic form, the quantitative effects of C and f could 
be more easily interpreted. 
As pointed out previously, the terms l/R1 and 1/R2 are 

the "effective time constants" for the coupled tube fluid 
and wall system. The values of these effective time con- 
stante depend on both f and the product Cf. From the 
expressions given for R1 and R2, it can be shown that the 
limiting values of R1 are given by 1 C R1 C 1 + l/Cf. Since 
RlR2 = (1 - f)/Cf, the limiting values of R2 are determined 
by (1 - f)/CfR1. For relatively small values of Cf, R1 is 
approximately equal to l/Cf + f and R2 is approximately 
equal to (1 - f)/(l + Cfl). The error in the estimation of 
R1 and R2 using these approximations is lese than 1%. The 
coefficients of the exponential term exp(-Rla8*) and 
exp(-R&*) in eq 1 can also be simplified to [Cf(l -f)]/(l 
+ Cp) and (1 + Cf)/(l+ Cfl), respectively. Hence for very 
small value of Cf, say Cf < 0.1, the first time domain (e* 
< 1) solution can be approximated by 

Although in most cases for Cf < 0.1 more than 90% of 
the final steady state value is reached at  8* = 1, eq 3 can 
be used to calculate the remaining transient if desired. 
Here VI in eq 3 is calculated from 

and the value of K in eq 3 is calculated from 

Calculations using eq 6 (for 8* C 1) and eq 3 (for e* L 
1) for a > 0.5 and Cf C 0.1 result in at  most 2% error. 

Myers et al. (1970) derived an analytic equation for the 
transient response for shell fluid temperature change for 
very large values of C, by neglecting the transients for the 
first time domain. The derived equation was identical with 
eq 7 except for the second term in which 8* - 1 rather than 
8* appeared in the argument of exponential term. It 
should be noted that eq 7 contains the solution of 8* < 1 
even though the transient for large values of C and Cf is 
small. For large values of C and Cf, large values of 8* are 
required before the attainment of the final steady state. 
Thus eq 7 and the analytic equation of Myers et al. give 
almost identical resulta of response for large C, Cf, and 8*. 

If eq 3 is used to calculate transients for large values of 
C, the expression for K can further be simplified. For C 
> 100 and Cf > 20, an approximate expression for K is 

(4D) 

with the value of VI calculated from the first two terms 
of eq 7. 

Examination of eqs 3 and 4D shows that for large values 
of C and Cf there is justification for normalizing the time 
variable in terms of (e* - 1)/C in the manner used by 
Myers et al. 

Transient Response to Step Change in Tube Fluid 
Velocity 

Following a procedure similar to that used for the re- 
sponse to shell fluid temperature change, an exponential 
form of equation can be formulated as an approximate 
solution for response to step change in tube fluid velocity. 
Unlike the case for response to shell fluid temperature 
change, the derivative of U with respect to 8* for the time 
domain of 8* C 1 and e* 2 1 do not match at  8* = 1 (see 

[(I - f)/fl[l - exp(-a)Ia 
P C  

K =  
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Appendix 2 for the exact solution and the evaluation of 
ita time derivative). Matching the slope of the exponential 
form of equation a t  8* = 1 with that obtained from the 
second time domain solution, the following exponential 
constant was obtained: 

K =  + [AR4 exp(-R4a) - BR3 exp(-R3a)]a 
(1 - U , ) P  

(BR3 AR,); 
exp[-a - a(1- f*)V"/v]  (4E) 

(1 - U 1 ) P  
with 

1 
T= U1 = -[1- A exp(R4a8*) + B exp(R,aB*)] 

where U1 is the fractional attainment of the final steady 
state and A, B, R3, R4 and !P are defined in Appendix 2. 

It should be noted that the first part of eq 4E corre- 
sponds to the value obtained by matching the time de- 
rivative of eq 3 with that obtained by differentiating the 
exact solution for B* < 1. The discontinuity in dU/dB* of 
the exact solution at  8* = 1 is indicated by the presence 
of the second part of eq 4E. Since the response to tube 
fluid velocity change involves more parameter effects 
compared to the response to shell fluid temperature 
change, an exponential fit with one single constant would 
not be expected to be valid for as wide a range of param- 
eters. For practical purposes, only the cases for which C 
and a are not greater than 10 have been investigated. A 
large number of applications are within this range of pa- 
rameter values, and hence the approximate solution could 
be very useful provided that the error introduced is tol- 
erable. To use eq 3 as an approximation solution, we 
evaluate the value of K from eq 4E. Preliminary calcu- 
lations indicate that use of the value of only the first part 
of K in eq 4E would lead to large error. Because of the 
unrealistic assumption of constant heat transfer coefficient, 
the study was confined to the case of n = 0.8. Extensive 
calculations showed that good agreement with the exact 
solution was obtainable for many practical ranges of design 
parameters. The calculated results and the constraints on 
the parameter values will be discussed later. In the pre- 
vious paper (Tan and Spinner, 1978) numerous calcula- 
tions for the range of C < 3 and f < 0.2 and for a > 1 were 
carried out. In all those calculations it was found that 
dropping the #-function term in the exact solution resulted 
in at most 2% relative error. In this work, we found that 
dropping of this term was also justified for other ranges 
of parameters (see later section). 

Small Cf and Limiting "No Wall" Solution. Like the 
response to shell fluid temperature change, the transient 
response to the velocity change depends on the values of 
the two "effective time constants", l / R 3  and 1/R4. For 
small values of Cf, it can be shown that R3 approaches the 
value of 1 - (1 - f*)V"/V while R4 approaches the value 
of [l - f -  (1 -f*)Vn/'v]/[Cf[l- (1 - f " )V" /v]] .  Likewise 
the coefficients of exp(-R,aB*) and exp(-R4aO*) approach 
zero and unity, respectively. Thus for small values of Cf, 
say Cf < 0.1, the following approximate equation can be 
used for B* < 1: 

r \  

For small values of Cf, the final steady state is essentially 
reached at  the end of one throughput time. However, if 
transients for 8* 1 1 are needed, then eq 3 can also be used. 
In this case the values of Ul and K obtained from eq 8 are 

.I) ( 8 4  
1 - f - (1 - f * ) V / V  

1 + cf2 u1 = +( 1 - exp[ - 

l - f - ( l - f * ) V " / V  
1 + cf2 

Calculation indicates that for Cf < 0.1, V < 1.5, and a 
> 1 the relative error is a t  most 2 % . 

For either C or f approaching zero as the other remains 
finite, eq 8 reduces to the "no wall" solution. Thus even 
with both C and f finite, a solution similar to the "no wall" 
solution can be obtained. For Cf < 0.01, the exact "no wall" 
solution (Tan and Spinner, 1978) is applicable since sub- 
stituting zero for Cf instead of any values less than 0.01 
in eq 8 would hardly give any significant error. 

Comparison of Approximate and Exact Solutions 
Response to Step Change in Shell Fluid Tempera- 

ture Change. For large values off ,  dropping out the # 
term in the exact solution provides an approximate solu- 
tion with a small error. For example, for f < 0.9, the 
relative error is less than 1% if a > 3 and 5 %  if a > 2. 

Calculations for values of Cf less than 0.1 using the 
approximate solution of eq 6 showed at  most a relative 
error of about 2%. The approximate solutions of eq 7 for 
large values of C and Cf were also checked against the 
exact solution. For C > 100 and Cf > 20, it was found that 
the relative error was about 3 % . Because of the simplicity 
of evaluating K, it is recommended that eq 3 instead of 
eq 7 to be used for large values of C and Cf. 

We have found that eq 3 could be used for any values 
of a and C with f < 0.5. The resulting relative error com- 
pared to the exact solution is at  most 2%. A maximum 
relative error of 5 %  is obtained for 0.5 < f < 0.7, 7% for 
0.7 < f < 0.8, 10% for 0.8 < f < 0.9, and up to 18% for 0.9 
< f < 0.99. The error is smaller when a is small. Thus, 
for any value of C and for f < 0.9, the relative error is no 
more than 2%,  ifa < 1 and 5% if 1 < a < 2. It was found 
that the largest error occurred when f was close to 1 and 
a was between 3 and 8. Some typical calculated results 
abstracted from more than 100 calculations using the 
semiempirical exponential form of eq 3 are given in Table 
I. 

Response to Tube Fluid Velocity Change. For small 
values of C, large values of a*, and either small or large 
values off,  neglecting the #-function term in the exact 
solution (Appendix 2) gave very small error. For CY* > 1, 
f* < 0.2, and C < 5, the relative error was less than 290, 
while for a* > 2, f* < 0.9, and C < 5, the relative error was 
less than 1%. 

For values of Cf less than 0.1, use of the asymptotic 
solution given in eq 8 for e* < 1 and the approximate 
solution of eqs 8A and 4F for 8* L 1 led to about 2% 
relative error. 

The use of the semiempirical exponential form of 
equation led to at  most 5 %  relative error for a large range 
of practical parameters values. For 1.5 < CY* < 4, C < 10, 
f" < 0.5, and V < 1.5, the relative error is at most 2%. The 
range of applicability for a* and f" can be extended when 
smaller values of C are used. For example, when C < 5, 
f* < 0.9, and 0.5 < a* < 2.5, less than 5% error was ob- 
served. Some typical calculated results using eq 3 for the 
range of parameters examined are presented in Table 11. 
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Table I. Typical Calculated Results for Response to Shell Fluid Temperature Change: Compadson of Exact Solution and 
ADDroximate solution of Ea 3 

~ ~~ c = 1.0, f = 0.2, a = 1.0 C = 3.0, f = 0.7, a = 3.0 
e+ ea 3 exact e* ea 3 exact e* ea3 exact 

C = 5.0, f = 0.5, a = 5.0 

1.00 0.827 18 0.827 18 1.00 0.353 08 0.353 08 1.00 0.531 01 0.531 01 
1.05 0.860 81 0.860 84 1.50 0.527 86 0.532 78 1.25 0.630 86 0.631 88 
1.10 0.887 89 0.888 00 2.00 0.655 42 0.668 94 1.50 0.709 44 0.71262 
1.15 0.909 71 0.909 89 2.50 0.748 51 0.769 30 2.00 0.819 99 0.827 57 
1.20 0.927 28 0.927 54 3.00 0.816 46 0.841 58 2.50 0.888 47 0.898 56 
1.25 0.941 43 0.941 75 4.00 0.902 24 0.928 08 3.00 0.93090 0.941 38 
1.35 0.962 01 0.962 40 5.50 0.961 99 0.979 64 4.00 0.973 48 0.981 35 

C = 20.0, f = 0.6, a = 4.0 
e* eq 3 exact e* eq 3 exact e* eq 3 exact 
1 .00 0.361 66 0.361 66 2.0 0.246 54 0.247 59 30.0 0.31292 0.31449 

0.533 42 1.50 0.506 33 0.507 31 4.0 0.453 28 0.459 94 60.0 0.528 89 
2.00 0.618 22 0.621 35 6.0 0.603 30 0.616 31 90.0 0.676 98 0.684 11 
3.00 0.771 66 0.779 57 8.0 0.712 15 0.730 01 120.0 0.778 52 0.787 29 

0.857 55 4.00 0.863 43 0.874 37 10.0 0.791 13 0.811 71 150.0 
5.00 0.918 32 0.929 98 14.0 0.890 03 0.910 64 180.0 0.895 87 0.905 11 
6.50 0.962 22 0.972 07 22.0 0.969 51 0.981 50 210.0 0.928 60 0.937 14 

C = 10, f = 0.6, a = 8 C = 500.0, f = 0.5, a = 6.0 

0.848 14 

Table 11. Typical Calculated Results for Response to Tube Fluid Velocity Change: Comparison of Exact Solution and 
Approximate Solution of Eq 3 

C = 1.0, f* = 0.50, a* 5.0 c = 3.0, p = 0.40, a* = 6.0 c = 4.0, p = 0.50, a* = 8.0 
V 0.8, f 0.455, a 5.23 V = 1.10, f = 0.418, a = 5.89 V = 0.70, f = 0.429, a = 8.59 

e* eq 3 exact e* eq 3 exact e* eq 3 exact 
1.00 0.816 35 0.816 35 1.00 0.601 91 0.601 91 1.00 0.634 54 0.634 54 
1.05 0.848 92 0.850 26 1-10 0.660 93 0.663 00 1.20 0.724 30 0.729 39 

1.40 0.792 02 0.806 62 1.10 0.875 71 
1.15 0.897 75 0.905 11 1.50 0.821 54 0.844 07 1.60 0.843 10 0.866 24 

1.80 0.881 64 0.910 15 1.20 0.915 88 0.926 00 1.80 
1.30 0.943 07 0.956 54 2.00 0.920 00 0.95005 2.00 0.910 71 0.941 22 

0.985 59 1.45 0.968 30 0.981 80 2.40 0.957 90 0,981 82 2.60 

0.879 91 1.20 0.711 20 0.71796 

0.889 73 0.91972 

0.961 67 
C = 5.0, f* = 0.50, a* = 3.0 C = 7.0, f* = 0.60, a* = 2.0 c = 10.0, p = 0.30, a* = 4.0 
V = 1.2, f = 0.536, a 2.89 V = 0.70, f = 0.530, a = 2.15 

e eq 3 exact e* eq 3 exact e* eq 3 exact 
V = 1.50, f = 0.372, a = 3.69 

1.00 0.374 97 0.37497 1.0 0.319 89 0.319 89 1.00 0.403 03 0.403 03 
0.542 69 1.50 0.521 01 0.524 63 2.0 0.51989 0.523 05 1.50 0.539 63 

2.00 0.632 92 0.642 94 3.0 0.661 07 0.668 81 2.00 0.644 98 0.653 23 
0.739 38 3.00 0.784 42 0.804 73 4.0 0.760 74 0.77201 2.50 0.726 21 

4.00 0.873 39 0.896 78 5.0 0.831 10 0.844 24 3.00 0.788 86 0.805 66 
5.00 0.925 64 0.946 91 6.0 0.880 77 0.894 32 5.00 0.925 32 0.943 60 
7.00 0.974 35 0.986 84 10.0 0.970 39 0.978 82 7.00 0.973 59 0.984 85 

Application of Exact and Approximate Solutions 
to Heat Exchangers with One Infinite 
Capacitance Rate Fluid 
As pointed out by Shah (19811, the previous derived 

exact solutions (Tan and Spinner, 1978) are applicable to 
heat exchangers with one infinite thermal capacitance rate 
fluid. Thus for this case the exact and approximate so- 
lutions are applicable to crosscurrent, cocurrent, and 
countercurrent flow heat exchangers. The response to the 
shell fluid temperature change corresponds to a C,, 
(maximum of C, or ch) fluid temperature change. The 
response to tube fluid velocity change componds to a C- 
(minimum of c, or ch) fluid velocity change. It is noted 
that the notation used in the mechanical engineering lit- 
erature (Kays and London, 1964; Myers et al., 1970; Shah, 
1981) is quite different from that used here. To facilitate 
the conversion to the nomenclature used in mechanical 
engineering publications, a table for conversion is provided 
in Table 111. 

Summary and Conclusions 
In this paper, we have presented approximate solutions 

for the transient response of shell and tube heat exchan- 
gers. These solutions are obtained from the exact solutions 
in our previous publication. It has been shown that the 
limiting "no wall" solutions can be deduced from the ap- 
proximate solution for small values of Cf. For the response 

Table 111. Table for Conversion to Mechanical Engineering 
Notation 
notation in this paper mech ena notations 

f 

f* 

a 

a* 

0 - 
a 

e 
C 
V 

1 
R* + 1 

(Shah, 1981) 1 

R*(O) + 1 

e* 
(R* + l)N 

R* 
c*w 

e* 

u,/u,(O) (Shah, 1981) 

to shell fluid temperature change, the previous published 
analytic solution for large values of C (Myers et al., 1970) 
is also directly derivable from the exact solution. Rizika's 
(1956) analytic solution in terms of hyperbolic functions 
was shown to be identical with the first three terms of eq 
1. The case off = 1 for which London et al. (1959) gave 
an exact solution can also be derived starting with our 
model equations (Tan and Spinner, 1978) and letting f' 
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Table IV. Summary of Constraints and Errors for Using 

Response to Step Change in Shell Fluid Temperature for 8* 2 1 
Eq 3 

range of param 
any C and a, f C 0.5 
any C and a, 0.5 C f C 0.7 
any C and a, 0.7 < f < 0.8 
any C and a, 0.8 C f C 0.9 

max re1 error, % 
2 
5 
7 

10 

Response to Step Change in Tube Fluid Velocity for 8* 1 1 
range of D B T B ~  max re1 error, % 

V C 1.5, f* C 0.5, C C 10 
1.5 C a* C 4 5 
4 C a * < 6  10 
6 < a * C 8  15 

0.5 < a* < 2.5 5 
V C 1.5, f* C 0.9, C < 5 

= Pw. It is noted that the previously derived exact solu- 
tions and the approximate solutions presented here are also 
applicable to crosscurrent, cocurrent, or countercurrent 
flow heat exchangers with an infiite capacitance rate fluid. 

In the previous paper (Tan and Spinner, 1978) and in 
this work it has been found that neglecting the $-function 
term in the exact solution leads to small error for C < 5 
and a > 2. Thus the exact solution without the $ function 
provides a good approximation for many practical values 
of C and a. Thus only tabulated values of the known 
mathematical function J or +1 in addition to the expo- 
nential terms will be required for the numerical evaluation 
of the transient response. For engineering design calcu- 
lations, it is desirable to use a simple form of equation. 
Thus we have formulated a simple exponential form of 
equation for approximating the transient response. It is 
noted that the constant present in the exponential form 
of equations is obtained by matching the slope of the re- 
sponse curve of the exact solutions. Hence the resulting 
approximate solutions are not entirely empirical. For the 
response to shell fluid temperature, the exponential ap- 
proximate solution gave excellent agreement with the exact 
solution for any values of C and a, except for f > 0.5. For 
the response to tube fluid velocity change, the approximate 
exponential form of solution resulted in at  most 5% rel- 
ative error if 1 < a* < 4, f* < 0.5, C < 10, and V < 1.5. 
Table IV summarizes the range of constraints and the 
maximum relative error for the use of eq 3. A further 
practical use of this exponential form of approximate so- 
lution is the estimation of the time required to reach a 
given fractional attainment of final steady state given the 
magnitude of C, f, and a. In addition, it can be easily 
adopted for the study of the dynamic response to time- 
dependent disturbances. 

Nomenclature 
C = thermal capacity ratio of tube wall to tube fluid, di- 

mensionless 
C* = thermal capacitance rate ratio of ch/c,, dimensionless 
Ch = thermal capacitance rate of hot fluid, W/"C 
C, = thermal capacitance rate of cold fluid, W/"C 
P = initial fractional heat-transfer resistance on the shell side 
f = final fractional heat-transfer resistance on the shell side 
H = Heavieide function with H(O*<l) = 0 and H(O*ll) = 1 
Io = modified Bessel function of the first kind of order zero 
J = mathematical function, defined in the text 
L = heat exchanger flow length, m 
rt = exponent in velocity-dependence heat-transfer correlation 

N = number of heat-transfer unite, dimensionless 
R* = ratio of fluid heat-transfer resistance of C, and Ch fluid 
P = normalized final steady state tube fluid temperature, 

equation 

dimensionless 

U = fractional attainment of final steady state 
Vl = fractional attainment of fiial steady state at 8* = 1 
V = normalized linear velocity of tube fluid, dimensionless 
x = length coordinate in flow direction, m 
Greek Letters 
CY = normalized exchanger length variable, dimensionless 
8 = normalized time variable, dimensionless 
8* = normalized throughput time, dimensionless 
4,, = mathematical function, defined in text 
+1 = mathematical function = 1 - J,  defined in text 
fi = mathematical function, defined in text 

Appendix 1. Evaluation of Time Derivative from 
Exact Solution for Response to Step Change in 
Shell Fluid Temperature 

For e* < 1 

[exp(-R2aB*) - exp(-Rla8*)]~ au RlR2 
ae* R~ - R~ T- 
- = -  

For e* 1 1 
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The relationships of f  and f c ,  a and a* are 
Pa* f*v” a=- 

f =  1+(v“-l)fC9 V 

- -  a’ - [AR, exp(-R2a8*) - BR3 exp(-R1d*)]- 

Evaluation of Time Derivatives. For 8* < 1 
1 

ae* P 
For e* 1 1 

1 au 
ae* It” 

- [AR4 exp(-R2a8*) - BR, exp(-RlaO*)]- + _ -  

Thus we have shown that 

Appendix 2. Exact Solution for Response to Step 
Change in Tube Fluid Velocity and Evaluation of 
Its Time Derivatives 

Exact Solution for Response to Step Flow Rate 
Change. 

U = L( 1 - A exp(-R,aO*) + B exp(-R3aO*) + H(B* - 
P 

1)B exp -R3a + ( CfR3 - 1 - (& - R3)(0* - 

l)a]g[ ( R ~  - &)(e* - ua, 
- 
[(6- H(e* - 1)A exp(-R4a8*)dl 

R4)(0* - l )a ,  

1) exp[-(l- f )a + (1 - f*)a*l41 [ (e* 
fa]) 

where 

“1  + [ [ 1 + 6 - (1 - 
1 

R3 ’[ [ 1 + cf - (1 - f*)- 
2 v” 

2 41 - ;[ 1 - f - (1 - f * ) q l i 2 ]  v” 

“1  - [ [ 1 + $ - (1 - 
1 

R4= ’[ [ 1 + q-  (1 - f c ) -  
2 v” 

P ) 3 -  ;[ 1 - f - (1 -r)”l11’2] v” 

1 R , > - > R 4 > 0  f o r V < l  

R3 > - > 0 > R4 for V >  1 

The two velocity forcing functions are 

Cf 

Cf 
1 

F1=-- v” V 1, Fz = ($ - 1)/C 

The normalized final steady state is T“ = 1 - exp[-(1 - 
na + (1 - P)a*]. 

For 8* < 1 

For 8* 2 1 

a 
- [ A R 4  exp(-R,a) - BR3 exp(-R3a)] + “( - 
P T” Cf 

exp[-a + (1 - fC)a*] 

a 1 = -[AR4 exp(-R4a) - BR3 exp(-R3a)]- + 
P T” 
$[A( $ - R4) + g ( R 3  - 6) - $1 exp[-a + 

- - 
(1 - f*)ff*l 

a = d [ A R 4  exp(-R4a) - BR3 exp(-Rga)] + (BR3 - 
T” 

AR4) exp[-a + (1 - fC)ar*]) 
Note that 

exp( -R4a - *) = ex,( -R3a + 
exp[-a + (1 - fC)a*] 

Thus we have shown that 
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Dynamics of Fluid Mixing Induced at a T-Junction. 2.t An Evaluation 
of a Mathematical Model with Existing Experimental Observations 
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Mixing induced by flow through a T-junction is described with a mathematical model based on the 
flow geometry comprising the jet trajectory, the evolution of the jet cross section, and the three- 
dimensional velocity distribution constructed for the jet stream. The experimentally determined 
maximum tracer concentration across the main pipe reported in the literature is found to be closely 
represented by the present model. The predicted second moment is also found to agree with the 
existing correlation based on the integral analysis incorporating scaling laws and verified with 
extensive experimental observations. 

I. Introduction 
Flow through a T-junction has been considered a sen- 

sible means to promote mixing, and hence heat and mass 
transfer and chemical reaction (Kadotani and Goldstein, 
1979; Forney and Kwon, 1979; Kim, 1985; Tosun, 1987). 
In the natural gas industry, effective utilization of a local 
production relies on mixing with a high-quality main 
stream via flow through a T-junction (Chen et al. (1990), 
referred to hereafter as part 1). Conceptually, mixing is 
caused by fluid flow that defines the fluid macroscale on 
which micromixing takes place via molecular diffusion. 
Thus, a problem involving mixing with simultaneous 
chemical and/or physical processes can be treated from 
a streamline perspective (e.g., Ou et al., 1985). Such an 
approach has its general appeal to a problem in which the 
underlying three-dimensional flow field could be estab- 
lished analytically or numerically from a fluid dynamic 
standpoint; laminar flow in a device with a simple geom- 
etry represents a manageable example (e.g., Lee et al., 
1987). Mixing induced at a T-junction, in which turbulent 
flow occurs within a rather complex geometry, remains a 
challenging problem for which a solution of a fundamental 
nature is attempted. 

In the work reported here the flow geometry is syn- 
thesized through considerations of the jet trajectory as well 
as the growth of the jet stream via entrainment (Hill, 1972). 
Mixing between the jet stream and the ambient fluid is 
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'Part 1: Chen, 5. H.; Ou, J. J.; Dukat, A. J.; Murthy, J. Y. Id. 
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thus envisioned to occur through the jet entrainment of 
the ambient fluid as well as turbulent mass transfer across 
the jet/ambient boundary. One of the unique features of 
our approach is the new physical insight into the evolution 
of the jet cross section that permits the three-dimensional 
flow field to be established for the jet stream. The 
treatment of a jet stream staying in contact with the main 
pipe wall is the other unique feature of the present study. 
The mathematical model is tested by comparing the pre- 
dicted values for both the maximum and the second mo- 
ment of the tracer concentration distribution across the 
main pipe to the experimental observations reported by 
Forney and his co-workers (Forney and Kwon, 1979; 
Forney and Lee, 1982; Sroka and Forney, 1989) over a wide 
range of flow conditions. 

11. Mathematical Model 
In the model to be presented, a passive tracer is injected 

as a side stream into a main flow containing no tracer. 
Both flow streams enter a T-junction at the same tem- 
perature, pressure, and essentially the same density for a 
relatively low tracer concentration. Flow conditions 
leading to both a free jet, defined here as a jet stream 
staying clear of the main pipe wall, and a wall jet, Le., a 
jet stream staying in contact with the main pipe wall, are 
considered; the geometric features of both cases are de- 
picted in Figure l. Moreover, the jet-to-ambient flow 
velocity ratio R, uj,/u, will be varied from 0.05 to 7, 
which covers a wide range of conditions, to permit the 
present model to be tested with existing experimental 
results for T-mixing (Forney and Kwon, 1979; Forney and 
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