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Exciton binding energy and subband structures of GaAs/Al„Ga& „As superlattices
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The subband structure and the binding energy of an exciton in the GaAs/Al Gal As superlat-
tice are studied by a simple approximation method. Both the exciton binding energy and the sub-
band energy are expressed as a function of well width, barrier width, and Al composition. The
inAuence of the effective-mass mismatch is taken into account. The energy spacings between inter-
band or intersubband transitions are calculated and compared with the observed data. Good agree-
ment is obtained.

I. INTRODUCTION

In recent years, the techniques of molecular-beam epi-
taxy (MBE) and metal-organic chemical-vapor deposition
(MOCVD) have been used to grow high-quality hetero-
junctions; thus the growth of the systems consisting of al-
ternate layers of two different semiconductors with con-
trollable thicknesses has become possible. These hetero-
structures have stimulated new works in semiconductor
physics over the past ten years. For example, we are now
able to control layers so thin that some quantum-
confinement effects of electrons and holes can readily be
seen. For example, in bulk GaAs, the exciton resonances
are very weak and thus can be observed only at very low
temperatures. However, in the superlattices, the exciton
resonances become considerably sharp due to the
quantum-confinement effect and thus can be observed
easily at room temperature. In recent years, the exciton
problems in semiconductor quantum wells and superlat-
tice structures have been studied extensively. ' This is
because a knowledge of the exciton binding energy is cru-
cial to the interpretation of the photoluminescence spec-
tra and photoluminescence excitation spectra, which are
used to determine the excitonic properties of the hetero-
structures. ' Most of the recent works are concerned with
the excitonic binding energies in double quantum
wells or superlattices and the optical properties and spec-
troscopy " in superlattices. Moore et al. recently
presented a direct measurement of the heavy-hole exciton
binding energy in a III-V compound quantum-well sys-
tern, where the well widths are 25 A or smaller. Recent-
ly, Mo and Sung' reported extensive calculations on

several variants of the single-subband model. Dignam
and Sipe" proposed an approach to variationally calcu-
late the binding energy for both types-I and -II superlat-
tices. In theoretical calculations of the exciton binding
energies, it is customary to employ the infinite-barrier
model and the effective-mass approximation. It is known
that the heterojunction formed between two dissimilar
semiconductors may cause a position-dependent effective
mass. Therefore, the influence of the effective-mass
mismatch should be properly taken into account if the
effective-mass approximation is used in the calculation.
Recently, the proper form of the kinetic-energy operator
and the boundary conditions for the effective-mass
theory have been established.

In this work, we will employ a simple approximation
method which in some cases combines the spirit of the
perturbative- and variational-principle approaches to
study the subband structures and the exciton binding en-
ergies of a superlattice system. The dependence of the
subband energies on the well width, barrier width, Al
composition, and temperature will be studied. The
influence of the effective-mass mismatch will be con-
sidered. In this work, the GaAs/Al„Ga, ,As superlat-
tice is chosen for illustration. This is because the ob-
served data for GaAs/Al, Ga, „As superlattice are more
abundant. " '"

II. THEORY

The Hamiltonian for an exciton in the
GaAs/Al„Ga& „As superlattice system in the effective-
mass approximation can be expressed as follows:

Bx, 2m, (z, ) Bx, By, 2m, (z, ) By,

B fi B B A' B+ V, z, —
Bz, 2m, (z, ) Bz, ' ' Bx 2m (z„) Bx„

8
Byh 2m', (zh ) Byt, Bz 2m ( ) Bz
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is the Coulomb interaction between the electron and hole,
m, (mh ) is the electron (hole) efFective mass along the x
or y direction, and m,z (m„z) is the electron (hole)
effective mass along the z direction (the z direction is
defined as the direction perpendicular to the heterojunc-
tions). These masses will, in general, depend on z. V,
(Vi, ) is the electron (hole) confining potential set up by
the heterojunctions. Equation (1) cannot be solved exact-
ly. Let us first set

x =x, —xz, y =y, —yI„z =z —z„,
p=x+y r =x+y +z

1/@=1/mi, ~(zi, )+1/m, (z, ) .

Then the Hamiltonian can be rewritten as

a I' B+V( )
Bz, 2m,z(z, ) Bz,

g 2

+ V~(zh)az„2m„(z, ) az,

where the kinetic-energy operator is suggested by Von
Roos, and

2

square-well-potential system (Kronig-Penny model) with
position-dependent effective mass and can be solved ex-
actly. The Hamiltonian & (A, ) in Eq. (3) is equivalent to
that of a two-dimensional (2D) hydrogenic system and
can be solved exactly too. After solving the Schrodinger
equation for &o(A, ), the total eigensolutions for &(k) can
be obtained by the perturbation method. The parameter
X contained in &(A,) can be determined by requiring the
minimum variation of the total eigen energy with A, [i.e.,
BE(A.)/BA, =O]. We will solve for &0(A) first as follows.

A. The solution for the 1D periodic square-well-
potential system

The Schrodinger equation for &, and &, can be writ-
e h

ten as follows:

$ 2

+V(z)f =Nf,
Bz 2m, (z) Bz

where

Vo for z inside the barrier,

0 for z inside the well.

(i) The eigenfunction in the region —a/2&z &a/2 (in-
side the well) can be expressed as

B B2+
2p ax ay

2

(2) f, = A cos(kz)+B sin(kz)

&=&, +&, +& (A. )+&'(A, ) =&o(A, )+&'(A, ),

where

(3)

In the above equation the center-of-mass motion in the
x-y plane, whose free motion can be decoupled from the
other, has been omitted. The exact eigenfunctions of %
are still difficult to obtain. We now introduce a parame-
ter A, into Eq. (2) by adding and subtracting a term
A,e /ep from & and rearrange & as

Ce Q [z + ( a +b) /21 +De
—0 [z + ( a + b ) /2 ]e (6a)

with Vo —@=A' Q /2m&„where m&, is the effective
mass for the electron (or hole) inside the barrier. In the
region —a/2 &z & a/2+b, the solution is related to Eq.
(6a) by the Bloch theorem

f& ( —a /2 & z & a /2+ b )

with 6 =A' k /2m „where m, is the efFective mass for
the electron (or hole) inside the well.

(ii) The solution in the region —a/2 b&z & —a—/2
(inside the barrier) can be expressed as

ze

fi + V, (z, ),
Bz, 2m, z(z, ) Bz,

$2 B2 B2
&„y(k)= — +

2p Bx By

A,e
E'p

+ Va(z~ »az„2m„(, ) a,

(4a)

(4b)

(4c)

=f&(
—a /2 b& z & —a /2—)e '"'+ ' . (6b)

The boundary conditions require f and f& continue
at z =a/2 and z = —a/2; and (1/m, )Bf /Bz and
(I/m&, )af&/Bz continue at z =a/2 and —a/2, respec-
tively. These boundary conditions yield two sets of equa-
tions that can be used to obtain the eigenenergies of the
1D periodic square-well-potential system as usual treat-
ment.

ke&'(A, ) =
E'p

2

(4d)
B. The solution for the 2D hydrogenic system

The Schrodinger equation for & ~(A, ) can be expressed

The first three parts of &(A,), i.e., &o(A, ), &, , H, , and
e h

, are functions of z„z&, and p, respectively, and thus
can be solved separately. Both &, and &, in Eq. (3) are

e h

the Hamiltonian for one-dimensional (1D) periodic

f1 B B
~

Ae

2p Bx By ~p

the solution can be expressed as
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(j+lli»
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for

f (z)= A cos(kz),

respectively, where m ( m, ) and m & (m &, ) are the
bulk transverse (longitudinal) effective masses of semicon-
ductors a and P. The wave function of the system can
still be factorized as P(r)=f(z)e xp(ik p), where p is the
position vector in the x-y plane. The problem then
reduces to a Schrodinger equation for f (z), and this equa-
tion is the same as we solved above. Its ground-state
wave function is of the form

A, R
(j+—,

')'

with j =-0, 1,2, . . . , and I =0,+1,+2, . . . , +j. L, 2~"
&! (p)

is the associated Laguerre polynomial, where
p=2Ar/[(j+, 1/2)a ]oand ao=eA' /(pe ) is the trans-
verse effective Bohr radius, and R =p,e /(2tri e ) is the
three-dimensional effective Rydberg calculated with
transverse reduced mass p. Et is known that the trans-
verse effective masses in heterostructures are different in
barrier layers and in well layers. To take into account
this effective-mass mismatch, p can be replaced by the
equivalent transverse effective mass p*. We commonly
use the average value of the transverse eff'ective mass in
the barrier and the well with the weight factors being the
probabilities of finding the particle inside and outside the
well as the equivalent transverse eff'ective mass. The ex-
pression of p* can be obtained as follows.

Consider an electron in a conduction band or a hole in
a valence band of a superlattice system. The Hamiltoni-
an inside and outside the quantum well can be approxi-
mated by

—a /2+n (a +b) (z (a /2+n (a +b),
with N, =A' k (2m, ), and

g [z+(a +b)/2]+ —
Q [z+(a +b)/2]

)

for

(
—a /2 —b)+n (a +b) (z ( —a /2+n (a +b),

with

fi QV —8, =
2mp

(k/m, )tan(ka/2) =(Q/mf3, )tanh(Qb /2),

a (b) is the width of well (barrier). Using the continuity
conditions (f and Bg/Bx continue) in the interface be-
tween a and P, it is easy to obtain k &=k& —= k . Thus
the eigenenergy of our system can be expressed as

@=A' k /2m +A' k /Zm, .

P„+P P,+
2m 2m, (9a)

Using above equations and the definition of transverse
effective mass at k =0

P

1 BA'

Bk k =o
P c

(10)

P, +P
2mp

p! +V, (9b)
the equivalent transverse effective mass m * for the even
and odd solutions can be obtained as

1 —+
O,p

k(m —
mii )

m~ mpp

(1/w)tanh(bw/2)+(b/2)sech (bw/2)
tan(ka /2)+(ka /2)sec (ka /2)+(k /w )tanh(bw /2)+(bk /2)sech (bw /2)

where

2mp A k
V ——

fi 2m ~z

1/2

C. The solution of total Harniltonian 0
From the above discussions, the eigensolutions of the

unperturbed part &0(A.) can be expressed as

and @*=m,*mh' /(m, *
+mh~ ). 0'."('~)=f, (z, )fh(zh )4',;!i!(p ~ ~) (12)
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and

Ak Ak'+
2' eZ 2' hz

p"e4

(j+—,') 2e fi
(13)

The energy of a photon emitted in the recombination
of an exciton can be de6ned as

(15b)

where f„fz, Pi i&i
are solutions of &, , &, and &„;p"

is the equivalent transverse reduced mass, and k, and k&

can be obtained from the boundary conditions mentioned
in the Sec. II A. The solutions for the total Hamiltonian
& can then be obtained by the formula of the convention-
al perturbation method:

@„=e'„"(~)+~@„(~),
where

b, e„(A, ) = & 1/r'„"(A, ) ~JF(A, ) ~it„&

with the normalization condition

(14a)

(14b)

(14c)

and itj„ is the exact solution of & which can be expressed
as

y„=q'„"(x)+~q„(x) (14d)

ly"'(&) & & q'"(&)I'(&) ly„&
„(A,) = 'V'—

Ak Ak'+
2~.z

(15a)

In a practical calculation, we use g(„'(A.) in Eq. (12) to
approximate the exact solution itj„ in Eq. (14b). Then the
parameter k is determined by requiring minimal sensitivi-
ty of E„(A) with respect to A, [i.e., set BA'„(1,)/M, =O].
After A, is determined, b, g„(A) in Eq. (14e) and b, h„(A) in
Eq. (14b) can thus be obtained. Therefore, a more exact
6„(A,) can be finally calculated from Eq. (14a). The exci-
ton binding energy 8,„can be obtained as follows:

where 6, is the bulk energy gap of semiconductor in

GaAs layers. 6 can be measured by the linear optical
spectroscopic techniques, such as absorption, lumines-
cence, and modulation spectroscopy.

III. RESULTS AND DISCUSSIONS

Consider the z axis of the GaAs/Al Ga& As superlat-
tices along the [100] direction. Thus, for x (0.45,
A1, Ga, As has a direct band gap 8s(x) at the I"

point. ' The bulk material parameters of Al Ga, As
and GaAs are available experimentally ' for some x, and
the entire range of x can be obtained by the interpolation.
It was found that the band gap varies with both the com-
position x and the temperature. ' At room temperature
(T =300 K) and for x (0.45, the band gap has been
determined ' as Ag(x)=1.424+1.247x eV, and its tem-
perature coefficient follows 8@ (x) /8T = —0.395
—0. 115x meV/K. The static dielectric constant is
e/co=13. 18—3. 12x, and the effective mass of an elec-
tron in the conduction band is generally accepted ' as
m, /ma=0. 0665+0.0835x (mo is the free electron rest
mass). However, the effective masses of both heavy and
light holes in the valence band have diA'erent measured
values in the [100] and [111] directions. Thus, the
eA'ective mass of holes is anisotropic in bulk Al Ga& As
and has been determined as follows: heavy-hole
eA'ective mass per pendicular to the junction,
mz, /mo =0.45+0.31x; light-hole effective mass perpen-
dicular to the junction, m&, /mo =0.088+0.049x; heavy-
hole e6'ective mass parallel to the junction,
ml, /m~=(1/4m'„+3/4mi, ) '; light-hole effective mass
parallel to the junction, mme/mo =( I/4mi, +3/4mh, )

TABLE I. C1-H1 and C1-L1 interband transitions for difterent GaAs/Al Ga& As superlattice sys-

tems. The notation Cm-H(L)n denotes transitions from mth conduction subband to nth valence sub-

band of heavy- (H) or light- (L) hole character.

L„/L (A) Temp. (K) Eg (meV)
C1-H1 (meV)

Expt. Calc.
C1-L1 (meV)

Expt. Calc.

90/100
116/100
150/100
210/100
315/100
90/25
150/25
71/71
71/99
71/150
71/210
100/150

3
3
3
3
3
3
3

300
300
300
300
300

0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.18
0.18
0.18
0.18
0.3

1519
1519
1519
1519
1519
1519
1519
1424
1424
1424
1424
1424

1552
1540
1530
1522
1516
1545
1530
1467
1469
1469
1469
1453

1555
1542
1533
1525
1520
1547
1532
1468
1470
1470
1471
1455

1566
1551
1538
1527
1520
1556
1538
1479
1479
1480
1479
1465

1569
1557
1542
1530
1524
1561
1542
1480
1480
1480
1481
1469
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Transition

C1-H1
C1-L 1

C2-H2
C2-H2
C3-H3
C3-H3
C4-H4
C4-H4

Expt. (meV)

1426+1
1430+5
1456+2
1474+5
1510+3
1541+5
1576+3
1626+5

Calc. (meV)

1429
1438
1458
1480
1508
1550
1576
1639

TABLE II. Interband transitions Cn-H(L)n, n =1,2, 3,4, be-
tween higher-order subbands for GaAs/Alo 24Gao 76As superlat-
tices with L (well width)=220 A, Lb (barrier width)=150 A,
and T =300 K, where Cm-H(L) denotes transitions from mth
conduction subband to nth valence subband of heavy- (H) or
light- (L) hole character.

020

+ 015

L

C

030

0.05

t =5

L =20
W

=71

0.00
0 50

I

100
I

150 200 250 300

Barrier Width (A)

FIG. 1. Variation of the energy di8'erence (in eV) between the
first conduction subband and the conduction-band edge with
barrier width Lb (in A) for three well widths: L =5, 20, 71 A.

I

0,25-

)
o,20

L (.'.10

~ 0,05

O.N' I

200 250 300
We(( Width ( 4 )

FIG. 2. Variation of the first subband energy (in eV) of the
electron [curve (l)]; the energy difference (in eV) between the
valence-band edge and the heavy-hole [curve (2)] and light-hole
subbands [curve (3)] with well width (in A).

0.05

There is a parameter, the conduction-band offset
coefficient Q, which cannot be measured from experi-
ment. Fu and Chao have solved the one-dimensional34

multiple quantum wells of the GaAS/Al Ga, As sys-
tem and fit their calculated results to optical data by ad-
jllstlllg Q. Tlley obta111 good fl'ts wlle11 Q =0.65 1s used.
Pollak and Shen also find that the best agreement be-
tween the observed and theoretical data was achieved for
Q =0.65. In this work the conduction-band offset
coefficient Q =0.65 is chosen.

It is known that knowledge of the interband and inter-
subband transitions of superlattices is very important in
the electro-optic applications. These transitions will be
influenced notably by the exciton binding energy because
of quantum confinement. There are several experi-

1,5 —8, 15ments ' ' that use the linear optical spectroscopic
techniques to measure the interband and intersubband
transitions of GaAs/Al„Ga& As superlattices and find
that the transitions depend not only on the widths of the
well and barrier but also depend on the temperature and
the Al composition x. Tables I—III list our calculated re-
sults by Eq. (15) under the same conditions as those of ex-
perimental observations. The notation Cm H(L)n shown-
in the tables denotes transitions from mth conduction
subband to nth valence subband of heavy- (H) or light-
(L) hole character. Table I lists our calculated results for
CI-H 1 and C1-L, 1, and some available experimental

23, 26data ' are also listed for comparison. One can see that
good agreement can be obtained for different well width

C
LIJ

003-

TABLE III. Intersubband transitions C1-C2 and C1-C3 for
GaAs/Al„Ga& „As superlattices with x =0.3, the well width
L = 191 A, barrier width Lb = 199 A, and T =3 K. Cm-
H(L)n denotes transitions from mth conduction subband to nth
valence subband of heavy- (H) or light- (L) hole character.

'a
C

0.0 1-

000'
0.10 0.1 5

(2)

I 1

Q20 0 25 0.30 0.35 040 045

Transition

C1-C2
C1-C3

Expt. (meV)

31.6+1.5
91.7+ 1.0

Calc. (meV)

33.2
88.1

FIG. 3. Variation of the first subband energy (in eV) of the
electron [curve (1)]; the energy difference (in eV) between the
valence-band edge and the heavy-hole subband [curve (2)] and
light-hole subbands [curve (3)] with Al composition x.
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096~
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0.04

LtJ 0 03

0.02-

O,O1-

opo
50

(3)

(2)

100
E

200 250 300 350
7emperature (K )

1.0
D

LL( 0 9

0.8

0.7
L-

c 06
Q5

C
0.4

C
n Q, 3
C

0.2—

0,1-
0,0

0

(3)

(2)

I

50
I

100
I I

2 GO 250 300
Well Width (A )

FIG. 4. Variation of the first subband energy (in eV) of the
electron [curve (l)]; the energy difference (in eV) between the
valence-band edge and the heavy-hole [curve (2)] and light-hole
subbands [curve (3)] with temperature T (in K).

FIG. 6. Light-hole exciton binding energy (in units of 2D ex-
0

citon binding energy) as a function of well width (in A). Curve
(1) is for the infinite-height barrier well; curve (2) for superlat-
tices; curve (3) for a single well with finite-height barrier.

(L ), barrier width (Lb), temperature (T), and Al com-
ponent (x). The transitions Cn H(L)n, -n =1,2, 3,4, are
listed in Table II. The results for intersubband transi-
tions C1-C2 and C1-C3 are presented in Table III. One
can note from Tables II and III that our calculated re-
sults agree satisfactorily with the experimental data. '

Figure 1 shows the variation of the energy spacings be-
tween the first conduction subband and the conduction-
band edge 6, &

with the barrier width Lb. One can see
from the figure that 8„approaches zero as the barrier
width Lb goes to zero and approaches a constant as Lb0
increases beyond a value of 100 A. The reason is that for
Lb =0 there is no confinement effect, and when Lb be-
comes larger, the quantum confinement becomes larger
too. When Lb is large enough, the behavior of the super-
lattice is the same as the single quantum well, and A',

&

will be independent of Lb. Figure 2 illustrates the depen-
dence of subband energies 6', &, @b &, and 6 I& on well width
L„(A'», 8&& are the energy differences between the

valence-band edge and the heavy-, light-hole subbands).
In Fig. 2 one can see that 6"„,6b &, and A'» increase as L
decreases. The results are the same as expected. Figure 3
shows the dependence of 6'„, Cb„and 6» on Al com-
ponent x. We can find that 6",&, 6b&, and e» increase as
the Al component x increases. This is because the Al
component x affects the height of the potential barrier
and thus affects the quantum-confinement effect. Figure
4 shows the dependence of 6', &, 6'b&, and 4'» on tempera-
ture T. One can note that 6'„, Bb„and Ci„are almost
independent of temperature. This is because the temper-
ature effects the energy gap only.

Figures 5 and 6 present the variation of the exciton
binding energies with the well width L for heavy and
light excitons, respectively. One can see from the figures
that both heavy and light excitons exhibit their three-
dimensional characters as L becomes very large. When
L decreases, the exciton rnanifests its two-dirnensiona
character by its large binding energy. For the case of a

Qj 0 7

0.6

0.5
c Q 4

CG

C Q.3-0
u 0.2
X

0.1

0.0

'' ~ ~ .
,~.

(2)

I

50
1

100

1.0 y
0.9-

'~(f)

150
I

2PO 250 300
Width (A, )

1 p

Q 9
LLJ

0-8

0 7

c 0.6
D

05
04
03

UJ 0.2

0 1-

00o 5o

L =5
W

=20
W

L =71

I I I I I I 1 I

100 150 200 250 300 350 400 450 500

Barrier Width (&)

FIG. 5. Heavy-hole exciton binding energy (in units of 2D
exciton binding energy) as a function of well width (in A).
Curves (1), (2), and (3) are for infinite-height barrier well, super-
lattices, and single well with finite-height barriers, respectively.

FIG. 7. Heavy-hole exciton binding energy (in units of 2D
0

exciton binding energy) as a function of barrier width (in A) for
three different well widths: L„=5, 20, and 70 A.
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UJ 1.Q
X

0.9
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0.8 -'I(

07

0.6
13

Q,5
03

c 0.40
03-

X'

0,2-

0,1-
OQI

0
I

50

=5
W

=20

L =71
W

100 150 200 250 300 350 400 450 500

Barrier Width (A)

(.C
CO

pg
LLI

L 0,4
c

IJJ

F p, 3

C,2
c0

0.$
LLI

0.0
50

H Excj ton

Exciton

150
I

25O

Temperature ( & )

300

FIG. 8. Light-hole exciton binding energy (in units of 20 ex-
0

citon binding energy) as a function of barrier width (in A) for
three diA'erent well widths: L =5, 20, and 70 A.

FIG. 10. Variation of the heavy- and light-hole exciton bind-
ing energies (in units of 2D exciton binding energy) with tem-
perature T (in K).

Anite potential barrier, the behavior of the exciton in a
single well or in a superlattice is very different. The bind-
ing energy in the latter case has a maximum and de-
creases rapidly when L approaches zero, as can be seen
from Figs. 5 and 6. This is because when L„decreases,
the exciton wave function is compressed in the quantum
well and thus increases the binding. However, when L„
increases beyond a certain value, the splitting of the wave
function in the surrounding Ajj„Ga& As layers becomes
important, and this makes the binding energy approach
the bulk value of Al„Ga& „As. From Eqs. (6)—(8) we can
see that when the well width approaches zero, the proba-
bility of finding an exciton in Al„Ga& „As layers ap-
proaches 1. One can note from Figs. 5 and 6 that the ex-
citon binding energy in a superlattice is smaller than that
in a single well. This is due to the contribution of cou-
pling of wells in superlattices.

Figures 7 and 8 show the heavy- and light-hole exciton
binding energies as a function of barrier width Lb for
three different values of well width, namely, L =5, 20,

0
and 71 A. One can note that for small L the exciton
binding energy A„has a minimum when the barrier

width is small. A similar result was obtained by Kamiza-
to and Matsuura and Gailbraith and Duggan. ' For the
case of a larger well width, the minimum disappears, and
even the barrier width approaches zero. The minimum of
the exciton binding energies in the case of smaller L„ is
caused from the competition of the following: (i) as the
barrier width approaches infinity, the binding energy of
the superlattices is equivalent to that of the single quan-
tum well; (ii) as Lb decreases, the exciton binding energy
decreases due to the coupling between the neighboring
wells. When Lb increases from zero, the electron and
hole subband wave functions have dips in the middle of
the barrier and thus introduce extra electron-hole separa-
tion, which decreases the exciton binding energy. The
coupling of wells and extra electron-hole separation pro-
duce the opposite effect on exciton binding energy as Lb
changes and causes a minimum in the binding-energy
curves as shown in Figs. 7 and 8. From Eqs. (6)—(8) one
notes that for the smaller well width, tunneling into bar-
rier layers is larger. The coupling of wells is stronger for
smaller L„, and thus can be neglected when L is very
large. Therefore, the coupling of wells is less important
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approaches a constant value when the barrier width is
large enough. For the case of a larger well width, the
equivalent effective mass is almost independent of barrier
width. This is because for the larger well width, the tun-
neling into barrier layers is smaller. Thus, the equivalent
effective mass I,* approaches the bulk value of
Al Ga I As when the barrier width increases. When
the well width is large enough, the tunneling effect is very
weak and thus the effective mass will become constant.

IV. CONCLUSION
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than the extra electron-hole separation for large well
width, and the exciton binding energy decreases mono-
tonically as barrier width increases.

If we increase the Al component x, the height of the
potential barrier also increases, thus further confining the
electron and hole in wells and increasing the exciton
binding energy as shown in Fig. 9. Figure 10 shows the
dependence of the exciton ground-state binding energy on
the temperature. One can see that the effect is very small.
This is because the temperature affects the energy gap
only, and the energy gap has little efFect on the potential
barrier. Figures 11 and 12 show the inAuence of the
effective-mass mismatch. The electron equivalent
effective mass parallel to the junction m,* is taken as an
example, where m,* is obtained from Eq. (11). From Fig.
11 one can see that for a larger well width, the equivalent
effective mass approaches the value of bulk GaAs, while
I. approaches zero; the equivalent efFective mass ap-
proaches the value of bulk Al„Ga& As as expected. In
Fig. 12 we find that for a small well width, the equivalent
effective mass increases as the barrier width increases and

FIG. 12. Variation of equivalent transverse efFective mass of
electrons (in units of the free electron rest mass) with barrier
width (in A) for three well widths: L = 5, 20, and 71 A.

The subband structures and the exciton binding energy
of GaAs/Al Ga, As system are studied by the super-
lattice model and an approximation method, which in
some sense combines the spirit of the conventiona1 per-
turbation method and the variational approach. The ex-
citon binding energy and the energy spacings of the inter-
band and intersubband transitions are calculated within
the framework of the effective-mass approximation.
Variations of the exciton binding energies with the we11

width and barrier width for heavy and light excitons are
also studied. The effective-mass approximation has been
used in this work, and the inhuence of the effective-mass
mismatch is also considered.

The approach used in this work can be applied to study
some other systems such as the type-II, modulation-
doped, and strained-layer heterostructures. However, it
should be mentioned that the merit of our approach relies
heavily on a suitable choice of the perturbation term
&'(A, ) in Eq. (4d). In the case when the electron mini-
band width is of the same order of magnitude as the exci-
ton binding energy, one has to reorganize the Hamiltoni-
an in such a way that &'(A, ) can still be treated as the
small perturbation. Otherwise one should include more
higher-order correction terms in b.6„(A,) in Eq. (14b) to
make the present approach more reliable.
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