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Unlike the technique of fault tree analysis that has been widely applied to 
system failure analysis in reliability engineering, this study presents a Petri net 
approach to failure analysis. It is essentially a graphical method for describing 
relations between conditions and events. The use of Petri nets in failure 
analysis enables to replace logic gate functions in fault trees, efficiently obtain 
minimal cut sets, and absorb models. It is demonstrated that for failure 
analysis Petri nets are more efficient than fault trees. In addition, this study 
devises an alternative; namely, a trapezoidal graph method in order to account 
for failure scenarios. Examples validate this novel method in dealing with 
failure analysis. © 1997 Elsevier Science Limited. 

1 I N T R O D U C T I O N  

A variety of methods for failure analysis have been 
presented, namely, reliability block diagram, failure 
mode and effects analysis, and fault tree analysis. This 
study presents a failure analysis method based on 
Petri net models. The Petri net theory is a graphical 
method using some basic symbols for describing 
relations between conditions and events. It can 
represent and analyze the dynamic behaviour of 
systems. So far, the Petri net model has been used in a 
variety of applications, e.g., manufacturing systems, 
computer  software and hardware systems. 

Petri nets have two types of nodes named place P 
and transition T. These nodes are connected by 
arcs A, i.e., arcs connect transitions to places or 
places to transitions. Each place may contain one 
or more tokens. The basic symbols are defined as 
follows" 

©: Place, drawn as a circle. 
- - - :  Transition, drawn as a bar. 

: Arc, drawn as an arrow, between places and 
transitions. 

o: Token,  drawn as a dot, contained in places. 

Moreover ,  Peterson [1] defined P, T, and A as: 

P = {P~ l P, is a p l a c e , l  <- i <- l},  
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where I is a positive integer 

T = {T~ I T~ is a transition,1 - i - I} 

A m (p x T) U (T x P). 

The state in Petri nets is represented by a token 
number  mi, called a marking, contained in each place 
Ps. As shown in Fig. l(a) ,  there is a token in each of 
input places/'1 and P2 but no token in output  place P3. 
Accordingly, the Petri net marking is M = (1,1,0). 
Each transition connects to both input and output 
places. A transition is said to be enabled when its 
every input place contains at least a token. A 
transition fires if it is enabled, which removes a token 
from all of its input places and puts a token in all of its 
output places. This results in a change of the marking, 
i.e., a change of the state. 

The transitions in Fig. l ( a ) - ( c )  are enabled, since in 
every case both places PI and P2 contain at least one 
token. A firing of transition T~ moves a token from 
each of P1 and P2 to the output place P3 (and P4 in case 
(c)). Place P~ in Fig. l (b)  originally has two tokens. 
After  firing, a token remains in PI, since any firing can 
withdraw only one token from each input place. In 
spite of transitions T~ and T2 shown in Fig. l (d) ,  only 
T~ fires due to its input place Pt, with a token. The 
firing of T~ has nothing to do with input place /)2, 
whereas it gives a token to each of P3 and P4- In Fig. 
l (e) ,  by contrast, T~ is not enabled due to no token in 
t"2. 

The Petri net marking before firing (M0) and after 
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(a) 

P l ~ l  .~FI P2 

MO=( l, 1,0) 

P1 

T1 P2 

G___)P3 M l =(0.0.1 ) 

(b) 

P I ( ~ ~ T  I P2 

MO=(2, 1.0 ) 
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( P3 

P2 
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(c) 

P I ~ (~~F I  P2 

P3 P4 
MO=( I, 1,0,0) 

P1 ~ P 2  
~-- TI 

P3 P4 
M { =(o,o, {, { ) 

(d) 

(e) 

~)P2 
T2 

M0=(1.0,0,0) 

PI T I ~ ~  ~ P2 
T1 T2 

P3 P4 
M l --(0.0. {, { ) 

PI 

T1 P2 

MO=(2.0.O) 

Fig. 1. Firing of transition. 

firing (M1) are also illustrated in Fig. 1. The marking 
in Fig. l (e)  is invariant due to no firing, and hence no 
change of states. When a transition is enabled, it does 
not necessarily fire immediately but implies a 
possibility. Petri net modelling methods that involve 
firing conditions, the time factor, etc. have been 
developed [2]. 

The application of Petri nets to reliability 
engineering has been presented for reliability 
evaluation [3,4], fault-tolerant analysis [5], safety 
analysis [6], reliability growth [7], Markov models [8], 
and stochastic models [9]. The literature used both 
Petri nets and fault tree analysis methods for software 
safety analysis [10], fault diagnosis [11], logic 
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flowgraph methodology [12], state equation represen- 
tation of logic operation [13], and analysis of coherent 
fault trees [14]. The current study presents a matrix 
method based on Petri nets that are exemplified to 
outperform fault trees for reliability analysis. In 
addition, a trapezoidal graph method is devised to 
facilitate failure analysis and fault detection in the 
presence of sensors. 

2 THE USE OF A PETRI NET TO 
REPRESENT FAULT TREE 

In a manner similar to fault tree analysis, graphical 
models based on Petri nets can be constructed to 

P? 

C) 

P/ P: P, P.~ 

represent cause-and-effect relationship among events. 
Since Boolean logic symbols are commonly used to 
account for failure causation, this work begins with 
examining logic gates based on Petri nets 
representation. 

The logic operation for n binary variables requires 
2 2" functions. Hence, dealing with two binary 
variables, the number of Boolean functions is sixteen, 
among which only twelve functions deserve examina- 
tion due to repetition of the other four. According to 
the enabling rules illustrated in Fig. 1, every logic gate 
can be represented by a Petri net model. The 
following presents these Petri net models, as shown in 
Fig. 2, where PI and P2 are denoted as input places 
and ~ ,  the output place of transitions. 

D j  ~ 

P., P:, ~, r.. 

Null AND OR NAND 

P, P~ 

I' f'Z 

(a) (b) 

P3 

Pt P2 

C) 

P/ /'Z 

NOR Exclusive-OR Exclusive-NOR 

P3 

0 

Pl P2 

Inhibition 

I'.~ P,~, P 7 

Implication Transfer Complement 

Fig. 2. Petri net model of logic operation. 

P' P2 

Identity 
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1. Null (Ps = 0): P3 never occurs without regard to 
the situation of its inputs. There is no arc that 
connects to any output place, as depicted in Fig. 
2. 

2. AND (P3 = P1 P2 = P1 "P2): In Fig. 2, both P~ and 
Pe must have at least one token [15] to achieve 
transition firing. 

3. OR (P3 = P~ + P2): At  least one of input places 
must contain at least one token [14] in order to 
fire, as depicted in Fig. 2. 

4. NAND (P3 = (P~P2)'): As the complement of 
the AND function, it needs an inhibitor arc, 
whose end is always marked by a small circle, at 
the output place of the AND Petri net model, 
combining a self-looped place, as depicted in 
Fig. 2, to yield inputs of a transition. 

5. NOR (P3 = (P~ + P2)'): This is the complement 
of the OR function. As shown in Fig. 
2-NOR(a), NOR needs an inhibitor arc at the 
output place of an OR model, accompanied by 
a self-looped place to constitute inputs of a 
transition. This model can be further simplified 
to become Fig. 2-NOR(b), in which two input 
places directly connect to the transition by 
inhibitor arcs. 

6. Exclusive-OR (P3 = P1P2' + P~P2): A transition 
fires if either input place contains tokens but 
does not fire if both input places have one or no 
tokens. Figure 2 shows that each place inhibits 
transition firing of the other place, which is 
linked to an inhibitor arc [1]. 

7. Exclusive-NOR (P3 = PIP2 + P¢P~): A transition 
fires if, as illustrated in Fig. 2, both P~ and P2 
have tokens or no token. 

8. Inhibition (P3 = P~P~): A transition fires if, as 
illustrated in Fig. 2,/°1 has tokens but P2 has no 
token. 

9. Implication (P3 -=/°1 + P~): Fig. 2 depicts that Pj 
must have tokens or P2 no token to enable a 
transition to fire. 

10. Transfer (P3=P0:  The token in Pt directly 
transfers to P3 shown in Fig. 2, while without 
relation with P2. 

11. Complement (/°3 = P~): It fires as long as P~ has 
no token, as depicted in Fig. 2. 

12. Identity (P3 = 1): Fig. 2 depicts that place /°3 
always contains a token. There is no arc that 
connects to input places. 

To exemplify the advantage of Petri net models 
over fault trees, consider a failure event of brake 
systems used in urban transit vehicles. There are four 
basic events, namely 

1. HDB: holding brake signal 
2. SNB: Snow brake signal 
3. NBK: No brake demand 
4. BRK: Service brake signal. 

A logic equation representing the faulty brake event 
(FBR) of the brake system can be formulated as 

FBR = ((HOB + SNB).NBK) 

+ ((HOB + SNB + BRK).NBK) (1) 

where denotes NOT. On the right hand side of eqn 
(1), the term ((HDB + SNB). NBK) account for the 
situation that the vehicle is not braked although the 
vehicle is commanded to brake. The other term 
((HDB + SNB + BRK.NBK)) accounts for the situa- 
tion that not to brake whereas the vehicle brakes. 
Either situation represents ,malfunction of the brake 
system--the top event. Its logic gate model is drawn in 
Fig. 3(a). Instead, one can resort to its Petri net model 
as shown in Fig. 3(b) that is constructed based on Fig. 

(a) 

HDB SNB BRK NBK 

(b) 

Fig. 3. Model transformation between Logic gate and Petri 
net. 



Application of Petri nets 133 

2. Each of four basic places may have a token 
depending on which basic events occur. Enabling rules 
exemplified in Fig. 1 in turn determine transition firing 
and token movement. Consequently, if a token is 
present at the place for FBR, system failure is 
confirmed. 

Petri nets can also represent condition gates in fault 
trees, as shown in Fig. 4. An inhibit gate belongs to a 
synchronized Petri net or interpreted Petri net whose 
transitions are associated with event E. A delay gate 
corresponds to a timed Petri net, in which to fire 
needs a time delay. Moreover, a R out of N gate 
belongs to a generalized Petri net model with N 
inputs. The output place will be a median place with 
weighted input arc R connecting to another transition. 
When R out of N tokens enter the median place, the 
transition fires and a token thus enters the output 
place. 

Various event symbols in a fault tree can be 
replaced by only two simple symbols in a Petri net 
model, namely, places and steps as shown in Fig. 5. 
Both basic events and resultant events can be 
transformed into places. Undeveloped events in fault 
trees, if necessary, can be replaced by places not to be 
developed or steps to be developed to other Petri 
nets. Note that transfer symbols in fault trees are 
equivalent to steps in Petri net models that serve to 
simplify Petri net structures. 

3 FAILURE PROBABILITY CALCULATION 

As long as the failure probability of basic events in a 
fault tree is given, the reliability or failure probability 
of the top event can he calculated. It is known that 
calculating failure probability for a fault tree depends 
on gates. However, for Petri nets it depends on 
symbols of transitions, places and arcs. 

Fault tree Petri net 

Inhibit gate ~ i t i o n  ~ E 

Fault tree Petri net 

© 
event 

Undeveloped < ~  ~ )  
event (place) (step) 

I 
Resultant ~ J ~ ' )  
event 

Transl~r ~ / / ~  

Fig. 5. Event symbols and Petri net models. 

The failure probability Pc in case of a transition with 
multi-input places can be written as: 

Pc = leI Pc, (2) 
i = 1  

where P:i denotes the failure probability of the ith 
event. By contrast, the failure probability for a place 
with multi-input transitions is written as: 

Pc = 1 - I~I (1 - ~ ) .  (3) 
i = l  

Symbols of gates, Petri nets, and equations for 
failure probability are shown in Fig. 6. It is not 
necessary to calculate for the transition or place with 
single input. 

4 MINIMAL CUT SET AND PATH SET 

An approach to generating minimal cut sets for a fault 
tree was defined by Dimitri [15]. Dealing with the 
fault tree depicted in Fig. 7, eight steps are required to 
obtain minimal cut set as listed in Table 1. Using Petri 

Fault Tree Failure Petri Net 
Analysis Probability 

Delay gate ~ e l a y  time ~ t 

R out of N gate 
I 

*'* N 

Fig. 4. Condition gates and Petri net models. 

=FI 6 

P, -- t-(l- P,,)(l- 

n 

= -I1 
t=:l 

Fig. 6. Failure probability calculation. 



134 T. S. Liu, S. B. Chiou 

Fig. 7. Fault tree example. 

net models this section provides a new graphic method 
in order  to determine minimal cut sets and path sets. 
The procedure is described as follows: 

1. For  basic places connected by arcs to reach the 
top place, if there is no multi-input transition 
along the arc route, the basic places become a 
minimal cut set. 

2. If there exist multi-input transitions along the arc 
route that connects to the top place, locate their 
input place by a horizontal arrangement.  

3. It is not necessary to deal with any more upper 
routes in the horizontal arranged place. 

4. Replace the horizontal arranged places by their 
basic places, i.e., the horizontal arranged places 
will be sub-top places, and repeat  procedure 1 to 
obtain its basic places. 

5. Remove supersets whose elements contain 
elements of other cut sets. This results in the 
minimal cut set. 

Fig. 8. Petri net corresponding to Fig. 7. 

Consider the Petri net depicted in Fig. 8, only three 
steps, achieved by five computer  instructions in total, 
are required to achieve the minimal cut set as listed in 
Table 2. The underlined numbers in Table 2 show that 
if upper routes in the horizontal arranged place are 
considered again (procedure 1(c)), it will still yield the 
same cut sets as those found in procedure l(b).  As a 
consequence, compared with the fault tree in Fig. 7 
that needs eight steps, comprising nine computer  
instructions, to obtain the minimal cut set, the present 
Petri net method is more efficient. 

To find path sets in Petri nets, this study proposes a 
model named dual Petri net as shown in Fig. 9. 
Multi-input transitions of a place can be combined 
into a transition with multi-inputs connected to the 
place. Conversely, a multi-input transition can be 
decomposed into transitions each with an input. After 
transforming a Petri net into a dual Petri net, minimal 
path sets can be found by performing the same 
procedure as that for finding minimal cut sets 
described above. For example, dealing with the Petri 
net shown in Fig. 8. its dual Petri net is drawn in Fig. 

Table 1. Steps for obtaining cut sets of  the fault tree in Fig. 7 

Step No. 1 2 3 4 5 6 7 8 

No. of instructions for each step 
Total instruction numbers 

GO 1 | 1 1 
2 2 2 2 2 

G1 G2 G4,G5 G4,G5 
G3 G3 3 

G6 

1 1 1 1 1 
9 

1 1 1 
2 2 

4,G5 4,6,7 4,6,7 
5,G5 

3 3 3 
5,6 5,6 5,6 

2 1 1 
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Table 2. Steps for obtaining cut sets of the Petri net in 
Fig. 8 

Step No, 1 2 3 

Places 

No. of instructions for 
each step 

Total instruction 
numbers 

l 1 1 
2 2 2 

4,G5 4,6,7 4,6,7 

5,G5 5,6,7 
6,7,G4 ~7~ 

6,7,5 
3 3 3 

5,6 5,6 5,6 

2 2 1 

10, and three minimal path sets [1,2,3,4,5], [1,2,3,6], 
and [1,2,3,5,7] are obtained as depicted in Table 3. 

J 

Fig. 10. Dual Petri net of Fig. 8. 

5 A M A T R I X  M E T H O D  

Minimal cut sets and path sets can he found at the 
same time using the present matrix method to analyze 
the Petri net from a top place to basic places. This 
method proceeds as follows: 

1. Write down the numbers of places by making a 
horizontal arrangement if the output place is 
connected by multi-arcs to transitions. 

2. Write down the numbers of places by making a 
vertical arrangement if the output place is 
connected by an arc to a common transition. 

3. When all places are replaced by basic places, a 
matrix is established. If there is common entry 
located between rows or columns, it is the entry 
shared for each row or column, The column 
vectors of the matrix represent cut sets while row 
vectors path sets. 

4. Remove the supersets to obtain the minimal cut 
sets and minimal path sets. 

Figure 11 gives an example for the Petri net 
depicted in Fig. 8. Consequently, minimal cut sets are 
[1], [2], [3], [5,6], and [4,6,7] while minimal path sets 
include [1,2,3,6], [1,2,3,4,5], and [1,2,3,5,7]. They are 
exactly the same as the results in Tables 1 and 3, 
respectively. The present matrix method is more 
elIicient than the conventional fault tree in that it is 

~ ~ ~  Dual 

Fig. 9. Dual Petri net. 

not necessary to transform the Petri net into a dual 
one in order to obtain both minimal cut sets and path 
sets. 

6 A B S O R P T I O N  OF PETRI NET 

A Petri net can be simplified as long as the firing time 
is not taken into account, i.e., the transfer of a token 
from an input place to an output place does not take 
time. When place Pt contains a token as shown in Fig. 
12(a), transition T~ satisfies the firing condition. Hence, 
the token can be moved to place P,,. However, 
moving a token across transition T~ does not take time, 
since as depicted in Fig. 12(a) the transition is not 
timed. Therefore, places Pt and P,,, and transition T~ 
can be altogether absorbed to become place P~ only, as 
shown in Fig. 12(b). In a similar manner, a token in 
place Pt can be subsequently transferred to P, This 
Petri net model is thus absorbed to become a place 
P~ = P, as shown in Fig. 12(c). 

If a transition has multi-input places, the Petri net 
can not be absorbed according to the above 
procedure. In case of hierarchical transitions consist- 

Table 3. Steps for obtaining path sets of the Petri net in 
Fig. 8 

Step No. 1 2 3 

4,5,G3,1,2 4.5,3,5,1,2 1,2,3,4,5 
6,G3,1,2 

Places 7,G3,1,2 
6,3,6,1,2 1,2,3,6 
7,3,5,1,2 1,2,3,5,7 
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1 
I G2 G3 2 / 

/ 

3 "6 2 ] .  

Basic I 4 5 5 L 
Place 6 3 6 2 / Matrix 7 

+ 
4 5 5 I 

Cut I 6 6 3 2 
Sets 7 7 6 

+ 
Minimal[ "' 4 5 
Cut /I 6 3 
Sets | 7 6 

Path 
Sets 

f 
_ _  

1 4 5 3 5 2  
1 6 3 5 2  
1 7 3 5 2  

1 4 5 3 6 2  
1 6 3 6 2  
1 7 3 6 2  

Minimal 
Path 
Sets 

Fig. 11. Method  for finding minimal cut sets and path sets. 

ing of multi-input places, the transitions can be 
combined into a transition with basic multi-input 
places. For instance, in Fig. 13(a) T~ has two input 
places P~ and Pj whereas an output place P~ is in turn 
one of input places for T2. Both transitions can be 
combined into T,, endowed with three basic input 
places P~, ~ ,  and Pk as shown in Fig. 13(b). In an 
analogous manner, the Petri net in Fig. 14(a) can be 
absorbed to become Fig. 14(b), and hence Fig. 14(c). 
It is interesting to note that the reorganized basic 
places for each transition constitute a minimal cut set. 

7 MARKING TRANSFORMATION 

The state of a Petri net is represented by marking M. 
The kth state Mk determines the next state Mk+~; i.e. 

Mk+1=Mk+ArS k = 0 , 1 , 2  .... ,n (4) 

T m 

B y m  

(a) (b) (c) 

=P° 

Fig. 12. Absorpt ion  of  Petri net  with transition from input 
to output  place. 

(a) (b) 

Fig. 13. Absorp t ion  of  Petri" net  containing hierarchical 
transitions. 

where 

Mk is a column vector whose ith component  is the 
marking of place P~. 

A r  is an incidence matrix whose rows are associated 
with places, and columns are associated with 
transitions. Each column corresponds to a 
marking modification when the associated 
transition fires. 

(a) 

(b) 

Fig. 14. Absorpt ion  of  Petri  net. 
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S represents a column vector whose ith com- 
ponent  denotes the firing times of T~. 

For  example [14], dealing with the Petri net shown 
in Fig. 15(a), its incidence matrix becomes: 

Combining all marking transformations from an 
initial marking Mo tO final marking M., eqn (4) can be 
rewritten as 

&In = Mo + A r ~ (5) 

where 

A ' ~  =AM=M,.-Mo 

and ~ denotes a firing-count vector. 
In Petri nets, whenever a token enters the top place, 

i.e., when the top event occurs in fault trees, the 
system becomes faulty. Therefore ,  by letting the last 
component  in the marking column vector be the 
marking of the top place, the final marking Mn for 
failure analysis is of the form M, = [** . . . .  "1] x, where 
n denotes the nth modification, and * represents the 
number of tokens that are not taken care of in all 
places other than the top place. 

(a) 

(b) 

Fig. 15. Petri net for illustrating marking transformation and 
renumbering. 

A t =  

T1 T2 T3 L r, T. Tv 
,°1 - 1  0 0 0 0 0 0 
P2 - ] 0 0 0 0 0 0 
P3 0 - 1 0 0 0 0 0 
/'4 0 - 1 0 0 0 0 0 
P5 0 0 - 1 0 0 0 0 
/°6 1 0 0 --1 0 0 0 
Pv 0 0 0 0 - 1 0 0 
Ps 0 1 0 0 - 1 0 0 
P9 0 0 1 1 0 - 1 0 
Pm 0 0 0 0 l 0 - 1 
P11 0 0 0 0 0 1 1 

(6) 

Assume an initial marking M0 = [10111010000] v. A 
firing sequence 7"27"5 T7, i.e., the firing-count vector 
~1 = [0100101] 7̀  transforms Mo to M, = 
[10001000001] r. In a similar manner,  a firing sequence 
T3T6, i.e. the firing-count vector X2=[0010010] r 
transforms Mo to M, = [10110010001] r.  This study 
treats the marking as a system state. Thus, the 
variation of failure states can he delineated by 
proposed marking transformation. 

8 RENUMBERING INCIDENCE MATRIX 

This paper proposes an entry arrangement method to 
obtain incidence matrices in a unified manner: 

1. Assign numbers to basic places. 
2. The numbers of places and transitions are the 

same. If there are multiple input places 
connected to a common transition, the number 
of this transition has as many characters as the 
number  of input places. 

3. Number  other  output places and transitions. 
4. Put the numbers in entries of an incidence 

matrix. 
5. Append a column with its last entry as - 1  to the 

right of the matrix. A square matrix is thus 
formed. 

In fact, the square matrix is a triangular matrix. If 
there are n basic places and totally l places, the 
upper-left n × n  sub-matrix is a negative identity 
matrix, while its upper-right n × ( l -  n) sub-matrix is 
a null matrix. 

Based on the procedure,  the number  modification 
of places and transitions is carried out for the Petri net 
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model depicted in Fig. 15(a), which results in Fig. 
15(b). As a result, its incidence matrix becomes: 

A t =  

T, T2 ~ T, T~ T6 T7 T~ T. T,,, T,11 
Pt -1  0 0 0 0 0 0 0 0 0 0 

P2 0 -1  0 0 0 0 0 0 0 0 0 

P3 0 0 -1  0 0 0 0 0 0 0 0 

P4 0 0 0 -1  0 0 0 0 0 0 0 

P5 0 0 0 0 -1  0 0 0 0 0 0 

P~ 0 0 0 0 0 -1  0 0 0 0 0 

P7 0 0 1 1 0 0 -1  0 0 0 0 

Ps 1 1 0 0 0 0 0 -1  0 0 0 

P9 0 0 0 0 1 0 0 1 -1 0 0 

Plo 0 0 0 0 0 1 1 0 0 -1  0 

Pli 0 0 0 0 0 0 0 0 1 1 -1  

(7) 

This resultant matrix facilitates subsequent marking 
transformation analysis. It has a simple form and can 
be used to avoid a wrong firing sequence, since the 
numbers of places and transitions are the same. 
Whenever a token appears in P~ it means T~ can fire. In 
the case of a transition with two input places, there 
are two characters for numbering. It leads to two 
entries each with value of 1 in a row. These two 
entries are underlined for ease of identification. The 
transition with underlined entries does not fire unless 
tokens appear in both input places. 

Assume an initial marking Mo = [1011010000] 7̀  and 
put this vector under the renumbering incidence 
matrix. As depicted in Fig. 16, the transition ~74 can 
fire since each of the corresponding places P3 and P4 
has a token. The firing of T3 T4 removes the tokens of 

A T = 

PI 

P6 

P7 

P8 

P9 

B0 
Ptl 

- I  ' 0 
. . . . . . . . . . . . . . . . . . . . . . .  ÷ . . . . . . . . . . . . . . . . . . .  

0 0 1 1  0 0E-I 0 0 0 0 

1 1  0 0 0 0 ! 0 - 1  0 0 0 

0 0 0 0 1 0 i 0  1 -1 0 0 

0 0 0 0 0 111 0 0 - 1  0 

0 0 0 0 0 0 i 0  0 1 1 -1 

M 0 =  J l O l  I 0 1  

M ,  = [ I 0 0 0 0 I 

M 2 =  J I o o o o o 

[ i o o o o o 

0 0 0 0 0  I 

lOOOOl 

ooo ol 

0 0 0 0 1 [  

Fig. 16. Marking t ransformat ion  by r enumbered  incidence 
matrix. 

P3 and P4, puts one token in P7 and transforms the 
marking to become M~ = [100001 10000] z'. In a similar 
manner, the transition T6T7 can fire since their 
corresponding places P6 and P7 possess tokens, 
respectively. The firing of T6T7 removes the tokens of 
P6 and PT, puts one token in Pro, and transforms the 
marking to yield/142 = [10000000010] r. Finally, transi- 
tion T~o fires and ends up with the marking 
M3 = [10000000001] T. The last entry of this marking 
turns out to be 1, which represents a system failure. 

9 T R A P E Z O I D A L  G R A P H  M E T H O D  

A new diagrammatic method is proposed in this 
section. Retaining the lower part in the renumbering 
incidence matrix, as depicted in eqn (7), but excluding 
the negative identity and null sub-matrices results in a 
rectangular graph. It contains an ( / -  n ) x  n sub- 
matrix and an ( l -  n ) ×  ( l -  n) triangular sub-matrix. 
Deleting further the null part of this triangular 
sub-matrix yields a trapezoidal graph, shown in Fig. 
17. 

Every entry with digit of 1 in Fig. 16 can be 
represented by a thin bar as shown in Fig. 17. 
However, if in any row with digit of 1 there are entries 
that have been underlined, the bar is drawn as thick 
one. Under the trapezoidal graph, write down 
numbers from 1 to the number of the top place, and 
write down the numbers of output places beside the 
numbers of basic places on the left side of this graph. 
Accordingly, token transformation in the Petri net 
model can be carried out as follows: 

1. Put tokens on the top of the graph if the 
corresponding numbers of basic places contain 
tokens. 

2. Let the tokens fall down. 
3. The tokens will hit the bars. 
4. As long as either a thin bar loads a token or a 

thick bar fully load tokens, a token will roll 
horizontally to the right hand side. 

5. Once the rolling token hits the slope in the 
graph, it falls down again and may hit a lower 
bar. 

6. Repeat steps 4 and 5 until no token can be rolled 
any further. 

• O 0  • 

7 ! .... ! m l  ..... i .... " , ,  

, , i ~ , 

9 -~ . . . . . . . . . . . . . . . .  T-- -~-- - !  - --!---~ 

,o -i ............ i . . . .  : - - ' - - i  . . . .  !----,,,N 
II .-',,, . . . . . . .  ~, .... ,:-- -:, -'---; "-, ,,B----,' - ' ~ ,  , 

I 2 3 4 5 6 7 8 9 10 11 

Fig. 1% Token  t ransformat ion using trapezoid.  
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7. If any token rolls down to reach the number of 
the top place, it represents that the system fails. 

In the present example, since Mo = [1011010000] 7, 
each of the basic places /1, P3, P4 and P6 has one 
token. Thus, put the tokens on the top of the 
trapezoidal graph. The tokens for places P1 and P6 
drop, and subsequently stay on their corresponding 
thick bar. Moreover,  the tokens in P3 and P4 also drop 
and are fully loaded by the thick bar. One of the 
tokens rolls horizontally to the right hand side, hits 
the slope and hence drops again. It is in turn loaded 
by the thick bar that has already loaded a token 
coming from P6. The bar fully loads tokens now, 
therefore one of the tokens is allowed to roll to the 
right until it hits the slope. This token drops again to 
hit a lower thin bar. This token rolls out again, hits 
slope and drops to arrive at number  11, i.e., the 
number of the top place. Accordingly, the system fails. 

Furthermore,  it can be seen that simply one event 
P1 does not cause this system to fail, since it does not 
constitute a cut set. This fact can also be checked 
based on the same graph. To that end, let a token 
corresponding to number  1 fall down from the graph 
top. Although the token is in turn loaded by a thick 
bar, no subsequent movement  can be activated. 
Suppose, however, event P2, also occurs, P1 and P2 will 
form a cut set. It is observed that another  token falling 
down from number  2 enables a thick bar to fully load 
tokens. One of the two tokens in turn rolls 
horizontally to the right. As a consequence, the token 
drops to reach number 11, which accounts for system 
failure. Hence, the proposed trapezoid method has 
been Verified to be effective. 

Note that by either minimal cut sets or logic 
algorithm methods, the cause and effect relationship 
among events in a system can not be disclosed. They 

can only identify whether events lead to system 
failure; therefore,  they can be treated as 'static' 
analysis methods. On the contrary, the present novel 
method is capable to account for failure scenarios. 
The token motion in the trapezoidal graph behaves in 
a manner  similar to transition firing and token 
transferring in Petri nets. The success of this 
trapezoidal graph method is attributed to its 
accounting for numbering evolution in the incidence 
matrix. 

10 FAULT DETECTION USING PETRI NETS 

In Petri nets, every place accounts for a state in a 
system. When a fault tree is transformed into a Petri 
net model, the presence of tokens in the top place 
implies that failure occurs. In an autonomous Petri 
net, a token may appear in an input place and satisfy 
the firing condition. As a consequence, the token 
moves into the output place. A basic failure thus leads 
to the higher hierarchical failure or serious failure as 
shown in Fig. 18(a). 

In practice, machines and factories may contain 
sensors to detect failures and prevent basic failure 
from endangering system safety, for which sensors can 
be incorporated in Petri nets as shown in Fig. 18(b). 
When the basic failure occurs, the firing makes a 
token enter the intermediate place for isolating, while 
another token enters the sensor block to represent 
detection by a sensor. If the detection is ineffective, 
the token will leave the sensor block. The subsequent 
firing of a higher hierarchical transition causes the 
tokens to move into the output place. As a result, 
failure occurs. 

In addition, to model corrective maintenance or 
replacement of a faulty unit following fault detection, 
tokens in the intermediate place and the sensor block 

) 

) 
Place 

d 

Intermediate 
Place 

(a) (b) (c) 

Fig. 18. Fault detection and repaired process in Petri net. 
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Fig. 19. Sequence  of  fault detection. 
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Fig. 20. Sequence of fault detection(II). 
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should be eliminated after the failure is repaired. This 
can be achieved by installing a conditional transition, 
as shown in Fig. 18(c), which is connected to both 
intermediate place and sensor block. If the basic 
failure has been detected and is under repair, tokens 
will be put in both intermediate place and repaired 
place. After the repair work is done, the conditional 
transition fires, and tokens in both places will move 
out of the Petri net. 

Figures 19 and 20 exemplify fault detection. 
Suppose that a sensor is employed for detecting a fault 
that occurs at place Plo and the system has initial 
marking at P3, P4, and P6 where each contains a token. 
The firing of transition T3 T4 transfers tokens in both P3 
and P4 into a token in place PT. The tokens in P6 and 
P7 are in turn transferred into a token at /1o due to the 
firing of T6TT. Consequently, fault arising from P~o can 
be detected by the sensor, and the token is transferred 
into an intermediate place. During a maintenance 
period, a token stays at a repaired place. After repair, 
tokens located at both intermediate and repaired 
places vanish due to firing of the conditional 
transition. 

Furthermore, the foregoing scenario of repair 
activity can also be illustrated using the trapezoidal 
graph. To that end, as depicted in Fig. 18, make a 
notch on the slope corresponding to the number of 
places that represent sensors, and at the notch attach a 
horizontal inverse L-shaped hinge. When a token rolls 
to the right hand side on this level, the token will be 
stopped by the hinge. It dictates that fault is detected 
by the sensor installed at the corresponding place. 
Once repaired, the hinge turns clockwise, and the 
token will roll out of the trapezoid along the slope. 
This represents the absence of the failure. 

I I  CONCLUSION 

This paper has presented a Petri net method to 
efficiently obtain minimum cut sets and path sets. 
Additionally, the proposed matrix method represents 
a new approach to arranging place numbers so as to 
obtain both minimum cut sets and path sets. 

Place and transition numbers in Petri nets has been 
modified to result in incidence matrices, which are 
convenient for marking development, i.e., failure state 
analysis. Furthermore, by exploiting evolution of 
renumbering, the renumbered incidence matrix has 
been transformed into a trapezoidal graph so as to 
account for system failure scenarios. It is an effective 

graphical method capable to undertake the function of 
Petri nets. Examples have demonstrated that marking 
transfer, system failure and fault detection can be 
achieved using this proposed method. 
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