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In inertial navigation systems, the gyroscopes and 
accelerometers are often used to measure the angular 
velocity and specific force of the vehicle, respectively. 
While the inertial sensors are mounted directly to 
the vehicle in a strapdown system, the measured 
quantities are in body coordinates. In order to attain 
the navigation purposes, coordinate transformation 
matrix is needed to resolve the sensed specific force 
into the navigational reference frame for determining 
the velocity and position of the vehicle. Also, 
the attitude information may be extracted from 
the transformed direction cosine matrix. The 
establishment of an accurate mathematical 
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T b  transformation formulas are derived that related the 

quateraions to the direction cosine matrix used in strapdown 
inertial systens 'banformation errors associated with these 
formulps are fully snslyzed. The drift errors evaluated under 
constant angular velocity have been shown to vary slightly among 

three different transformatiom. It is shown that the skew errors in 
three transformation schemes are not all intrinsically zero. Yet the 
scale errors may differ largely by two orders of magnitude among 

transformation schemes. This may become a selection criteria for 
selection of attitude tramformation schemes. 
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transformation which is related to the gyro outputs 
is a vital computational problem in designing a 
strapdown inertial system. 

Among the computational techniques for solving 
the transformation problem, two popular schemes are 
the direction cosine matrix and the quaternion [l, 2, 31. 
In most practical strapdown systems, the quaternions 
(Euler parameters) are updated periodically at a fast 
rate and then the direction cosine matrix which are 
composed of the quaternions are calculated at a slower 
rate. The main advantages of this approach are that 
it requires less computing time, gives better accuracy, 
and avoids the singularity problem. These are inherent 
properties associated with the quaternion dynamics, 
since it contains only four parameters and uses the half 
angular increments [5]. 

Generally, for all kinds of transformation, there are 
three transformation errors: the skew error, the scale 
error and the drift error [l-31. It is very important to 
investigate these errors before designing an adequate 
attitude algorithm to be built in the navigation 
computer. Early research workers [l-31 showed that 
the quaternion scheme is superior since it has less 
transformation errors than dirction cosine matrix. They 
claimed that the skew errors are inherently zero when 
the quaternion method is employed. We have found 
that this interesting property results from a particular 
transformation formula only. Since the transformation 
from quaternion to direction cosine matrix is not 
unique, hence the errors are varied in using different 
transformation formulas. The problem of selecting 
the best suitable form for strapdown inertial system 
applications gives us an impetus to reexamine 
the errors contained in different transformation 
formulas. 
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Three transformation formulas are derived here 
which can transform the quaternions into direction 
Cosines. h error model associated with the computed 
direction cosine matrix is briefly discussed. Error 
analysis is fully evaluated analytically and tabulated 
for comparison. Some useful conclusions can be drawn 
from the analysis and discussions. 
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11. THREE TRANSFORMATION FORMULAS 

Let q = qo + qli + q 2  j + q 3 i  be the rotation 
quaternion of the body axes with respect to the 
navigational reference axes, then any vector v that is 
transformed from body coordinates vb into navigational 
coordinates v" can be written as 

v" = qvbq' (1) 
where q' is the conjugate of q. The equivalent 
transformation of using the direction cosine matrix C 

where I is the identity matrix and 

0 - 4 3  $2 

[ + X I =  [ $3 0 -;j 
4 2  $1 

represents the equivalent vector cross-product 
operation associated with the rotation vector 4. In 
terms of the components of 4, the direction cosine 
matrix can be expressed as 
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is given by Using the quaternions definition: 

9 qo = cos- 
2 

$i . $ q; = -sin-, 
$ 2  

(6) 

v" = C V b .  (2) 

Using the quaternion algebra [l, 2, 51 in (1) and 
i = 1,2,3 comparing with (2), yields the first transformation 

formula: 

and (1 - cos$ = 2sin2$/2) in (9, after simplifying 
40" + 4: - 42" - 43" 2(qlq2 - 4043) q4143 + 4042) yields the second transformation formula: 

2(qlq2 4- 4043) q i  - 4: + 422 - 4: 2(4243 - 4041) . 1 
(3) 

This equation has been widely employed for the 
analysis and design of strapdown inertial systems 

A second set of transformation equations can 
be readily obtained by letting 4 = [$1,$2,$3IT be 
the rotation vector with magnitude (rotation angle) 
$ = (0: + $; + $:)'I2, then the associated direction 
cosine matrix can be written as [6, 7] 

[1-41* 

[ 4 X l 2  (4) 
sin $ 1 - cos$ c = I+  -[4x] + ~ 

$ $2 

44T* (8) 
Sin $ 1 - cos$ c = Icos$ + -[4x] + - 

$ $2 

In terms of the components of 4, the direction cosine 
matrix can be rearranged as 

1 -cos$ Sin $ 
$2 $1$2 -$2 4 + - $2 cos$J $193 1 

(9) 
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$1$2 cos$+ ~ $2 -- G2 

4 $2 

sin$ l-cos$ 
$1$3 - $ I + -  $2$3 cos$+- 
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Obviously, these three transformation equations (3), 
(7), and (10) are equivalent if the quaternions satisfy 
the condition of normality, i.e., 

It is seen that transformation matrices C2 and C3 
need equal computation time (ten multiplications, 
twelve additions and nine scaling shifts). Three more 
additions and three less scaling shifts are required for 
C1. Hence, C2 and C3 compute slightly faster than C1. 

I l l .  ERROR MODEL OF DIRECTION COSINE 
MATRIX 

Since the quaternions are transformed into a 
direction cosine matrix through various forms, the 
error analysis may be carried out for the corrsponding 
computed matrix. The skew, scale, and drift errors in 
a direction cosine matrix are now formulated for the 
convenience of error analysis. 

Let B denote the true transformation matrix. 
By definition, B is orthogonal and also satisfy the 
orthonormal condition: 

B ~ B  = z (12) 

where BT is the transpose of B. In a practical 
strapdown navigation system, assume the computed 
transformation matrix, C, is available, then C and B 
can be related by [3] 

C = B ( I +  U +S) (13) 
where U and S represent the antisymmetric part and 
symmetric part of a small perturbed error matrix, 
respectively. 

first-order approximation in S and U, 
Using (12) and (13), it is easily found that, to the 

cTc = z + 2 s  (14) 

which physically shows that the diagonal elements of S 
are the scale errors and that the offdiagonal elements 
of 2 s  are the skew errors. 

Equation (13) can also be written approximately as 

C = B(Z + U)(I  + S). 

BTC(Z + S)-' = I + U. 

(15) 

(16) 

Using (12) and taking matrix inverse in (15), yields 

Therefore, if the skew and scale errors in C are 
corrected, then the offdiagonal elements of U 
represent the drift errors of C relative to B by physical 
interpretation. In order to compute the matrix U more 
accurately, transposing (16) and using ST = S and 
UT = -U, yields 

(Z + S)-'CTB = I - U. (17) 
Subtracting (17) from (16) and using (12) and (13) and 
neglecting high-order approximations, it can be found 
that 

U = i(BTC- CTB). (18) 
It is obvious, from (14), that skew and scale errors 

may be computed from matrix C alone; while from (18), 
evaluation of drift errors must rest upon B and C. 

IV. ERROR ANALYSIS: SKEW A N D  SCALE ERRORS 

The skew and scale errors can be found by applying 
(14) to (3), (7), and (lo), respectively. The results are 
shown as follows: for matrix C1, we have 

CTC1 = z + 2s1 

= (402 + q: + q; + q32z  

= z + [(q; + q; + q; + q;)2 - 111 

(19) 

(20) 

c1i = 0, i = 1,2,3 (21) 

which shows that the skew error for i-axis of C1 is 

and the scale error for i-axis of C, is 

61i = i[(q: + q; + q; + q32)2 - 11, i = 1,2,3. 

(22) 

Similarly, for matrix C2, we have 

CTC? = z + 2s2 

= z + 4(qi + q: + q; + q; - 1) 

1 q22+q32 -q1q2 -qlq3 
-41q2 d + q :  -q2q3 [ -41 43 -4243 q ; + d  

which shows that the skew error for i-axis of C, is 

c2i = -4(q0" + 4: + q; + q: - 1)qjqk 
i = 1,2,3 

{ k = 3,1,2 
j = 2,3,1 . (24) 

Note that i, j ,  and k are in permutative order. And the 
scale error for i-axis of C2 is 

62i = 2(qo' + 412 + 422 + q32 - + q 3  
i = 1,2,3 

j = 2,3,1 . (25) 
k = 3,1,2 
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TABLE I 
Quaternion Approximations 

order transformation matrix form 1 order 1 quaternions 

which shows that the.skew error for i-axis of C3 is 

~ 3 i  = 4(q$ + 4: + qi + 4: - 1)qjqk 
i = 1,2,3 i k = 3,1,2 
j = 2,3,1 (27) 

and the scale error for i-axis of C3 is 

63 = 2(q$ + q; + qg + q: - 1)(& + qf), i = 1,2,3. 

(28) 
Thus, it is observed from (20), (23), and (26) that 

all the skew and scale errors are zero for C,, C, and 
C3 if the quaternions satisfy the condition of normality 
(11). ?he skew errors associated with matrix C1 are 
inherently zero, but it is not true all the time for C2 
and C3. In addition, the skew errors in C2 and C3 are 
zero if the body rotation is along one of the principal 
axis. The scale errors are all equal in three axes of 
C1, but they are not equal in three axes of C2 and C3. 
The skew error in C2 and C3 associated with the same 
direction has equal magnitude but in the opposite 
direction. 

quaternions are approximated by truncating the 
transcendental functions in (6). Bble I gives the 
approxinfated quaternions for first order through fourth 
order [l]. Substituting the values of the approximated 
quaternions into (22), (24), (25), (27), and (28) the 
low-order approximation of skew and scale error for 
i-axis of C1, C2, and C3 are listed in a b l e  I1 and 
Bble 111, respectively. 

Obviously, as comparing with C1, the scale errors 
are twice larger and the skew errors are increasing a 

In a practical strapdown navigator, the computed 

TABLE I11 
Scale Error 

little in C3. However, the large decrease by two orders 
of magnitude in scale errors in C2 is achieved at the 
expense of a slight increase in skew errors. This effect 
may offer a longer renormalization period in correcting 
the orthgonality. In this respect, it is suitable for short 
range inertial guidance systems such as short range 
tactical missles. 

V. ERROR ANALYSIS: DRIFT ERRORS 

In order to analyze the drift errors in a computed 
direction cosine matrix, the true transformation matrix 
B is required. Assuming that the direction of the 
angular velocity vector w = [w1,w2,w31T is constant 
over the integration interval ( t , t  + AT), then the true 
matrix B is given as the right-hand side of (5) or (9) 
with 

$; = [ + A T w i d t ,  t i = 1,2,3 (29) 

where AT represents the sampling period. The drift 
errors may be found by applying (18) to (3), (7) and 
(lo), respectively. The results are as follows: 

Uj = $(BTCj - CTB) 

o -ej3 ej2 
- - 
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TABLE IV 
Drill Error I order I t;nsfoynati; m a t 7  fo; 1 

For matrix C1, 

represents the drift error about i-axis of matrix C1. By 
neglecting high order terms, it can be written as 

For matrix C2, we have 

i = 1,2,3 (33) 

and similarly, for matrix C3, we have 

i = 1,2,3. (34) 

It is evident that the drift errors in these three 
matrices are all equal if the condition of normality (11) 
is satisfied. Substituting the values of the approximated 
quaternions given in 'hble I into (32)-(34), the low 
order approximation of drift errors for i-axis of C1, C2, 
and C3 are listed in 'Itrble IV. Note that the drift errors 
in C2 and C3 are only slightly different from that in C1. 

The transformation errors in matrix C1 have been 
presented by Wilcox [l] and Mckern [2]; we list them 

in the tables for the convenience of comparison and 
completeness. 

VI. CONCLUSIONS 

We provide the derivation of three often 
encountered transformation formulas which transform 
quaternions into direction cosine matrix. Their analytic 
transformation errors are evaluated and tabulated for 
comparison. 

It has been shown that the skew errors in these 
transformation matrices are not all zero. It is zero 
only for transformation matrix C1. The scale errors 
are not equally distributed except for C1. They are 
axis dependent. The transformation matrix Cz has the 
smallest scale error which may enable the extension 
of the renormalization period. The drift errors are 
only slightly different in these three transformation 
matrices. 

These results are helpful in the design of attitude 
algorithms for strapdown inertial navigation systems. 
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