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Plasmon modes in a system composed of Cn-O layers and chains

Shiow-Fon Tsay
Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China

and Department ofPhysics, National Sun 1'at sen-University, Kaohsiung, Taiwan 80424, Republic of China

Shou-Yih Wang
Department ofPhysics, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China

T. J. Watson Yang
Electrophysics Department, National Chiao Tung-University, Hsinchu, Taiwan 30050, Republic of China

(Received 29 May 1990; revised manuscript received 19 December 1990)

Based on a free-electron model of both the quasi-two-dimensional Cu02 layers and the quasi-
one-dimensional Cu-0 chains in high-T, Y-Ba-Cu-0 superconductors, we have calculated in this
simplified system various Coulombic electron-electron interacting potentials V(q), dielectric func-
tions„dispersion relations, and various plasmon modes, including in particular the acoustic
plasmons. The main contribution of the chains is to stabilize, isolate, and generate more acoustic
plasmons co which provide a pairing mechanism for high-T, superconductivity.

I. INTRODUCTION

Ever since the discovery of high-T, superconductors,
various approaches to an understanding of possible un-
conventional superconductivity have been intensively
pursued. Many models for the superconductivity mecha-
nism have been proposed. ' Most of these authors con-
sidered their mechanism on the basis of a Hubbard. model
within only one single Cu02 layer. Others preferred the
so-called generalized BCS theory, based on a number of
experimental data. This latter theory is an extension
of the traditional BCS superconductivity, in the sense
that the role of mediating phonons there may be played
by one or more boson-type mediators in forming carrier
pairs like the Cooper pair of electrons. One acceptable
mediator would be the plasmons of electrons because col-
lective excitations of the electrons with light effective
mass m* would yield higher T, than excitations of ions
with much heavier ion mass M. The elevation of T, by a
factor M/m* would be due to the enhancement of the
plasmon-mediated electron-pairing parameter k. ' The
plasma frequency co is much higher than the Debye fre-
quency OD for the conventional phonon-mediated case.
If the BCS result T, —0.76exp [ —

( 1+k ) /( A,
—p* ) ] were

to be used for comparison, this fact would increase T, via
the effective characteristic temperature 6, which could
be related to an average frequency (to) in the plasmon-
mediated case. On the other hand, higher 6 would in-
crease the modified Coulomb repulsion p* through the
relation p* =p/I 1+p in(E+ /k~6) ]. Furthermore,
higher boson frequencies would reduce the electron-
pairing parameter A, (Ref. 10) due to the relation
A, =2f deva F(co)/co. This would again lower T, . In
view of the disadvantages of boson frequencies that may
be too high, intermediate-energy, acoustic types of
plasmons, would be most favorable in promoting a high

T, . Based on experimental evidence, " '" Emery' point-
ed out that in high-T, superconducting mechanism—
unlike the phonon-mediated case —the electron-electron
pairing force is nonretarded. This again pointed to the
acoustic plasmons as the most suitable mediator for the
pairing mechanism compared with other types of
plasmons. The reason lies in the linear dispersion rela-
tion of the acoustic plasmon, which allows low enough
frequencies for the formation of pairs. The concomitant
longer screening time is expected to serve a similar func-
tion as that of the retarded phonons in traditional BCS
theory.

Acoustic plasmons in Y-Ba-Cu-0 superconductor s
have been studied by Crriffin' as arising from the usual
three-dimensional (3D) Coulomb potential interaction
among free electrons in the system. He later studied the
same problem using a two-dimensional (2D) Coulomb po-
tential. ' Kresin et a/. ' worked out the dispersion rela-
tions of an electron-gas model in equally spaced layer sys-
tem for high-T, copper oxides. For a system containing
all equally spaced CuO2 layers, Nakamura and Tagawa'
reported, among other things, the striking result that
only a system with 2,5,8, . . . layers can support acoustic
plasmons for the superconductivity. As to the role of
chains, Lee and Mendoza' have shown theoretically that
excitations called "slender acoustic plasmons" could pro-
vide a possible superconducting mechanism in a small,
long structure. Park, Tsuei, and Tu presented evidence
that the Cu-0 chains are metallic. However, results of
electron-energy band structure indicate that the energy
band due to Cu-0 chains is almost empty. ' Clearly, the
carrier concentration in the chains is much lower than
that in the Cu02 layers. As a consequence, the associated
acoustic plasmons must be damped out more rapidly.
Therefore superconductivity via the acoustic-plasmon
mechanism is more likely to occur in CuOz layers than in
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the Cu-0 chains. With recent experimental data,
Bauhofer et al. emphasized that the chains could act as
a coupling between adjacent superconducting CuO2-Y-
CuO2 blocks. Based on an independent observation, our
previous work, in which long-range Coulombic interac-
tions among the ions were studied, also supports this
reexamination of the role of the Cu-0 chains. Thus the
important question to ask on the theoretical side is what
role the chains are expected to play when interactions be-
tween the chains and layers are taken into consideration.
In this article, we present a detailed study of Coulomb in-
teractions between electrons in a system containing only
Cu02 layers and Cu-O chains with unequal separations
among them to simulate a simplified, though more realis-
tic model of YBa2Cu307 & superconductors, which is de-
picted in Fig. 1.

In Sec. II, using a simple free-electron-gas model for
the system of coupled layers and chains, we obtain in-
teracting potentials of the system within the random-
phase approximation (RPA). Various electron-electron
Coulomb interactions, viz. , intralayer, nearest-neighbor
interlayer, intrachain, nearest-neighbor interchain, and
layer-chain interactions, are all taken into account, but
no charge transfer among these components is con-
sidered. In Sec. III, we obtain a matrix form of the
dielectric function for the system composed of various
layers and chains and discuss relevant plasmon mode in
the long-wavelength domain. In Sec. IV, we analyze the
dielectric functions of the layers and chains in the system

and consider the plasmons. The dielectric functions,
dispersion relations, and plasmon modes of the thin-film
system containing various layers and chains and the sys-
tem containing an infinite number of layers and chains
are fully discussed in Secs. V and VI, respectively. Final-
ly, some numerical results with discussions and con-
clusions are given in Sec. VII.

II. INTERACTION POTENTIALS V(q)

As shown in Fig. 1, this model consists of many layers,
each with as large a surface area as that of an actual sam-
ple and each containing a quasi-two-dimensional electron
gas. These layers, which are to simulate the copper oxide
layers, are all placed parallel to the x-y plane. The N
chains in an x-y plane, represented by N dots (Fig. l), all
lie along the y axis, equally spaced with separation a.
Each chain contains a quasi-one-dimensional electron
gas. Let the distance between two nearest-neighbor lay-
ers be c2', that between a chain and a nearest-neighbor
layer, c, . The origin is chosen to be at the center of one
particular chain. By symmetry, we assume the number of
electrons per unit area in all layers to be the same and,
furthermore, there is negligible charge transfer between
any two of the components (layer or chain). For simplici-
ty, we further assume, for the z-directionally periodic sys-
tem, free-electron-type wave functions P& (p, z —mco )

(L)

and Pk' (x,y, z —mco), respectively, for the layers and the
chains. These functions are periodical in the z direction,
with periodicity co =2c

&
+c2, and m is an integer. For

the X chains in any (z =mco) plane, we have (taking
m =0 for simplicity)

~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~

C~

C

Co

Pk"(x,y, z) = —e ' cp„(x)q(z),&L
ik ~a

y& (x)= — g g(x —ja)e (2)
=o+i

where k=k, i+kzj is the electron wave vector for the
chains in the x-y plane, L is the length of a chain, and j is
an integer indicating the jth chain. The orthonormality
conditions on yk (x) impose the relation

' x —j,a x —j2a dx =6

~ ~ ~ ~ ~ y ~

For any single layer, taking for simplicity either one of
the two layers in the zeroth (m =0) unit cell,

~ ~ ~ ~ 0 ~ 0

A
= X

where p=xi+yj, with 3 the layer area and K the elec-
tron wave vector in the x-y plane of the layer. Since the
overlapping charge-density distribution among different
layers and different chains shows negligible amount in

YBa2Cu3O7, we employ the following rather localized
electron wave functions:

FIG. l. A simplified model of YBa2Cu307. The CuO, layers
are represented by lines and the Cu-O chains by dots.

~g(z —mc, )1~=5(z —mc, ),
~g(

—j )I'=&(

~YJ(z)~ =5(z) .



13 082 SHIOW-FON TSAY, SHOU-YIH WANG, AND T. J. WATSON YANG 43

Thus we assume each layer to be strictly quasi-two-
dimensional with essentially no overlap of wave functions
between adjacent layers, and each chain to be strictly
quasi-one-dimensional again with no overlapping. This
approximation is very convenient for most of our analyti-
cal deductions, and the essential physics is not lost. The
noninteracting single-particle energies in a layer and a
chain are, respectively,

$2
E'K '= (K, +%2)+EoL,

2IL

summation is taken over all the indices a, P, v, and 5; P,
P&, P, and Ps are electron wave functions in either chains
or layer, which are given by Eqs. (1) and (4). We neglect
the second-nearest-neighbor Coulomb interactions.
Equation (12) consists of four parts: (i) intralayer interac-
tion VL;' ' ' (ii) intrachain interaction and interchain in-
teraction between any two nearest-neighbor chains, Vc,
(iii) interaction between two nearest-neighbor layers with
separation c2, VLL.,'and (iv) interaction VLC between
chains and the nearest layer with separation c, . They are
readily calculated as

fi kEk, +Eoc
201

where EoL is the z-directional quantization energy in the
layer, and Eoc is the quantization energy in the chain
along the x and z directions. For convenience, we set
EoL to zero, which implies that

A EF
2ftl L

2Eoc EF— k2F ~

2m

where KF is the magnitude of two-dimensional Fermi
wave vector in a layer, and k2F is the y component of the
Fermi wave vector in a chain.

The Hamiltonian of the system can be written as

2&e

2e
Vc l. 21~0( q2~l )cos(ql+) ~i(q2~oc)~NI.

2&e —
q~2

2

Aq'
2e f e ' Ko(q2(u +c, )'~ )du

27Te —q~,
2

Aq'

where the cosine integral C;(qzaoc ) is

C, (x)= —I dz .
x z

(13)

(14)

(15)

(16)

H =Ho+H;„, ,

where

(loa)

Ho= g EK I CK I CK I +g Ek ~CI &Ck j,
K., L kj

(lob)

H;„,= —,
' g V p sC C~C Cs,

Vp~= * ri p r2 V r) —r2

XP,(r2)P&(r, )d r& d r2, (12)

where V(r, —r2) is the Coulomb-potential energy; the

in which EK L is the E~' of the Lth layer, while Ek j is
the Ek' of the jth chain. The interaction part of the
Hamiltonian is

In Eqs. (13)—(16), q =q; i+ qzj, Ko is the modified
zeroth-order Bessel function. The first term of Vc in Eq.
(14) is the nearest-neighbor interchain interaction, while
the second term is the intrachain interaction. Because
of the Pauli exclusion principle, the closest separation be-
tween two interacting electrons in the intrachain case is
assumed to be no smaller than aoc, where aoc can be an
effective Bohr radius in the chain. Comparison of (15)
and (16) suggests that VIC, the interaction between a lay-
er and its nearest chains, can be considered as the interac-
tion between a free-electron-gas layer and a hypothetical
layer composed of the N chains. We only retain the
nearest-neighbor interaction among the layers and/or
chains. The Coulomb interaction V for the overall sys-
tem can be expressed in matrix form, in which the matrix
elements are the Coulomb interactions among various
components (layer or chains) of the system, viz. ,

VLc Vc VLc

VLc

0

VLc
VLc Vc VLc

VLc VL VL

VLc

(17)



43 PLASMON MODES IN A SYSTEM COMPOSED OF Cu-0. . . 13 083

This is a tridiagonal matrix (with a bandwidth of 3), all
other off-diagonal elements being zero.

linear-response theory as

p'" (q, co) =g g K „(q,co) V„(q)p'"'(q, co), (18)

III. MATRIX FORM OF DIELECTRIC FUNCTIONS

The charge-density Auctuation p'", which is induced
by an external charge density p'", has been given in

where K„,(q, co) is the Fourier transform of a retarded
density-density response function between the electron
density p„ in the pth layer (or chain) and the electron
density p in the vth layer (or chain). It is defined as

K„(q,co)=lim —VJ dt'e ' '+"'([p (q, t'), p (q, 0)))
g-o

(19)

Equation (18) can be written in a matrix form

p'" (q, co) =K(q, co) V(q)p'"'(q, co) . (20)

In order to find collective excitations of the system, we
solve for the dispersion relation by requiring that

ext

e(q, co) = ind+ ext

of which the corresponding matrix form is

(21)

Since the dielectric response function e(q, co) is generally
defined by

dete(q, co) —=F(q, co) =0,
that is, F„(q,co) = ReF (q, co) =0,
=ImF(q, co)=0. We note that

eL (q, cd) =eL„(q,co)+i el;(q, cd),

and

(25)

and F (q, co)

(26)

e '(q, cd)=I+K(q, cd)V(q), (22) ec 'q2 ) = c ('q2 ~) ci(q 2 (27)

where e '(q, co) is the inverse of the dielectric-response
matrix e(q, co) and I is a unit matrix. In the random-
phase approximation (RPA), the dielectric response ma-
trix e(q, co) is reduced to a simpler form:

e(q, cd) =I—P(q, co) V(q), (23)

where P(q, co) is the polarization matrix of the whole sys-
tem. Since all the layers have the same polarization
P, (q, co),P(q, co) is a diagonal matrix composed alternate-
ly of the two component polarizations P, ( q, co ) and

Po(q, co), where Po(q, co) is the polarization of chains.
Substituting Eq. (17) into Eq. (23), we find the tridiagonal
dielectric response matrix:

IV. ANALYSIS OF THE LAYERS AND CHAINS

KF = (2mn, )'~. (28)

A. Intralayer and interlayer dielectric functions

We use dimensionless variables x =q/KF, x2 =q2/K~,
and y =Aco/EF, where EF is the Fermi energy of the sys-
tem, and KF is the magnitude of Fermi wave vector of a
layer. The two-dimensional K„should be related to the
surface charge-carrier density n, of a layer via the rela-
tion

E(q, co)=

E 2 B
B A E 0

D CD
E 3 B

BAE
D CD

EAB
B 3 E

(24)

The imaginary part of the intralayer dielectric function
of a single layer does not equal zero in the region
x —2x &y (x +2x. This has been given by several au-
thors. ' ' ' In the long-wavelength (small q or small x)
domain, eL; for a single layer is equal to zero when

y ~x +2x [i.e.,

0 q KF+(KF+2mL*—cd/fi)' ] .

The real part of eL has been given by Ref. 18:

=1+ ( 2x'+ [(x'—y)' —4x']'"1

x KFQ pl

where 3 = 1 —P, VL = eL is the single-layer dielectric
function; 8 —= P, VLL =(eL —1)e—
C = 1 Pp Vc =Eg is the multi-chain dielectric function;

—[(x +y) —4x2]'~ ], (29)

where apI =A /mLe . In the long-wavelength limit, el,
becomes

D —= Po VLc ( VL /Vc)(ec 1)e
qc lE = P, VLc =(eL —1)e— 4 x

KFQ pL
(30)
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This gives the well-known dispersion relation
y =[(4/KzapL )x]', i.e., cp] = [(2me n, /mz )q]]~z,
which was first derived by Stern. '

The long-wavelength result Eq. (30) and the resulting
dispersion relation can be regarded as describing a system
containing only one single Cu02 layer. For a system con-
taining only two coupled layers with separation c2,
F(q, cp) can be reduced to A B—. The collective excita-
tions occur at A B=—( A —B)( A +B)=0. In the
long-wavelength domain, y ~x +2x, the system has two
branches of plasmon modes outside the electron-hole ex-
citation region. One branch, the co+ mode, has a q'
type dispersion relation which comes from the 3 +8 =0
factor. The other mode co yields a linear dispersion re-

co: y =(4cz/apl )' x .
(31)

B. Multichain dielectric function

The real part of dielectric function of a system of mul-
tiple chains can be shown, within RPA,

lation in q if qc2 & 1, which is an acoustic-plasmon mode,
coming from the 3 —B =0 factor. Explicitly, these
plasmon modes are

1/2
8

X
KFaoI

2
[2Kp(lqzal )cos(q]a) ~;(qzapc)]

&apcq2
2 2.

Xln
q2

2-

(32)

where aoc =A /mc e . In the long-wavelength domain, ec; equals zero when

X2+2
K2F

X
KF

i.e., 0(qz ( —kzz+(kzz+2mca]/]]])'~ . The long- (y-component) wavelength (small xz) form of ec„obtained by ex-
panding the right-hand side of Eq. (32) in orders of the small quantity 2(ml*/mc )(kzz/Kz)(xz /y) is

16 k2F
ec = 1 [2Kp(xzKpa)cos(x

]%pa�

) 8 (xzK~apc ) ]
7Ta pc 2F KF

mL

Plc

2
X2

'2

+ ~ ~ ~ (33)

in which I p(x)= —y —ln(x/2)+ . , C, (x)=y+Inx
+ for x «1, where y is Euler's constant. When
x2KFa « 1, and x,KFa « 1, with the relation
lim„p(xzlnxz)= —xz/2, Eq. (33) can be expressed as2-

the chain separation a. The result is similar to that of
Refs. 32 and 33. We must emphasize that the acoustic-
plasmon mode also appears in a quasi-one-dimensional
single chain, ' which is obtained by letting a —+ ~ in Eq.
(32).

ec„=1 —[a]—az(kpax ] ) ](xz /y) + (34)

where

0,'i = 16
21n2 —3[@+In(xzK+a) ]

ma ocKF

aoc
+ln

a

16
CX2- [ln2 —y —ln(x z %+a ) ]

waocKF

mL

mc

k2F
2

mL

mc

and a, and a2 are positive constants.
The dispersion relation in the long-wavelength limit

gives an acoustic mode ~o ~ q2, as can be clearly seen
from Eq. (34). The phase velocity U =co/qz is related to

V. DIELECTRIC FUNCTIONS, DISPERSION
RELATIONS, AND PLASMON MODES

OF THE MANY-LAYER SYSTEM

We consider the systems which contain a finite number
of layers and chains with two neighboring layers as the
top boundary, as depicted in Fig. 1. In this paper, we do
not investigate the surface plasmons of layered electron
gas, such as the Giuliani-Quinn surface plasmon, which
have been studied by Quinn and co-workers. ' ' ' Let the
dielectric function of the n layers (the plane of N chains
also called a layer) be e'"'(q, co). The determinants of the
dielectric matrix dete'"'(q, co):F„(q, )cfpor variou—s sys-

tems of a finite number of layers are listed below, respec-
tively:
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F, (q, co) = A,
F2(q, co) = A 8—
F3(q, co) =( A B—)C —ADE,

F4(q, co)=(A —8 )(AC DE—) —A DE,

F&(q, co) =( A —8 )[( A 8—)C 2A—DE],
F,(q, co)= (A' —8')[(A' 8')—C' 3AC—DE+D'E']

+A DE

(35)

Thus we can see that the plasmon modes clearly consist
of co+ ( A +8 =0), co ( A 8—=0), co& ( A =0), and coo

(C=0) modes. For qc, and qc2 large, the exponential
factors of Coulomb interaction of VLI ~ and VIC, Eqs. (15)
and (16), approach zero. Then each of the factors 8, D,
and E is small. As a consequence, the coupling between
the coupled double layer and the chains vanishes. The
system would appear as if the chains and the layers are
isolated from each other. The co+ and co modes of cou-
pled double layers should approach the same ~, mode as
that of a single layer.

F~(q, co) = ( A —8 )( AC —DE) [( A 2 —B~)C —3 ADE]

+A DE

qc 1

2
16 mL k2I-

aa oc+I"k 2p m c +p

2
X 2

(36)

Fs ( q, co ) = ( A 8)[ (
—A 8)—C —4( A 8)A—CDE

+4 A 2D 2E 2 8 2D 2E 2]

where F, (q, co) represents the dielectric function of a sys-
tem of only one single layer. We note that each
F3j ] ( q, co ) with positive integers j contains the A 8—
factor from recursion relations. As is seen clearly from
Eq. (35), a system with n =2, 5, 8, . . . layers gives
acoustic-plasmon modes. It is due to the (A 8) factor-
from the coupling of the aforementioned two neighboring
layers.

We next solve the dispersion relations from Eqs. (35) in
the long-wavelength domain as defined by y &2x +x,
and y ) (mL /mc )[x&+2(k2~/K~)x2]. As stated above,
Ec; (q, co) =eL, (q, co) =0 in this region. The determinants
F, (q, co) are then set equal to zero. The D and E factors
appearing in Eq. (35) can be readily calculated in this re-
gion as

D = —VLcPo

VI. THK DISPERSION RELATIONS
OF A SYSTEM CONTAINING

AN INFINITE NUMBER OF LAYERS

(A B)C 2D—E[A +8—cose]=0, (38)

where 6=le/(m —1), l =0, 1, . . . , m —1. These zeros
have the following properties: (i) The zeros are nearly
equally spaced on the e domain for the system with a
large number of layers. (ii) The distribution of plasmon
frequencies over 6 is quasicontinuous for an infinite num-
ber of layers. The plasmon branches form a band with
band edges 6=0, and e=m.

For 6=0, Eq. (38) is reduced to

We consider a system that is formed by the combina-
tion of two layers and a chain layer of N chains as a unit
cell, with the two neighboring layers as the top boundary,
Fig. 1. The dispersion relations of such a system with an
infinite number of layers are solved in the Appendix.
From the recurrence relations Eqs. (A2) and (A3b), we
clearly see that the determinant of the dielectric function,
dete(q, co) =P l, has the factor ( A 8), if-
n =2, 5, 8, . . . , 3(m —1)+2, with m a positive integer.
This result is the same as that of Eq. (35). The zeros of
the determinant of dielectric function P . of the system
(see the Appendix) are given by the relation

—
qC IE= —V P= —eLC 1

4x
2

aoLKFy

( A +8)[(A B)C 2DE] =—0, —

and for e=w,

(39)

Because 4(mI*/mc) (k21;/K~) (x2/y ) (1, and 2x/y
(1, the contribution of D and E in Eq. (35) becomes
weak when x ) 1 or y & 1 in comparison to other terms
such as A, C, or A B. Consequently, E—q. (35) can be
approximated as the following, when x & 1 or y & 1:

( A —8)[( A +B)C 2DE] =0 . — (40)

Therefore, the acoustic plasmon co mode, due to
A —B =0, always exists in the system of an infinite num-
ber of layers. The location of the band edges are indepen-
dent of the layer number n.

F2= a' —B',
F3-( A B)C, —

F4=(A B)AC, —

F5 —-(A 8) C, —

( A 2 82)2( 2

F =(A 8) AC-
F =(A —8 )C

(37)

VII. NUMERICAL RESULTS AND CONCLUSIONS

The Fermi wave vector of the electrons in a two-
dimensional layer is K+ =(2vrn, )'~, where n, is the layer
carrier concentration, whereas that of one-dimensional
chain is k2~=mn, /2, in which n, is the linear carrier
concentration. Because experimentally available data are
on the average carrier concentration, there is no direct
way to obtain n, and n, separately. We employ the fol-
lowing averaging treatment by setting n, =nc 2 and
n, =na(co —2c2), where n is the average carrier density.
This is more realistic than the usual approach, ' which
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adopted equal separation among the layers and chains.
Since the plasma frequency ~ is available from experi-
ment, we obtain the effective carrier mass mL* in a layer
via the well-known plasma-frequency expression
co&=4vrne /mz*, with known n U. sing the mI and the
relation E~ =A'KI; /2ml*, we find the Fermi energy EI; of
the system. In order to find the effective mass mc for
carriers in the chains, we apply the relation between the
effective mass and the Sommerfeld constant y =C,&

/T;
C,&

is the heat capacity due to electrons, and T is the tem-
perature. This allows us the following relation:

f4.00

f0.00—

1 1D (Co 2C2)
2~na

'V 2D 2

(41)

where y &D and y2D are Sommerfeld constants in 1D and

2D, respectively. If we assume that y&D=y2D for the
moment and omit a possible difference between the mass
ratios mc/II* obtained from the heat capacity and that
from plasma frequency, we have the value for mc given
below.

The experimental data for the lattice of YBazCu307 are
taken as a =3.8179 A, b =3.8828 A, cp = 11.6807 A,
c, =4. 1291 A, and co =2.6 eV. When n =7X10 '

cm, we obtain EI; —=0.40 eV, k2+=2. 03X10+ cm
Kz—=3.87X10 cm ', mL, =1.43mp, and mc/mL*, =4.33
(mc =6.20mo), where mo is the rest mass of an electron.
The four plasmon modes co„co+, co, and ~p for q, =0,
which correspond to single-layer, double coupled layers,
and multichains, respectively, are depicted in Fig. 2. The
region of electron-hole excitation of chain lies almost in-
side and below that of the electron-hole excitation of lay-
ers. The long-wavelength domain for the system of layers
and chains given by eL, =0, and ec, =0, can be expressed
by y )x +2x, which is the domain above the upper
boundary of the hatched region in the figure. The disper-
sion relations of the system must lie above the boundary
of electron-hole excitation of the layer, below which any
plasmon oscillations would be rapidly damped out. In
the inset of Fig. 2, we show these modes in their long-
wavelength limit. We denote the long-wavelength limit
as only the small part (small x) of the long-wavelength
domain, which has been defined as y ~x +2x. The co

and coo modes behave truly as an acoustic mode (near
straight line). The coo follows very closely the co mode
for x2 ~ 0. 1, but goes into the layers' electron-hole excita-
tion region at xz-—1.4. We note further in the inset that
the ~p starts from values higher than those of co and
crosses co at q2=0. 1k+. At the crossing, the energy
(frequency) and wavelength of the collective motions coo

and co have to be the same. This is for the case in which
interactions between layers and chains are taken to be
zero. In the cases with such interactions, due to the
much smaller polarization Pp of the chains relative to
that of the layers, the collective oscillation cop would be
made to vanish slightly away from the crossing point.
This helps explain why the modified ~p in an actual sys-
tem starts from qz/0+~0. 2 (see Figs. 3 and 5). In this
sense, we say the chains have the function of maintaining
(or stabilizing) the acoustic mode co of the doubly cou-

I I I I t 1 I I I f I I I I ) I I I I 1 I I I I

0.00 0 40 1.00 1.40 S 00 S 40 8 00

FIG. 2. The dispersion relations of the plasmons for the dou-
bly coupled layers, co+ (upper solid line) and co (lower solid
line); single layer, co& (dashed line); and the multichains, coo (dot-
dashed line) for q& =0. The hatched portions are the electron-
hole excitation continuum of the layer (upper) and that of the
multichains (lower). Inset: Enlargement of the long-
wavelength-limit region of Fig. 2. The co mode and coo mode
cross at x2 =0. 1.

pled layers. The dispersion curves of a many-layer sys-
tem (for example, n =7) are shown in Fig. 3. The n =7
system contains two layers of multichains, two sets of
coupled double layers, and a single layer. The dispersion
relation consists of seven branches. Comparison of this
with Fig. 2 indicates that these branches arise from the
individual or unmodified modes cop, co+, co, and co, un-
der the restriction from the composition of the system.
For example, the existence of a modified co, branch de-
pends on whether or not the composition of the system
contains a single layer. But for q2)EI;, those plasmon
branches gradually approach the co+, co, co&, and cop

modes, as shown Fig. 3. Since in this case the coupling
factors D and E are rather small, the interaction between
the coupled double layer and the multichains will become
weakened and decoupled to some extent. In this way, the
multichains may provide isolation between the two dou-
bly coupled layers above and below the multichains; thus,
aside from co& and cop, only the modified co+ and co

modes of doubly coupled layers are seen in the figure. As
q2/K~ becomes so large as to be near 3.00 (i.e., in the
very short-wavelength region), the Coulomb interactions
VLI, and V~c [see Eqs. (15) and (16)] tend to be complete-
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FIG. 3. The dispersion relations of the n =7 system with

ql =0.

FIG. 4. The dispersion relations of the system which con-
tains only seven equally spaced layers, showing the difference
with chains (Fig. 3) and without chains.

ly turned off. In this case, all the components (layers and
chains) are to be decoupled and what remains is only the
single-layer plasmons co&, as shown in Fig. 3, where the
plasrnon coo from the multichains has been damped out
much earlier and quickly. If there were no chains, the
dispersion relation would be very different. Following
Ref. 18, the dispersion relations of the system with seven
equally spaced largers are plotted in Fig. 4. These
branches appear approximately equally spaced, as they
all go together to co, in the short-wavelength region,
where, as just mentioned, all components are decoupled
and only m& remains.

For the system consisting of an infinite number of lay-
ers, the dispersion relations form three bands. Figure 5
shows the band distribution from Eq. (38). The band
edges of the highest-energy band are ( A +B)C—2DE =0 (6=+), and A +B =0 (6=0). A second
band lies between ( A —B)C 2DE =0 (6=0—), and
A —B =0 (6—vr). But the lowest dispersion band of the
chains does not begin at q2=0 and, therefore, is not
acoustic as the individual (unmodified) curves of Fig. 2.
Thus the contribution from the chains to the high-T, su-
perconductivity is definitely not as important as the cu

modes of the doubly coupled layers. The Ace/EI; relative
to the 6 value for q2 =0.5k~ is shown in the inset of Fig.
5. It is obvious that the upper band is very narrow.
While the lowest band of multichains enters the
electron-hole excitation at 0 ~ m/4, the upper two bands
of these plasmons are gradually narrowed and approach
the co+ and co modes, respectively. Therefore, the

f6.00

t0.00—

6.00—

I I I I
/

I I I I f I I I I
/

I I I I ) I I I I ) I I I I

0.00 0.60 f.00 f.60 $.00 $.60 8.00

FIG. 5. The dispersion relations of the n~ ~ system, form-
ing three bands (cross-hatched). Inset: The bandwidth at
q2 =0.5K+ [the solutions of Eq. (38)]. The ordinate is the same
as that of the main figure.
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co, and it is these ~ modes of doubly coupled layers
that might provide a pairing mechanism for high-T, su-

perconductivity, because, based on our results (Fig. 5,
e.g.), the nonacoustic behavior of the dispersion relations
of the chains is unlikely to provide the essential supercon-
ductivity mechanism.
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P =A —B1,2

P2 2
= ( A —8 ) [( A 8—)C 2A—DE] .

(A3b)

Finally, if the base contains two layers and ¹ hains
(j=3), we have

PI 3=(A 8—)C —ADE,
(A3c)

P2 3= (A —8 )[(A 8—)C 3A—CDE+D E ]

+A DE
To solve, Eq. (A2) can be recast as

Pm+1, j
P

APPENDIX: FORMAL DERIVATION
FOR THE DISPERSION RELATIONS

C(A 8) —2ADE— BD —E
1 0

P

P 1

(A4)

The base cell of the system with infinite number of lay-
ers can contain either one, or two layers, or multichains.
When the base cell is composed of three layers, the sys-
tem becomes an infinite, perfectly periodic one. The lay-
er index is n =3(m —1)+j, with j=1,2, 3, where m
denotes the mth cell (block) and j represents the jth layer
of the base (lowest) cell (block). To solve the dispersion
relations, we first calculate the determinant of the tridiag-
onal dielectric-function matrix E(q, co). Which we now set
dete(q, co):—P for convenience. Then we have

By iteration, P can be expressed in P1 - and P2

P . P2
A m 2

pPm —1,j
where

(A5)

C( A 8)—2—ADE BD E—
1 0 (A6)

To calculate the integer powers of A, we diagonalize A,
so that

P

A B
B A E

D CD
EAB

B A E
DCD

E

0

0

D
EAB

B A E
D C

The eigenvectors are

e, =
(X +1)'

Ae;=A, , e; .

The eigenvalues of A are

A, I 2= —,
' [( A 8)C 2AD—E]—

+ &

I [( A 2 —82)( —2ADE]2 —482D2E~] (A7)

Here we are mainly interested in the limiting case
n —+ ~ for a bulk sample. After some algebraic manipu-
lation, we find the following recurrence relation for
Pm+1, j7 Pmj 7 and Pm —i,j

e2=

Then

A m —2 gDm —2g —1

+ t J + [2ADE —C( A B)]P-
+B2D2E2p =0

)
(A2)

where

and P, , and P2~ are determined by the base (lower
boundary) of sample. If the base is a single layer (j= 1), and

P1, =A,
P2, =(A —8 )(AC DE) ADE . — —

If the base is a coupled double layers (j =2),

(A3a)
gm 2

1

0

We finally obtain

gm 2
2
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P2-
P = '

(A,
' —

A, ')
m, j g g 1 2

1 2

The 1th root P& of P J. satisfies

(m —1)(bi+pi =+lee, (A14)

PIiJ (gym
—1 gym —1)

2 1 1 2
1 2

(A8)

In the following, we discuss various cases of XI and X2 of
Eq. (A7), be they complex or real.

Case 1: A, , and A, z of Eq. (A7) are, in general, complex
l~

i
——+

m —1
(A15)

From the above analysis, the zeros of P for large m are

where l =0, 1,2, . . . , m —1. The solutions becomes par-
ticularly simple for large m, when g can be neglected,
and we obtain

[( /1 2 B2)C 2+D~]2 (4B2D2E2

In this case, A. I
= A,z. To exploit this feature, we write

(A9)
(/1 —B )C =2DE 3 +B cos

m —1

A, , =a+i p=re'~,

X,=a i p—=re

where

(A 10)

Case 2: A, , and A, 2 are real, we can set

A, , =a+p'=re~,

X,=a p'=re— (A16)
a= —,'[(A —B )C 2ADE—],
P—(B2D2E2 2)1/2

p. ( o2 P2 )
I /2 BDE

P =arctan—

(Al 1)

where P'=iP, r =(a —P' )' and P'=i/, Eqs. (A12) and
(A13) can be replaced by

m 2P, = . , [ P~,.si hn[(m —1)P']
sinh

—rP, sinh[(m —2)P'] }

with the new variables, we obtain from Eq. (AS) =P'sinh[(m —1)P'+P'], (A17)
m 2

P = . t Pz sin[(m —1)P]
sin

rP, sin[(m ——2)P]] (A12)

where g'=i it/ Bec.ause the value of the hyperbolic sine
function lies between —~ and ~, the zeros of P
should satisfy

where P from Eq. (All), lies between 0 and ~ We.
rewrite Eq. (A12) in the form

(m —1)P'+g'=0 . (A18)

Substituting

it/'=inst/and

Eq. (A18) into Eq. (A13) yields
P =P sin[(m —1)P+g]

where

(A13)
rP& sinhP'

tanh[(m —1)P']=—
P2 J

—rP, ,cosh/'

p2—
2

m 2

(r P, , +P2 2rP, P2 c—os/),
sing ~J «J ~J ~J

p'p,

(zP) . —P2 .
(A19)

rp& sin
tang=

P2 —rP, ,cosP.
From Eq. (A19), we can get a numerical solution which is
dependent of the layer index n, .
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