
ELSEVIER

Reliability Engineering and System Safety 57 (1997) 129-142
© 1997 Elsevier Science Limited

All rights reserved. Printed in Northern Ireland
P l l : S 0 9 5 1 - 8 3 2 0 (9 7) 0 0 0 3 0 - 6 0951-8320/97/$17.00

The application of Petri nets to failure
analysis

T. S. Liu & S. B. Chiou
Department of Mechanical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC

(Received 18 March 1996; accepted 23 February 1997)

Unlike the technique of fault tree analysis that has been widely applied to
system failure analysis in reliability engineering, this study presents a Petri net
approach to failure analysis. It is essentially a graphical method for describing
relations between conditions and events. The use of Petri nets in failure
analysis enables to replace logic gate functions in fault trees, efficiently obtain
minimal cut sets, and absorb models. It is demonstrated that for failure
analysis Petri nets are more efficient than fault trees. In addition, this study
devises an alternative; namely, a trapezoidal graph method in order to account
for failure scenarios. Examples validate this novel method in dealing with
failure analysis. © 1997 Elsevier Science Limited.

1 I N T R O D U C T I O N

A variety of methods for failure analysis have been
presented, namely, reliability block diagram, failure
mode and effects analysis, and fault tree analysis. This
study presents a failure analysis method based on
Petri net models. The Petri net theory is a graphical
method using some basic symbols for describing
relations between conditions and events. It can
represent and analyze the dynamic behaviour of
systems. So far, the Petri net model has been used in a
variety of applications, e.g., manufacturing systems,
computer software and hardware systems.

Petri nets have two types of nodes named place P
and transition T. These nodes are connected by
arcs A, i.e., arcs connect transitions to places or
places to transitions. Each place may contain one
or more tokens. The basic symbols are defined as
follows"

©: Place, drawn as a circle.
- - - : Transition, drawn as a bar.

: Arc, drawn as an arrow, between places and
transitions.

o: Token, drawn as a dot, contained in places.

Moreover , Peterson [1] defined P, T, and A as:

P = {P~ l P, is a p l a c e , l <- i <- l},

129

where I is a positive integer

T = {T~ I T~ is a transition,1 - i - I}

A m (p x T) U (T x P).

The state in Petri nets is represented by a token
number mi, called a marking, contained in each place
Ps. As shown in Fig. l(a) , there is a token in each of
input places/'1 and P2 but no token in output place P3.
Accordingly, the Petri net marking is M = (1,1,0).
Each transition connects to both input and output
places. A transition is said to be enabled when its
every input place contains at least a token. A
transition fires if it is enabled, which removes a token
from all of its input places and puts a token in all of its
output places. This results in a change of the marking,
i.e., a change of the state.

The transitions in Fig. l (a) - (c) are enabled, since in
every case both places PI and P2 contain at least one
token. A firing of transition T~ moves a token from
each of P1 and P2 to the output place P3 (and P4 in case
(c)). Place P~ in Fig. l (b) originally has two tokens.
After firing, a token remains in PI, since any firing can
withdraw only one token from each input place. In
spite of transitions T~ and T2 shown in Fig. l (d) , only
T~ fires due to its input place Pt, with a token. The
firing of T~ has nothing to do with input place /)2,
whereas it gives a token to each of P3 and P4- In Fig.
l (e) , by contrast, T~ is not enabled due to no token in
t"2.

The Petri net marking before firing (M0) and after

130 T. S. Liu, S. B. Chiou

(a)

P l ~ l .~FI P2

MO=(l, 1,0)

P1

T1 P2

G___)P3 M l =(0.0.1)

(b)

P I (~ ~ T I P2

MO=(2, 1.0)

f

(P3

P2

Ml=({,O,{)

(c)

P I ~ (~~F I P2

P3 P4
MO=(I, 1,0,0)

P1 ~ P 2
~-- TI

P3 P4
M { =(o,o, {, {)

(d)

(e)

~)P2
T2

M0=(1.0,0,0)

PI T I ~ ~ ~ P2
T1 T2

P3 P4
M l --(0.0. {, {)

PI

T1 P2

MO=(2.0.O)

Fig. 1. Firing of transition.

firing (M1) are also illustrated in Fig. 1. The marking
in Fig. l (e) is invariant due to no firing, and hence no
change of states. When a transition is enabled, it does
not necessarily fire immediately but implies a
possibility. Petri net modelling methods that involve
firing conditions, the time factor, etc. have been
developed [2].

The application of Petri nets to reliability
engineering has been presented for reliability
evaluation [3,4], fault-tolerant analysis [5], safety
analysis [6], reliability growth [7], Markov models [8],
and stochastic models [9]. The literature used both
Petri nets and fault tree analysis methods for software
safety analysis [10], fault diagnosis [11], logic

Application of Petri nets 131

flowgraph methodology [12], state equation represen-
tation of logic operation [13], and analysis of coherent
fault trees [14]. The current study presents a matrix
method based on Petri nets that are exemplified to
outperform fault trees for reliability analysis. In
addition, a trapezoidal graph method is devised to
facilitate failure analysis and fault detection in the
presence of sensors.

2 THE USE OF A PETRI NET TO
REPRESENT FAULT TREE

In a manner similar to fault tree analysis, graphical
models based on Petri nets can be constructed to

P?

C)

P/ P: P, P.~

represent cause-and-effect relationship among events.
Since Boolean logic symbols are commonly used to
account for failure causation, this work begins with
examining logic gates based on Petri nets
representation.

The logic operation for n binary variables requires
2 2" functions. Hence, dealing with two binary
variables, the number of Boolean functions is sixteen,
among which only twelve functions deserve examina-
tion due to repetition of the other four. According to
the enabling rules illustrated in Fig. 1, every logic gate
can be represented by a Petri net model. The
following presents these Petri net models, as shown in
Fig. 2, where PI and P2 are denoted as input places
and ~ , the output place of transitions.

D j ~

P., P:, ~, r..

Null AND OR NAND

P, P~

I' f'Z

(a) (b)

P3

Pt P2

C)

P/ /'Z

NOR Exclusive-OR Exclusive-NOR

P3

0

Pl P2

Inhibition

I'.~ P,~, P 7

Implication Transfer Complement

Fig. 2. Petri net model of logic operation.

P' P2

Identity

132 T. S. Lht, S. B. Chiou

1. Null (Ps = 0): P3 never occurs without regard to
the situation of its inputs. There is no arc that
connects to any output place, as depicted in Fig.
2.

2. AND (P3 = P1 P2 = P1 "P2): In Fig. 2, both P~ and
Pe must have at least one token [15] to achieve
transition firing.

3. OR (P3 = P~ + P2): At least one of input places
must contain at least one token [14] in order to
fire, as depicted in Fig. 2.

4. NAND (P3 = (P~P2)'): As the complement of
the AND function, it needs an inhibitor arc,
whose end is always marked by a small circle, at
the output place of the AND Petri net model,
combining a self-looped place, as depicted in
Fig. 2, to yield inputs of a transition.

5. NOR (P3 = (P~ + P2)'): This is the complement
of the OR function. As shown in Fig.
2-NOR(a), NOR needs an inhibitor arc at the
output place of an OR model, accompanied by
a self-looped place to constitute inputs of a
transition. This model can be further simplified
to become Fig. 2-NOR(b), in which two input
places directly connect to the transition by
inhibitor arcs.

6. Exclusive-OR (P3 = P1P2' + P~P2): A transition
fires if either input place contains tokens but
does not fire if both input places have one or no
tokens. Figure 2 shows that each place inhibits
transition firing of the other place, which is
linked to an inhibitor arc [1].

7. Exclusive-NOR (P3 = PIP2 + P¢P~): A transition
fires if, as illustrated in Fig. 2, both P~ and P2
have tokens or no token.

8. Inhibition (P3 = P~P~): A transition fires if, as
illustrated in Fig. 2,/°1 has tokens but P2 has no
token.

9. Implication (P3 -=/°1 + P~): Fig. 2 depicts that Pj
must have tokens or P2 no token to enable a
transition to fire.

10. Transfer (P3=P0: The token in Pt directly
transfers to P3 shown in Fig. 2, while without
relation with P2.

11. Complement (/°3 = P~): It fires as long as P~ has
no token, as depicted in Fig. 2.

12. Identity (P3 = 1): Fig. 2 depicts that place /°3
always contains a token. There is no arc that
connects to input places.

To exemplify the advantage of Petri net models
over fault trees, consider a failure event of brake
systems used in urban transit vehicles. There are four
basic events, namely

1. HDB: holding brake signal
2. SNB: Snow brake signal
3. NBK: No brake demand
4. BRK: Service brake signal.

A logic equation representing the faulty brake event
(FBR) of the brake system can be formulated as

FBR = ((HOB + SNB).NBK)

+ ((HOB + SNB + BRK).NBK) (1)

where denotes NOT. On the right hand side of eqn
(1), the term ((HDB + SNB). NBK) account for the
situation that the vehicle is not braked although the
vehicle is commanded to brake. The other term
((HDB + SNB + BRK.NBK)) accounts for the situa-
tion that not to brake whereas the vehicle brakes.
Either situation represents ,malfunction of the brake
system--the top event. Its logic gate model is drawn in
Fig. 3(a). Instead, one can resort to its Petri net model
as shown in Fig. 3(b) that is constructed based on Fig.

(a)

HDB SNB BRK NBK

(b)

Fig. 3. Model transformation between Logic gate and Petri
net.

Application of Petri nets 133

2. Each of four basic places may have a token
depending on which basic events occur. Enabling rules
exemplified in Fig. 1 in turn determine transition firing
and token movement. Consequently, if a token is
present at the place for FBR, system failure is
confirmed.

Petri nets can also represent condition gates in fault
trees, as shown in Fig. 4. An inhibit gate belongs to a
synchronized Petri net or interpreted Petri net whose
transitions are associated with event E. A delay gate
corresponds to a timed Petri net, in which to fire
needs a time delay. Moreover, a R out of N gate
belongs to a generalized Petri net model with N
inputs. The output place will be a median place with
weighted input arc R connecting to another transition.
When R out of N tokens enter the median place, the
transition fires and a token thus enters the output
place.

Various event symbols in a fault tree can be
replaced by only two simple symbols in a Petri net
model, namely, places and steps as shown in Fig. 5.
Both basic events and resultant events can be
transformed into places. Undeveloped events in fault
trees, if necessary, can be replaced by places not to be
developed or steps to be developed to other Petri
nets. Note that transfer symbols in fault trees are
equivalent to steps in Petri net models that serve to
simplify Petri net structures.

3 FAILURE PROBABILITY CALCULATION

As long as the failure probability of basic events in a
fault tree is given, the reliability or failure probability
of the top event can he calculated. It is known that
calculating failure probability for a fault tree depends
on gates. However, for Petri nets it depends on
symbols of transitions, places and arcs.

Fault tree Petri net

Inhibit gate ~ i t i o n ~ E

Fault tree Petri net

©
event

Undeveloped < ~ ~)
event (place) (step)

I
Resultant ~ J ~ ')
event

Transl~r ~ / / ~

Fig. 5. Event symbols and Petri net models.

The failure probability Pc in case of a transition with
multi-input places can be written as:

Pc = leI Pc, (2)
i = 1

where P:i denotes the failure probability of the ith
event. By contrast, the failure probability for a place
with multi-input transitions is written as:

Pc = 1 - I~I (1 - ~) . (3)
i = l

Symbols of gates, Petri nets, and equations for
failure probability are shown in Fig. 6. It is not
necessary to calculate for the transition or place with
single input.

4 MINIMAL CUT SET AND PATH SET

An approach to generating minimal cut sets for a fault
tree was defined by Dimitri [15]. Dealing with the
fault tree depicted in Fig. 7, eight steps are required to
obtain minimal cut set as listed in Table 1. Using Petri

Fault Tree Failure Petri Net
Analysis Probability

Delay gate ~ e l a y time ~ t

R out of N gate
I

' N

Fig. 4. Condition gates and Petri net models.

=FI 6

P, -- t-(l- P,,)(l-

n

= -I1
t=:l

Fig. 6. Failure probability calculation.

134 T. S. Liu, S. B. Chiou

Fig. 7. Fault tree example.

net models this section provides a new graphic method
in order to determine minimal cut sets and path sets.
The procedure is described as follows:

1. For basic places connected by arcs to reach the
top place, if there is no multi-input transition
along the arc route, the basic places become a
minimal cut set.

2. If there exist multi-input transitions along the arc
route that connects to the top place, locate their
input place by a horizontal arrangement.

3. It is not necessary to deal with any more upper
routes in the horizontal arranged place.

4. Replace the horizontal arranged places by their
basic places, i.e., the horizontal arranged places
will be sub-top places, and repeat procedure 1 to
obtain its basic places.

5. Remove supersets whose elements contain
elements of other cut sets. This results in the
minimal cut set.

Fig. 8. Petri net corresponding to Fig. 7.

Consider the Petri net depicted in Fig. 8, only three
steps, achieved by five computer instructions in total,
are required to achieve the minimal cut set as listed in
Table 2. The underlined numbers in Table 2 show that
if upper routes in the horizontal arranged place are
considered again (procedure 1(c)), it will still yield the
same cut sets as those found in procedure l(b). As a
consequence, compared with the fault tree in Fig. 7
that needs eight steps, comprising nine computer
instructions, to obtain the minimal cut set, the present
Petri net method is more efficient.

To find path sets in Petri nets, this study proposes a
model named dual Petri net as shown in Fig. 9.
Multi-input transitions of a place can be combined
into a transition with multi-inputs connected to the
place. Conversely, a multi-input transition can be
decomposed into transitions each with an input. After
transforming a Petri net into a dual Petri net, minimal
path sets can be found by performing the same
procedure as that for finding minimal cut sets
described above. For example, dealing with the Petri
net shown in Fig. 8. its dual Petri net is drawn in Fig.

Table 1. Steps for obtaining cut sets of the fault tree in Fig. 7

Step No. 1 2 3 4 5 6 7 8

No. of instructions for each step
Total instruction numbers

GO 1 | 1 1
2 2 2 2 2

G1 G2 G4,G5 G4,G5
G3 G3 3

G6

1 1 1 1 1
9

1 1 1
2 2

4,G5 4,6,7 4,6,7
5,G5

3 3 3
5,6 5,6 5,6

2 1 1

Application o f Petri nets 135

Table 2. Steps for obtaining cut sets of the Petri net in
Fig. 8

Step No, 1 2 3

Places

No. of instructions for
each step

Total instruction
numbers

l 1 1
2 2 2

4,G5 4,6,7 4,6,7

5,G5 5,6,7
6,7,G4 ~7~

6,7,5
3 3 3

5,6 5,6 5,6

2 2 1

10, and three minimal path sets [1,2,3,4,5], [1,2,3,6],
and [1,2,3,5,7] are obtained as depicted in Table 3.

J

Fig. 10. Dual Petri net of Fig. 8.

5 A M A T R I X M E T H O D

Minimal cut sets and path sets can he found at the
same time using the present matrix method to analyze
the Petri net from a top place to basic places. This
method proceeds as follows:

1. Write down the numbers of places by making a
horizontal arrangement if the output place is
connected by multi-arcs to transitions.

2. Write down the numbers of places by making a
vertical arrangement if the output place is
connected by an arc to a common transition.

3. When all places are replaced by basic places, a
matrix is established. If there is common entry
located between rows or columns, it is the entry
shared for each row or column, The column
vectors of the matrix represent cut sets while row
vectors path sets.

4. Remove the supersets to obtain the minimal cut
sets and minimal path sets.

Figure 11 gives an example for the Petri net
depicted in Fig. 8. Consequently, minimal cut sets are
[1], [2], [3], [5,6], and [4,6,7] while minimal path sets
include [1,2,3,6], [1,2,3,4,5], and [1,2,3,5,7]. They are
exactly the same as the results in Tables 1 and 3,
respectively. The present matrix method is more
elIicient than the conventional fault tree in that it is

~ ~ ~ Dual

Fig. 9. Dual Petri net.

not necessary to transform the Petri net into a dual
one in order to obtain both minimal cut sets and path
sets.

6 A B S O R P T I O N OF PETRI NET

A Petri net can be simplified as long as the firing time
is not taken into account, i.e., the transfer of a token
from an input place to an output place does not take
time. When place Pt contains a token as shown in Fig.
12(a), transition T~ satisfies the firing condition. Hence,
the token can be moved to place P,,. However,
moving a token across transition T~ does not take time,
since as depicted in Fig. 12(a) the transition is not
timed. Therefore, places Pt and P,,, and transition T~
can be altogether absorbed to become place P~ only, as
shown in Fig. 12(b). In a similar manner, a token in
place Pt can be subsequently transferred to P, This
Petri net model is thus absorbed to become a place
P~ = P, as shown in Fig. 12(c).

If a transition has multi-input places, the Petri net
can not be absorbed according to the above
procedure. In case of hierarchical transitions consist-

Table 3. Steps for obtaining path sets of the Petri net in
Fig. 8

Step No. 1 2 3

4,5,G3,1,2 4.5,3,5,1,2 1,2,3,4,5
6,G3,1,2

Places 7,G3,1,2
6,3,6,1,2 1,2,3,6
7,3,5,1,2 1,2,3,5,7

136 T. S. Liu, S. B. Chiou

1
I G2 G3 2 /

/

3 "6 2] .

Basic I 4 5 5 L
Place 6 3 6 2 / Matrix 7

+
4 5 5 I

Cut I 6 6 3 2
Sets 7 7 6

+
Minimal["' 4 5
Cut /I 6 3
Sets | 7 6

Path
Sets

f
_ _

1 4 5 3 5 2
1 6 3 5 2
1 7 3 5 2

1 4 5 3 6 2
1 6 3 6 2
1 7 3 6 2

Minimal
Path
Sets

Fig. 11. Method for finding minimal cut sets and path sets.

ing of multi-input places, the transitions can be
combined into a transition with basic multi-input
places. For instance, in Fig. 13(a) T~ has two input
places P~ and Pj whereas an output place P~ is in turn
one of input places for T2. Both transitions can be
combined into T,, endowed with three basic input
places P~, ~ , and Pk as shown in Fig. 13(b). In an
analogous manner, the Petri net in Fig. 14(a) can be
absorbed to become Fig. 14(b), and hence Fig. 14(c).
It is interesting to note that the reorganized basic
places for each transition constitute a minimal cut set.

7 MARKING TRANSFORMATION

The state of a Petri net is represented by marking M.
The kth state Mk determines the next state Mk+~; i.e.

Mk+1=Mk+ArS k = 0 , 1 , 2 ,n (4)

T m

B y m

(a) (b) (c)

=P°

Fig. 12. Absorpt ion of Petri net with transition from input
to output place.

(a) (b)

Fig. 13. Absorp t ion of Petri" net containing hierarchical
transitions.

where

Mk is a column vector whose ith component is the
marking of place P~.

A r is an incidence matrix whose rows are associated
with places, and columns are associated with
transitions. Each column corresponds to a
marking modification when the associated
transition fires.

(a)

(b)

Fig. 14. Absorpt ion of Petri net.

Application of Petri nets 137

S represents a column vector whose ith com-
ponent denotes the firing times of T~.

For example [14], dealing with the Petri net shown
in Fig. 15(a), its incidence matrix becomes:

Combining all marking transformations from an
initial marking Mo tO final marking M., eqn (4) can be
rewritten as

&In = Mo + A r ~ (5)

where

A ' ~ =AM=M,.-Mo

and ~ denotes a firing-count vector.
In Petri nets, whenever a token enters the top place,

i.e., when the top event occurs in fault trees, the
system becomes faulty. Therefore , by letting the last
component in the marking column vector be the
marking of the top place, the final marking Mn for
failure analysis is of the form M, = [** "1] x, where
n denotes the nth modification, and * represents the
number of tokens that are not taken care of in all
places other than the top place.

(a)

(b)

Fig. 15. Petri net for illustrating marking transformation and
renumbering.

A t =

T1 T2 T3 L r, T. Tv
,°1 - 1 0 0 0 0 0 0
P2 -] 0 0 0 0 0 0
P3 0 - 1 0 0 0 0 0
/'4 0 - 1 0 0 0 0 0
P5 0 0 - 1 0 0 0 0
/°6 1 0 0 --1 0 0 0
Pv 0 0 0 0 - 1 0 0
Ps 0 1 0 0 - 1 0 0
P9 0 0 1 1 0 - 1 0
Pm 0 0 0 0 l 0 - 1
P11 0 0 0 0 0 1 1

(6)

Assume an initial marking M0 = [10111010000] v. A
firing sequence 7"27"5 T7, i.e., the firing-count vector
~1 = [0100101] 7̀ transforms Mo to M, =
[10001000001] r. In a similar manner, a firing sequence
T3T6, i.e. the firing-count vector X2=[0010010] r
transforms Mo to M, = [10110010001] r. This study
treats the marking as a system state. Thus, the
variation of failure states can he delineated by
proposed marking transformation.

8 RENUMBERING INCIDENCE MATRIX

This paper proposes an entry arrangement method to
obtain incidence matrices in a unified manner:

1. Assign numbers to basic places.
2. The numbers of places and transitions are the

same. If there are multiple input places
connected to a common transition, the number
of this transition has as many characters as the
number of input places.

3. Number other output places and transitions.
4. Put the numbers in entries of an incidence

matrix.
5. Append a column with its last entry as - 1 to the

right of the matrix. A square matrix is thus
formed.

In fact, the square matrix is a triangular matrix. If
there are n basic places and totally l places, the
upper-left n × n sub-matrix is a negative identity
matrix, while its upper-right n × (l - n) sub-matrix is
a null matrix.

Based on the procedure, the number modification
of places and transitions is carried out for the Petri net

138 T. S. Liu, S. B. Chiou

model depicted in Fig. 15(a), which results in Fig.
15(b). As a result, its incidence matrix becomes:

A t =

T, T2 ~ T, T~ T6 T7 T~ T. T,,, T,11
Pt -1 0 0 0 0 0 0 0 0 0 0

P2 0 -1 0 0 0 0 0 0 0 0 0

P3 0 0 -1 0 0 0 0 0 0 0 0

P4 0 0 0 -1 0 0 0 0 0 0 0

P5 0 0 0 0 -1 0 0 0 0 0 0

P~ 0 0 0 0 0 -1 0 0 0 0 0

P7 0 0 1 1 0 0 -1 0 0 0 0

Ps 1 1 0 0 0 0 0 -1 0 0 0

P9 0 0 0 0 1 0 0 1 -1 0 0

Plo 0 0 0 0 0 1 1 0 0 -1 0

Pli 0 0 0 0 0 0 0 0 1 1 -1

(7)

This resultant matrix facilitates subsequent marking
transformation analysis. It has a simple form and can
be used to avoid a wrong firing sequence, since the
numbers of places and transitions are the same.
Whenever a token appears in P~ it means T~ can fire. In
the case of a transition with two input places, there
are two characters for numbering. It leads to two
entries each with value of 1 in a row. These two
entries are underlined for ease of identification. The
transition with underlined entries does not fire unless
tokens appear in both input places.

Assume an initial marking Mo = [1011010000] 7̀ and
put this vector under the renumbering incidence
matrix. As depicted in Fig. 16, the transition ~74 can
fire since each of the corresponding places P3 and P4
has a token. The firing of T3 T4 removes the tokens of

A T =

PI

P6

P7

P8

P9

B0
Ptl

- I ' 0
. ÷

0 0 1 1 0 0E-I 0 0 0 0

1 1 0 0 0 0 ! 0 - 1 0 0 0

0 0 0 0 1 0 i 0 1 -1 0 0

0 0 0 0 0 111 0 0 - 1 0

0 0 0 0 0 0 i 0 0 1 1 -1

M 0 = J l O l I 0 1

M , = [I 0 0 0 0 I

M 2 = J I o o o o o

[i o o o o o

0 0 0 0 0 I

lOOOOl

ooo ol

0 0 0 0 1 [

Fig. 16. Marking t ransformat ion by r enumbered incidence
matrix.

P3 and P4, puts one token in P7 and transforms the
marking to become M~ = [100001 10000] z'. In a similar
manner, the transition T6T7 can fire since their
corresponding places P6 and P7 possess tokens,
respectively. The firing of T6T7 removes the tokens of
P6 and PT, puts one token in Pro, and transforms the
marking to yield/142 = [10000000010] r. Finally, transi-
tion T~o fires and ends up with the marking
M3 = [10000000001] T. The last entry of this marking
turns out to be 1, which represents a system failure.

9 T R A P E Z O I D A L G R A P H M E T H O D

A new diagrammatic method is proposed in this
section. Retaining the lower part in the renumbering
incidence matrix, as depicted in eqn (7), but excluding
the negative identity and null sub-matrices results in a
rectangular graph. It contains an (/ - n) x n sub-
matrix and an (l - n) × (l - n) triangular sub-matrix.
Deleting further the null part of this triangular
sub-matrix yields a trapezoidal graph, shown in Fig.
17.

Every entry with digit of 1 in Fig. 16 can be
represented by a thin bar as shown in Fig. 17.
However, if in any row with digit of 1 there are entries
that have been underlined, the bar is drawn as thick
one. Under the trapezoidal graph, write down
numbers from 1 to the number of the top place, and
write down the numbers of output places beside the
numbers of basic places on the left side of this graph.
Accordingly, token transformation in the Petri net
model can be carried out as follows:

1. Put tokens on the top of the graph if the
corresponding numbers of basic places contain
tokens.

2. Let the tokens fall down.
3. The tokens will hit the bars.
4. As long as either a thin bar loads a token or a

thick bar fully load tokens, a token will roll
horizontally to the right hand side.

5. Once the rolling token hits the slope in the
graph, it falls down again and may hit a lower
bar.

6. Repeat steps 4 and 5 until no token can be rolled
any further.

• O 0 •

7 ! ! m l i " , ,

, , i ~ ,

9 -~ T-- -~-- - ! - --!---~

,o -i i : - - ' - - i !----,,,N
II .-',,, ~, ,:-- -:, -'---; "-, ,,B----,' - ' ~ , ,

I 2 3 4 5 6 7 8 9 10 11

Fig. 1% Token t ransformat ion using trapezoid.

Application of Petri nets 139

7. If any token rolls down to reach the number of
the top place, it represents that the system fails.

In the present example, since Mo = [1011010000] 7,
each of the basic places /1, P3, P4 and P6 has one
token. Thus, put the tokens on the top of the
trapezoidal graph. The tokens for places P1 and P6
drop, and subsequently stay on their corresponding
thick bar. Moreover, the tokens in P3 and P4 also drop
and are fully loaded by the thick bar. One of the
tokens rolls horizontally to the right hand side, hits
the slope and hence drops again. It is in turn loaded
by the thick bar that has already loaded a token
coming from P6. The bar fully loads tokens now,
therefore one of the tokens is allowed to roll to the
right until it hits the slope. This token drops again to
hit a lower thin bar. This token rolls out again, hits
slope and drops to arrive at number 11, i.e., the
number of the top place. Accordingly, the system fails.

Furthermore, it can be seen that simply one event
P1 does not cause this system to fail, since it does not
constitute a cut set. This fact can also be checked
based on the same graph. To that end, let a token
corresponding to number 1 fall down from the graph
top. Although the token is in turn loaded by a thick
bar, no subsequent movement can be activated.
Suppose, however, event P2, also occurs, P1 and P2 will
form a cut set. It is observed that another token falling
down from number 2 enables a thick bar to fully load
tokens. One of the two tokens in turn rolls
horizontally to the right. As a consequence, the token
drops to reach number 11, which accounts for system
failure. Hence, the proposed trapezoid method has
been Verified to be effective.

Note that by either minimal cut sets or logic
algorithm methods, the cause and effect relationship
among events in a system can not be disclosed. They

can only identify whether events lead to system
failure; therefore, they can be treated as 'static'
analysis methods. On the contrary, the present novel
method is capable to account for failure scenarios.
The token motion in the trapezoidal graph behaves in
a manner similar to transition firing and token
transferring in Petri nets. The success of this
trapezoidal graph method is attributed to its
accounting for numbering evolution in the incidence
matrix.

10 FAULT DETECTION USING PETRI NETS

In Petri nets, every place accounts for a state in a
system. When a fault tree is transformed into a Petri
net model, the presence of tokens in the top place
implies that failure occurs. In an autonomous Petri
net, a token may appear in an input place and satisfy
the firing condition. As a consequence, the token
moves into the output place. A basic failure thus leads
to the higher hierarchical failure or serious failure as
shown in Fig. 18(a).

In practice, machines and factories may contain
sensors to detect failures and prevent basic failure
from endangering system safety, for which sensors can
be incorporated in Petri nets as shown in Fig. 18(b).
When the basic failure occurs, the firing makes a
token enter the intermediate place for isolating, while
another token enters the sensor block to represent
detection by a sensor. If the detection is ineffective,
the token will leave the sensor block. The subsequent
firing of a higher hierarchical transition causes the
tokens to move into the output place. As a result,
failure occurs.

In addition, to model corrective maintenance or
replacement of a faulty unit following fault detection,
tokens in the intermediate place and the sensor block

)

)
Place

d

Intermediate
Place

(a) (b) (c)

Fig. 18. Fault detection and repaired process in Petri net.

140 T. S. Liu, S. B. Chiou

T, ~ T , ;
\,.,o,_.,+.,+~ ~° " I , ' ~ '~ ~.,,,o.~

%0 Place

L,~ , _.~___

I | t I I ~
I 1 ~ I l l

(1) • •

I I I * I I I I I

9 k ~ +] • - I - - t ~ - . - L , -
I I I I I I I I i ~ .
+ ~ I t I , . ; - - - - - - . I - ~ ,~ * t

[0 I - , " T - I - - -- T - q l i l l l i ~ i P " ~ ' - - - ~ - - - ~
I I I I I I I I

I 2 3 4 5 6 7 8 9 i0 Ii

li +++++
7

8

9

10

11

._'-"] x
. . . . ,

_ + ,
' r • I - - T I -

' I I r I

I 2 3 4 5 6 7 8 9 I0 I1

T g ~ u n d e t e c t c u T [o _~

~ T,o ~ ReP~eed

7

8

9

10

II t ', i Ty-

(3)
Fig. 19. Sequence of fault detection.

_ 1
\

r J J I ! i • , ' ~

1 2 3 4 5 6 7 8 9 I0 II

Application of Petri nets 141

T g ~ undP~tecaceted Conditional

(4) T~T~ (~T~

7

8

9

10

I1

i ~ i ~ ~ ~ , i " %
, , ~ ,"t .d't 4 . ~ l

,] : ~ I I i i i ' ' ~1

1 2 3 4 5 6 7 8 9 10 II

~ U Tp "l'tnt~r=~iate/ (~ npd~l~cled Conditional

(5)

10

II

i ; i

t - (- ,

i i

: 1

i [1

I 2 3 4 5 6 7 8 9 10 11

/l\lnte~r::~d:ateJ / (~ Unlqltatce~ted Conditional
I ~ "T" ~ Transition

T N T'
(6) ~ . ~ ~ . ~

7

8

9

10

II
, , ~ _.%
t t t :

. t . . ! I ¢ m

I I I

I 2 3 4 5 6 7 8 9 10 11

Fig. 20. Sequence of fault detection(II).

142 T. S. Liu, S. B. Chiou

should be eliminated after the failure is repaired. This
can be achieved by installing a conditional transition,
as shown in Fig. 18(c), which is connected to both
intermediate place and sensor block. If the basic
failure has been detected and is under repair, tokens
will be put in both intermediate place and repaired
place. After the repair work is done, the conditional
transition fires, and tokens in both places will move
out of the Petri net.

Figures 19 and 20 exemplify fault detection.
Suppose that a sensor is employed for detecting a fault
that occurs at place Plo and the system has initial
marking at P3, P4, and P6 where each contains a token.
The firing of transition T3 T4 transfers tokens in both P3
and P4 into a token in place PT. The tokens in P6 and
P7 are in turn transferred into a token at /1o due to the
firing of T6TT. Consequently, fault arising from P~o can
be detected by the sensor, and the token is transferred
into an intermediate place. During a maintenance
period, a token stays at a repaired place. After repair,
tokens located at both intermediate and repaired
places vanish due to firing of the conditional
transition.

Furthermore, the foregoing scenario of repair
activity can also be illustrated using the trapezoidal
graph. To that end, as depicted in Fig. 18, make a
notch on the slope corresponding to the number of
places that represent sensors, and at the notch attach a
horizontal inverse L-shaped hinge. When a token rolls
to the right hand side on this level, the token will be
stopped by the hinge. It dictates that fault is detected
by the sensor installed at the corresponding place.
Once repaired, the hinge turns clockwise, and the
token will roll out of the trapezoid along the slope.
This represents the absence of the failure.

I I CONCLUSION

This paper has presented a Petri net method to
efficiently obtain minimum cut sets and path sets.
Additionally, the proposed matrix method represents
a new approach to arranging place numbers so as to
obtain both minimum cut sets and path sets.

Place and transition numbers in Petri nets has been
modified to result in incidence matrices, which are
convenient for marking development, i.e., failure state
analysis. Furthermore, by exploiting evolution of
renumbering, the renumbered incidence matrix has
been transformed into a trapezoidal graph so as to
account for system failure scenarios. It is an effective

graphical method capable to undertake the function of
Petri nets. Examples have demonstrated that marking
transfer, system failure and fault detection can be
achieved using this proposed method.

REFERENCES

1. Peterson, J. L., Petri Net Theory and the Modelling of
Systems. Prentice-Hall, Englewood Cliffs, New Jersey,
1981.

2. David, R. and Alia, H., Petri net for modelling of
dynamic systems-- a survey. Automatica, 1994, 30(2),
175-202.

3. Kumar, V. and Aggarwal, K. K., Petri net modelling and
reliability evaluation of distributed processing systems.
Reliability Engineering & System Safety, 1993, 41,
167-176.

4. Misra, K. B., New Trends in System Reliability
Evaluation. Elsevier Science, Amsterdam, 1993.

5. Viswanadham, N., Reliability of Computer and Control
Systems. Elsevier Science, New York, 1987.

6. Leveson, N. G. and Stolzy, J. L., Safety analysis using
petri nets. IEEE Transactions on Software Engineering,
1987, 133, 386-397.

7. Shabalin, A. N., Generation of models for reliability
growth. In Proceedings of the 1992 Annual Reliability
and Maintenance Symposium, IEEE, New York, pp.
299-302, 1992.

8: Haverkort, B. R. and Trivedi, K. S., Specification
techniques for Markov reward models. Discrete Event
Dynamic Systems: Theory & Applications, 1993, 3,
219-247.

9. Sahner, R. A. and Trivedi, K. S., A software tool for
learning about stochastic model. IEEE Transactions on
Education, 1993, 361, 56-61.

10. McGraw, R. J., Shimeall, T. J. and Gill, J. A., Software
safety analysis in heterogeneous multiprocessor control
systems. In Annual Reliability and Maintenance
Symposium 1991 Proceedings, IEEE, New York, pp.
290-294, 1991.

11. Viswanadham, N. and Johnson, T. L., Fault detection
and diagnosis of automated manufacturing systems. In
Proceedings of the 27th IEEE Conference on Decision
and Control, Austin, TX. Vol. 3, pp. 2301-2306, 1988.

12. Muthukumar, C. T., Guarro, S. B. and Apostolakis, G.
E., Logic flowgraph methodology: a tool for modelling
embedded systems. In Proceedings of the IEEE/AIAA
lOth Digital Avionies Systems Conference, New York,
pp. 103-109, 1991.

13. Khan, A. A., State equation representation of logic
operations through a petri net. Proceedings of the
1EEE, 1981, 694, 485-487.

14. Hura, G. S. and Atwood, J. W., The use of petri nets to
analyze coherent fault trees. IEEE Transactions on
Reliability, 1988, 375, 469-474.

15. Dimitri, K., Reliability Engineering Handbook, Vol. 2.
Prentice-Hall, Englewood Cliffs, New Jersey, 1991.

