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Abstract-The re8ection and radiation characteristics of a 
planar dielectric antenna with arbitrary geometrical configura­
tion are analyzed numerically. A variational equation is first 
estabHshed based on the partial variational principle (PVP), and 
then solved by tile finite element method coupled with the 
frontal solution technique. The radiation and boundary condi­
tions are incorporated by combining the mod.aI expansion 
method and the Green's function approach for exterior field 
representation. The relection coefficients, the radiation pat­
terns, and the directive and power gains of seve.,.. antennas with 
linearized structures are studied and compared. 

L INTRODUCTION 

DIELECTRIC antennas are essential parts of millimeter­
and submillimeter-wave systems, Owing to the com­

plexity of the problem, many authors have paid attention to 
the elementary problem of planar structure rather than rod 
structure in obtaining a simplified picture for radiation mech­
anism. Angulo [1] first derived a variational formulation for 
the terminal impedance of a semi-infinite dielectric slab struc­
ture, and then used the incident surface wave as a trial field, 
Butler and Zoroofchi [2] took the Fourier transform of the 
incident field, and summed up the reflected and refracted 
fields of all spectral components to get the total reflected and 
transmitted waves. Ikegami [3] solved a matrix equation for 
the reflection coefficients by neglecting the continuous spec­
trum in a dielectric slab guide, 

Various approximation techniques were developed to find 
the far-field pattern of a semi-infinite planar dielectric struc­
ture [4]-[7], among which Lewin [7] derived a spectral 
integral equation and gave a theoretical comparison of these 
approximation techniques, Without approximation, Gelin et 
al. [8] solved the spectral integral equation numerically by 
iteration via the Neumann series. 

In a different approach, Rozzi et al. [9] solved a field 
integral equation by the Ritz-Galerkin method. Here, the 
normalized Lagurre polynomials were used both to expand 
the junction fields and to weight the integral equation. By 
using the free-space Green's function coupled with geometri­
cal optics, Nishimura et al. [10] tackled a field integral 
equation by iteration, Recently, Capsalis et al. [11] itera­
tively solved a Fredholm integral equation of the second kind 
without making approximations on the waveguide Green's 
function. 
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The previous methods can efficiently or rigorously treat the 
abruptly terminated planar dielectric structure, while none of 
them, except [10], can handle the arbitrarily shaped one. In 
this investigation, the partial variational approach [12], [13] 
will be adopted to deal with the planar dielectric antenna with 
arbitrary shape and refractive index. A variational equation is 
first derived by following the concept of the partial varia­
tional principle (PVP) [12], and is then solved by the finjte 
element method together with the frontal solution technique 
[14]. The exterior fields involved in the variational equat�on 
are tackled by the modal expansion method linked with �e 
Green's function approach [13]. Numerical results are ob­
tained and compared with those of other methods. Finally 
included are the reflection coefficients and far-field patterns 
for various antenna structures. 

II. V ARlATiONAL FORMULATION 

Consider a planar dielectric antenna structure shown in 
Fig. l(a), which is uniform in the y direction and symmetric 
with respect to the y-z plane. For excitation, the arbitrarily 
shaped dielectric antenna of refractive index n(x, z) is con­
nected to a planar dielectric waveguide of refractive index n1 
and width 2 t. Suppose that even TE guided modes are 
incident upon the dielectric antenna, then some power will be 
reflected back to the waveguide in the form of guided modes, 
and the other will radiate into the surrounding free space, For 
theoretical analysis, the structure may be replaced by the half 
structure shown in Fig. 1(b), where an infinite magnetic wall 
r ° is introduced by symmetry. The whole space is divided 
into four regions, that is, the finite element region D(O :$ )f 
:5 Xo, 0 :5 Z :5 I), the waveguide region I (0:5 x < co, 
-co < z :5 0), the first free-space region II (0 :5 X < co, I 

:5 Z < co), and the second free-space region III (Xo :5x < 

co, - co < z < co). Note that regions I and III as well as II 
and III are overlapped in Fig. l(b). 

B¥fore the derivation of the partial variational equation, a 
general description may be needed. The fields introduced to 
simulate the exact ones, (which are named "trial fields" in 
the following), may be divided into two groups, that is, those 
inside n and outside D, For the trial fields inside D, one may 
choose the electric field as unknown variables and express the 
magnetic field in functions of the electric field. In doing so, a 
residual electric volume source may arise to support the trial 
fields. For the trial fields outside n,. we choose those that 
satisfy source-free Maxwell's equations, the radiation condi­
tion, and all the boundary conditions except that on the 
boundary r( = r1 + r2 + r3), (In fact, this is the most 
difficult portion of this approach and is handled in Section 
III.) These two groups of trial fields in general may introduce 
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Fig. 1. (a) Geometry of planar dielectric antenna. (b) Reduced struClUre for 
analysis. 

surface currents at r. Now since the problem is source free 
in the entire region, the electric volume current in D and the 
surface currents at r should be weighted to zero so that the 
trial fields may become the exact ones. 

Let E(D) be the trial electric field inside D with the 
cOITesponding magnetic field H(D) given by 

- j -H(D) = -v x E( D) . 
W/Lo 

(1) 

For this arbitrarily chosen E(D), there must be a supporting 
volume electric current J inside D 

J(D) = V X H(D) - jWEE(D) (2) 

where E(X, z) = n2(x, Z)EO is the permittivity in D and 
H(D) is a function of E(O) by (1). 

The trial fields (E, H) outside 0 are chosen independently 
so as to satisfy the source-free Maxwell's equations and the 
boundary condition on the magnetic wall ro ( - 00 < Z s 0; / 
s Z < 00). Associated with these two independent field sets, 
inside and outside D, are the surface electric current (K) and 
magnetic current (N) over the boundary r, 

K(r) = n x [H(r+) - H(r-)] (3) 

N(r) = - n X [E(r+) - E(r-)] (4) 
so that the continuity boundary conditions over r may be 
incorporated. Here, r = rl + r2 + r3 and n denotes the 
outward normal of the boundary r whose inner and outer 
sides are represented by r - and r +, respectively. In addi­
tion, the trial fields (E(O), H(O» inside D should also be 
supported by the surface currents over the magnetic wall 
ro(O s Z S /) (denoted by roo) 

here n = -x. 

K(roo) = -n X H(roo) 
N(roo) = n X E(rooL 

(5) 

(6) 

Since the problem is source free, the volume current J(D) 
in (2) and the surface currents K(r), N(r), and K(r 00) in 

[ --

(3), (4), and (5) should be zero for the true fields so that the 
following equation holds for arbitrary variation fields 
(oaEa, oaHa): 

J dvoaEa(D) . J(D) 
!l 

+ i dS[ oaEa(r-) . K(r) - oaHa(r+) . N(r)] 

+ J dsoaE"(roo}' K(roo) 
roo 

= O. (7) 
Here oa is a variational operator whi.,Eh ¥rates only on the 
fields with superscript a [12] and (Ea, H") are fields inde­
pendent of (E, H). 

By removing the operator 0" outside of the integrals of (7) 
and substituting the supporting sources by (2)-(5) and the 
magnetic field inside D by (1), one then obtains the following 
variational equation: 
oa/a = 0 

a 
j J [em; oEy oE; oEy 2 2 a ] / =- dv ----+-----konEE 

W/LO!l OX OX iJz iJz y y 

+ J dsn . [ZH;(r+) - xH;(r+)] 
r 

'[Ey(r-) -Ey(r+)] 

- i dsE;(r-)n . [xHzCr+) - ZHxCr+)] (8) 

where ko = w,j /LoEo is the propagation constant of free 
space. Note that (E, H) = (Ey; Hx . H�) and (Ea, Ha) = 
(E;; H;, H;) are incorporated in (7) and that integration by 
part has been used in the volume integral to reduce the order 
of the derivative with respect to Ey' Also note that the 
surface integral on roo in (7) is canceled by that obtained 
after the process of integration by part. 

III. FINITE ELEMENT APPROACH AND EXTERIOR FIELD 

REPRESENTATIONS 

Equation (8) is solved by the finite element method [14]. 
The region 0 is divided into several numbered triangular 
elements as shown in Fig. 2, each with six nodes (3 on the 
vertices and 3 on the mid-points of the sides). The field E; at 
the eth element is expanded by the nodal field value <bf 
(unknown) and the shape function N; [14]: 

6 
E;(x,z) = L<bfN;. 

i=1 

(9) 

Here N;'s are second-order polynomial functions of x and z. 
Specifically 

N;(x, z) = Oii' 
with (Xi' z) being the coordinate of the jth node and olj the 
Kronecker delta. 

The unknown variables associated with the surface integral 
on r are all arranged as the boundary element (the last 
element). These include the electric field just interior to r 
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Fig. 2. Typical finite element mesh division with second-order triangular 
elements. 

and the electric and magnetic fields just exterior to r (see 
(8». The fonner is represented by the nodal values and shape 
functions as (9). The latter, which should satisfy the source­
free Maxwell's equations and all boundary conditions (except 
on r), is classified into two parts, that is, the fields in 
waveguide I and free space II (those for r! and r2, respec­
tively) and the fields in free space m (those for r3). 

A. Fields in Waveguide I and Free Space II 
The fields in region I are expanded by the discrete guided 

modes and continuous radiation modes of the slab wave­
guide, while in region II no guided mode exists and the fields 
are expanded only by the sinusoidal functions of continuous 
spectrum (p): 

E; (x, z) 

= sat it [Ame-jjjmz + amejjjmZ]um(X)} 

JOO WJ.l.o 'R ) + dpd:--;;- u;(x)e±'"p(Z-Za 
o fJp 

wp.oH;(x, z) 

(10) 

= sa t it (jm[ -Ame-jllm< + amejjjmz]Um(X)} 

± Wp.oj"" dpd;u:(x)e±ll/z-Za). (11) 
o 

For the waveguide region, a = I, s" = 1, Za = 0, and the 
upper signs are used. For the free-space region, a = II, sa 

= 0 (no discrete modes), z'" = I, and the lower signs are 
used. Nt is the number of discrete guided modes in the slab 
waveguide. Am and am are the coefficients for the incident 
(known) and scattered (unknown) guided modes (discrete 
spectrum)· with modal function and propagation constant de­
noted by um(x) and (jm. u;(x) and d; (unknown) are the 
modal function (which is sinusoidal function for free space II) 
and the coefficient of the radiation mode (continuous spec­
trum) in region a, where p and (jp = Jk� - p2 are the 
wavenumbers in the x- and z-directions, respectively. 

The field representations (to) and (11) are not suitable for 
numerical computation since the unknown d/s are the con­
tinuous functions of p. It is necessary to change the represen­
tations into other fonns with discrete unknown variables. 

The modal functions are expanded, using the nonnalized 

Lagurre polynomials { .?ix)} [15]: 

M 
um(x) = L Qmq.?q(x) q=l 

M 
u;( x) = L Pp� .?q( x) q=1 

where M is a finite number and 

Qmq = �oo dxum(x) '?q(x) 

Pp� = �<;x> dxu:(x) .?q(x) 

(12) 

(13) 

(14) 

(15) 

The desired complete and orthononnal set { 2'q( x)} in 0 :s X 
< 00 is defined by 

.?q( x) = � exp ( -x /2So)Lq_i ( � ) , 

q = 1,2, ... (16) 
where L denotes the Lagurre polynomial. The suitable scale 
factor So is chosen based on the criterion that (12) can 
essentially be satisfied for a given M [15], and that the 
sequence of (16) is numerically independent in 0 :s x:s Xo. 

Now expand the magnetic fields at z = z'" ( = 0 or /) as 

wJ.l.oHxCr;:) == wJ.l.oH;(x, z"' ) 
Nt M 

-sa L 13mAmum(X) + L h�.?q(x) m=! q=1 

where hq's are to be determined. 

(17) 

Equating (17) and (11) at Z = za' then using the modal 
orthogonality property and (14) and (15), one finds 

am = f h�( Qmq) (18) q=! 13m 
M (P"') d; = ± L h� � . 

q=i W"O 

Substituting (18), (19), (12), and (13) into (to) gives 

EAr:) = E; (x , z"') 

where 

(19) 

The exterior tangential fields over the boundaries r 1 and r 2 
can then be constructed, using (17) and (20). It is noticed that 
the unknown variables associated with (17) and (20) are now 
discrete. 
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B. Fields in Free Space III 
Using the Green's theorem and the radiation condition, one 

has the expression for the wave field q, = Ey or WlloHz in 
(Xo :S x < 00, - 00 < z < 00) 

q,(x, z) = - dx' G- -q,- x' = Xo, JOO ( aq, aG ) 1  
-00 ax' ax' 

(x, z) ellI. (22) 
The two-dimensional Green's function G in free space is 
chosen as 

j 
G(z,z;x',z') = -4[H�2)(k,r) +JJf)(k,r,)] (23) 

aG I so that - vanishes. Here H�2) is zero-order Hankel 
ax' x'-Xo 

function of the second kind, and 

r= V(X'-X)2+(Z'-Z)2 
r, = V(2X, -x' -X)2 + (z' - Z)2. (24) 

We thus obtain 

Ey(x, x) = - Joo dx'G(x-X"x-x') 
-00 

a 
. -Ey(X" x'), (x, x) eIII (25) ax' 

WIl,HAx, z) = -j Joo dZ 'G(x -X,, z -z') 
-00 
;p 

. ax,2Ey(X" z'), (x, z) Ell! (2(') 

aEy 
where w"oH. = j-- has been used in (26) and 

ax' 
j 

G(x-x',z-x') = -z 
'HJ2>(koV(x-X,)2+{Z-Z,)2). (27) 

The integrations in (25) and (26) are divided into three 
parts: those over -00 < z' :s 0, those over I:s z' < 00, 
and those over 0 :s z' :s l. The first two parts are calculated 
by partially differentiating (10) with respect to x, and are 
functions of Am and h� as a result of (18) and (19). The 
field expression in (9) is substituted into the last part to make 
the integral depend on the nodal values q,j of the elements 
adjacent to 1'3' Finally, the exterior fields tangential to r3 
can be represented as 

Ey(rn = L EmAm + L L E;h� + L Ejq,i (28) m Of: q ; 

WlloH.(r3+) = L HmAm + L L H;h� + L Hiq,j m ct q i 
(29) 

where E's and H's are known functions of Xo and z and 
are evaluated by the numerical methods. 

]--

IV. NUMERICAL PROCEDURE 

By choosing the same basis functions for weighting fields 
(E;; H;, H:) and trial fields (Ey; Hx, Hz), and using the 
representation (17), (20), (28), and (29) for exterior fields, 
we can solve the partial variational equation (8) by the finite 
element method along with the frontal solution technique 
[14]. Specifically, the expansion coefficients h� and h�, the 
nodal values q,i along the boundaries r" r2, and those of the 
elements adjacent to r 3 are arranged as the unknowns of the 
last element. Thus after the assembly and elimination process 
of the frontal solution technique, a matrix equation of the 
form 

(30) 
is finally obtain� and solved by the Gaussian elimination 
process. Here A is a known matrix, S is a known source 
vector due to the incident fields, and �(= [q,j ' h�, h�]T) is a 
vector associated with the unknown coefficients. 

After solving h� and h�, the reflection coefficients am and 
dp may then be calculated from (18) and (19), respectively. 
The forward radiation field E:(r,O) is obtained by first 
extending the integration region of p (referred to (10» to 
(-00, 00) and then utilizing the saddle-point method [15]: 

R Wllo II IEy(r,O)I::: Jk;;r Idp I ,,-kosine' 

11' kor� I,O:s O:s 2' (31) 

Here (r, 0) are the polar coordinates of (x, x), 
x = r sin O, z = r cos O . 
V. NUMERICAL RESULTS 

(32) 

To test the validity of the approach, our results are com­
pared with those of Gelin et 01. [8], as shown in Fig. 3. 
When the normalized frequency kot becomes greater than 
1.06, not only the dominant mode (a,) but also the second­
order mode (02) are excited and reflected back. The results 
show good agreement between the two methods. Other nu­
merical checks of the present approach can also be found in 
other research on the discontinuity problem for two slab 
guides [13]. 

Several antenna (or discontinuity) structures for analysis 
are illustmted in Fig. 4, where either the structure parameters 
(1/ t, h / t) or the normalized frequency k ° t are considered 
as variables. We assume that all feeding slab waveguides are 
monomode, and that only the dominant mode with amplitude 
A I = 1 is incident upon the discontinuity structures� 

Fig. 5 shows the reflection coefficient I 01 I for the struc­
tures in Figs. 4(a)-4(e). The result for structure Fig. 4(a) is 
constant because the end is abruptly terminated and is inde­
pendent of 1/ t. The reflection coefficients for the tapered 
structures (Figs. 4(b) and 4(c» are less than that for the 
abrupt one in Fig. 4(a), and are decreased as the taper length 
is increased. The structures in Figs. 4(a)-4(c) have only one 
step junction, while the structures in Figs. 4(d) and 4(e) have 
two step ones. Reflected waves from the two step junctions 
interfere with each other, which causes oscillations in the 
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retlection coefficient curves d and e in Fig. 5. The first dip 
of curve e happens at 1/ t = 1.7, which is somewhat apart 
from that (1/ t = 1.5) of the effective dielectric constant 
(EDC) approximation [16], a result due to the excitation of 
higher order modes at the junction. The tapered configuration 
in Fig. 4(d) may weaken the interferences, and thus smooths 
out the corresponding retlection curve d in Fig. 5. 

With respect to the same structures (Figs. 4(a)-4(e», the 
frequency dependence of the retlection coefficients I a1 I is 
plotted in Fig. 6, where the normalized lengths 1/ I are kept 
constant (1/ t = 2). When the normalized frequency is low 
(kot < 0.2), all the curves converge and approach zero 
because of the smallness of the waveguide and discontinu­
ities. For kot > 004, the reflection coefficients for structures 
(a) to (c) are nearly unchanged, and those for structures (d) 
and (e) show oscillations. 

Shown in Fig. 7 are the retlection curves for the structure 
Fig. 4(t). Here, the normalized height h / t of the discontinu­
ity is considered as a parameter. The structure for h / I = 0 
corresponds to that of Fig. 4(a), namely an abruptly termi­
nated end. The oscillatory phenomenon of the curves for 
h / t = 1 and 2 may be interpreted due to the interferences 
between the waves reflected from the positive-going (left) and 
negative-going (right) tapers. As suggested by the EDC 
approximation, when the wave is incident from a thick 

a 

kot 
Fig. 6. Reflection coefficients of the strucmres in Fig. 4(a)-(e). 1/ t = 2, 

n = 2.236. 

kot 
Fig. 7. Reflection coefficients of the strucmre in Fig. 4(f). n = 2.236. 

waveguide into a thin waveguide, the reflected wave is 
in-phase with the incident wave; otherwise, it is out-of-phase. 
Consequently the reflected waves are out-of-phase with the 
incident waves in the positive-going taper, and are in-phase 
in the negative-going taper. This suggests a possible mecha­

nism for the curve oscillation. 
Fig. 8 shows the normalized radiation patterns for the 

structure Fig. 4(e), where kol = 0.8. The structure with 
1/ t = 0 corresponds to the abruptly terminated end, and that 
with 1/ t = 1.7 corresponds to the one which has a minimum 
reflected power (Fig. 5). The directive gain and power gain 
are 5.50 and 4.52 dB for the former (1/ t = 0), and are 5.77 
and 5.77 dB for the latter (1/ t = 1.7). Being similar in 
radiation patterns, the directive gains for both structures are 
approximately the same. Due to impedance matching, the 
power gain for 1/ t = 1.7 is 1.25 dB higher than that for the 
abruptly terminated end (1/ t = 0), which means that better 
radiation efficiency can be achieved by the former structure. 

Shown in Fig. 9 are the normalized radiation patterns for 
the structure Fig. 4(t), where the frequency (kol = 0.25) is 
chosen so that the structure with h / t = 2 has a maximum 
reflected power. Although the half-power beamwidth of the 
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Fig. 9. Normalized radiation patterns of the structure in Fig. 4(t). kot = 
0.25, n = 2.236. 

structure with h / t = 2 is less than that of the structure with 
h / t = 0, the directive gain (= 6.55 dB) of the fanner is 
somewhat smaller than that ( = 6.85 dB) of the latter, This 

means that more radiated power is backward scattered in the 

structure of h / t = 2. In addition, the power gain for h / t = 
2 (5.15 dB) is lower than that for h / t = 0 (6.60 dB) due to 

the higher reflectivity of the structure (h / t = 2), 

VI. CONCLUSION 

Radiation and scattering characteristics of several planar 
dielectric antenna structures have been examined, using the 
partial variational approach together with the finite element 
method. In this study, a hybrid exterior field representation 
has been proposed to tackle the radiation and boundary 
conditions. In particular, the reflection coefficients, the radia­

tion patterns, and the gains of the antenna structures in Fig. 4 
have been analyzed by varying the structure parameters 
(//t,h/t) as well as the normalized frequency kot, By 
following the similar approach, more arbitrarily shaped pla­

nar dielectric antennas with TE- or TM-mode excitation can 
be analyzed. 
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