
. 
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 38, NO. 6, JUNE 1991 625 

Dynamic Range, Stability, and Fault-Tolerant 
Capability of Finite-Precision RLS Systolic 

Array Based on Givens Rotations 
KouJuey Ray Liu, Member, IEEE, Shih-Fu Hsieh, Member, IEEE, Kung Yao, Member, IEEE, 

and Ching-Te Chiu 

Abstract -The QRD IUS algorithm is generally recognized as 
having good numerical properties under a finite-precision im- 
plementation. Furthermore, it is quite suited for VLSI imple- 
mentation since it can be easily mapped onto a systolic array. 
However, it is still unclear how to obtain the dynamic range of 
the algorithm in order a wordlength can be chosen to ensure 
correct operations of the algorithm. In this paper, we first 
propose a quasi-steady state model by observing the rotation 
parameters generated by boundary cells will eventually reach 
quasi-steady-state regardless of the input data statistics if A is 
close to one. With this model, we can obtain upper bounds of the 
dynamic range of processing cells. Thus the wordlength can be 
obtained from upper bounds of the dynamic range to prevent 
overflow and to ensure correct operations of the QRD RLS 
algorithm. Then we reconsider the stability problem under 
quantization effects with a more general analysis and obtain 
tighter bounds than given in a previous work 1131. Finally, two 
fault-tolerant problems, the missing error detection and the 
false alarm effect, that arise under finite-precision implementa- 
tion are considered. Detailed analysis on preventing missing 
error detection with a false alarm free condition is presented. 

I. INTRODUCTION 
EAST-SQUARES (LS) problems have been an inte- L gral part of modern signal processing and communi- 

cations applications, such as adaptive filtering, beamform- 
ing, array signal processing, channel equalization, etc. 
Efficient implementation of the recursive LS (RLS) algo- 
rithm is desirable to meet the high throughput and speed 
requirement of modern signal processing. Among many 
techniques to implement the RLS algorithm, the QR 
decomposition (QRD) RLS algorithm is one of the most 
promising algorithms in that it is numerical stable as well 

Manuscript received October 4, 1990; revised January 28, 1991. This 
work was supported in part by NSF Grants ECD-8803012-06 and NCR- 
8814407, and by a UC Microgrant. This paper was recommended by 
Associate Editor K. K. Parhi. 

K. J. R. Liu and C. T. Chiu are with the Electrical Engineering 
Department, Systems Research Center, University of Maryland, College 
Park, MD 20742. 

S. F. Hsieh is with the Department of Communication Engineering, 
National Chiao Tung University, Hsinchu, Taiwan 30039. 

K. Yao is with the Electrical Engineering Department, University of 
California, Los Angeles, CA 90024-1594. 

IEEE Log Number 9143697. 

as suitable for parallel processing implementation in a 
systolic array [l], [8]. Gentleman and Kung [61 have pro- 
posed a QRD triangular systolic array based on Givens 
rotation, and McWhirter [21] used the systolic array to 
implement the QRD RLS algorithm efficiently. Since 
then, many researchers have considered and proposed 
various RLS algorithms (either constrained or non-con- 
strained) based on methods such as the Givens rotation, 
modified Gram-Schmidt, and the Householder transfor- 
mation for parallel processing architectures [31, [41, [91, 
[lo], [14], [17], [22], [291. Applications of the QR-based 
techniques to the least-square lattice algorithms have also 
been considered in [23]-[26]. In [15] and [161, Anfinson 
et al. and Liu and Yao have proposed efficient algorithm- 
based fault-tolerant schemes that can be easily incorpo- 
rated with the QRD RLS systolic array. An error result- 
ing from a temporary or permanent faulty cell can be 
detected in real-time, and the faulty cell can be reconfigu- 
rated out of service to prevent future contamination of 
the array. This makes the systolic implementation of the 
RLS algorithm more attractive in the practical real-time 
applications. In the United Kingdom, at STC Technology 
Ltd. (STL) in collaboration with Royal Signal and Radar 
Establishment (RSRE), a test bed of the QRD RLS 
systolic array has been built for radar applications [20]. 
Furthermore, this class of systolic array architectures can 
be used to solve SVD and eigenvalue problems [51, [181 
that are the heart of many signal processing applications, 
such as high-resolution spectral estimation, direction-of- 
arrivals problems, and speech/image processing. 

An important problem that needs to be resolved is the 
dynamic range of the QRD RLS systolic algorithm. With- 
out knowing the dynamic range of an algorithm, we are 
unable to predict the wordlength (number of bits per 
word) required to ensure correct operations. Further- 
more, the wordlength of an algorithm is one of the most 
crucial factors in designing hardware and circuits [27], 
since the wordlength affects the hardware complexity. 
Usually, shorter arithmetic wordlength leads to an imple- 
mentation with smaller and faster hardware [27]. At the 
same time, we also do not want overflow to happen 
during the computation. Unfortunately, the dynamic range 
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of the QRD RLS algorithm is still unclear. While some 
simulations using finite wordlength have been presented 
in [23], both systolic array and lattice implementation are 
considered in this simulation study. 

In this paper, we first observe that the cosine parame- 
ters generated by boundary cells will eventually reach 
quasi-steady-state if A is close to one, which is the usual 
case. We will show that the quasi-steady-state and ensem- 
ble values of sine and cosine parameters are the same for 
all boundary cells. It is independent of the statistics of the 
input data sequence and the position of the boundary cell 
that generates the sine and cosine parameters. Simulation 
results are presented to support this observation. These 
results yield the tools needed to further investigate many 
properties of the QRD RLS systolic algorithm. Then, we 
can obtain upper bounds of the dynamic range of process- 
ing cells. Thus lower bounds on the wordlength can be 
obtained from upper bounds of the dynamic range to 
prevent overflow and to ensure correct operations of the 
QRD RLS algorithm. 

Although the QRD RLS algorithm is generally recog- 
nized as having good numerical properties such as numer- 
ical stability under finite-precision implementation [ 11, 
[13], there is no mathematical proof of this until a recent 
paper by Leung and Haykin 1131. With the above results, 
we reconsider the stability problem under quantization 
effects with a more general analysis and obtain tighter 
bounds than given in previous work [13]. 

Given a finite wordlength, the computational precision 
is thus limited. Two important factors of the fault-tolerant 
capability, the missing error detection and the false alarm 
effects, resulting from the finite-precision implementa- 
tion, are also considered in this paper. Basically, this is a 
trade-off issue. We will find a system that is capable of 
detecting any given small error size without having a false 
alarm problem. 

The organization of this paper is as follows. First, a 
brief review of the fault-tolerant QRD RLS systolic array 
is given in Section 11. Then, quasi-steady-state of the 
rotation parameters is discussed in Section 111. Dynamic 
range and lower bound on wordlength are derived in 
Section IV. Stability and quantization effects are consid- 
ered in Section V. Finally, the fault-tolerant capability is 
presented in Section VI and conclusion is given in Section 
VII. 

11. FAULT-TOLERANT QRD RLS SYSTOLIC ARRAY 
Without computing weight vector explicitly, the systolic 

implementation of the QRD RLS algorithm proposed by 
McWhirter [21] can obtain the optimal residuals effi- 
ciently. The systolic array is shown in Fig. 1. It consists of 
two parts: a triangular array for computing QRD and a 
linear column array (denoted the response array (RA)) 
for computing the LS residual. One of the major features 
of the array is that multiple RA's can be added to 
obtained optimal residuals for multiple desired responses. 

In [15], Liu and Yao proposed a real-time concurrent 
error detection scheme for this systolic array based on the 
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(b) Processing cells of the Givens rotation method. 

algorithm-based fault-tolerance [2], [ll].  The basic idea is 
that since the residuals of different desired responses can 
be computed simultaneously, an artificial desired re- 
sponse can be designed to detect an error produced by a 
faulty processor. In [15], it was shown that if the artificial 
desired response is designed as some proper combina- 
tions of the input data, the output residual of the system 

Fig. 1. (a) QRD RLS systolic array using Givens rotation method 
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Fig. 2. Fault-tolerant QRD RLS systolic array. 

will be zero if there is no fault. However, any occurring 
fault in the system will cause the residual to be nonzero 
and the fault can be detected in real-time. The fault- 
tolerant QRD RLS systolic array is shown in Fig. 2. As we 
can see, above the QRD triarray, a horizontal linear array 
called encoding array, is used to’add up the incoming row 
(the checksum) to be the artificial desired response. The 
processing cell of the encoding array is an adder that adds 
both inputs and passes to the next cell. The artificial 
desired response then serves as the input to the new RA 
called error detection array (EDA) at the right side of the 
QRD triarray. The output of the EDA, e,, now serves as 
the error detector. If there is no error, e, will always be 
zero. Whenever there is a faulty cell occurs during the 
computation, the error generated by the faulty cell will 
cause e, # 0 and thus the error is detected in real-time 
[151. In [16], a similar work was proposed independently 
by Anfinson et al. based on the checksum encoding point 
of view as considered in [ll]. 

All of these results are based on the assumption that 
the computation is infinite precision. Under finite-preci- 
sion computation, there are two major effects: the missing 
error detection and false alarm effects, which will be 
considered in Section VI. 

111. QUASI-STEADY-STATE MODEL 
From the updated recursive equation of the boundary 

cell (see Fig. l), we have 

k 
r’( k + 1) = A’r’( k )  + x’( k )  = A”x’( k - i) (1) 

i = O  

where 0 < A G 1 is the exponentially forgetting factor [8]. 

Assume the input sequence { x )  is zero-mean with vari- 
ance u2; the expected value of r’(k + 1) is given by 

k 1 -  A2(k+l)  

E [  r 2 ( k  + 113 = i = O  A”E(x ’ (~  - i)) = u2 1 - h 2  

( 2 )  

When k is very large, 

Since \r is a concave function, from Jensen’s inequality 
[281 

U 

k lim -m E ( r ( k ) )  G k lim -m dm=m ( 4) 

and from (1) 

( 5 )  
IxminI lxmaxl 

J1-hz k - m  d 3  G lim r ( k ) < -  

where Ix,,J and Ixminl are the maximum and minimum 
values of the sequence {Ixl). 

The cosine parameter of the Givens rotation is com- 
puted by c (k  + 1) = A r ( k ) / r ( k  + 1). The steady-state of 
this parameter exists if lim,,,c(k) exists. For the 
sequence { c ( * ) )  to have a steady state, we need 
lim,+- r ( k ) / r ( k  + 1) = a, where a is a constant. If a < 1, 
then the sequence ( r ( . ) )  is unbounded, which conflicts 
with ( 5 )  which indicates { r ( * ) }  should be bounded; if 
a > 1, then lim, --tm r ( k )  = 0 which, again, conflicts with 
(5).  Therefore, a has to be a unity to guarantee the steady 
state of { c ( - ) }  exists. That is, 

and the steady-state value of cosine, if it exists, is 

Ar( k - 1) 
= A .  (7) 

r ( k )  
lim c ( k )  = lim 

k - m  k - m  

From (l), we can see that if A = 1, then lim, +- r ( k )  + 00 

such that lim, --tm r ( k ) / r ( k  + 1) = 1. In this case, though 
the steady-state of IC(.)} exists, { d e ) }  is unbounded. Usu- 
ally A is chosen between .99 and 1, which is very close to 
one.’ When we update r ( k )  to r ( k  + 1) using (11, a A 
portion of r ( k )  is forgotten and an input x ( k )  is added 
into it. If A is close to one, when k is very large, r ( k )  will 
come close to r ( k  + 1) and the input x ( k )  plays a less and 
less significant role in computing r ( k  + 1). Then, it is 
obvious that 

lim E r ( k )  = lim E r ( k  + l ) .  

Therefore, from the averaging principle [ 191, which has 
been used successfully in many situations, the expected 

k -+m k - m  

‘For different expressions as in [8], [13], and [21], A is between .98 
and 1. 
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cosine can be approximated by 

When A is close to one, from above discussions, we have 

where 6 ( A , x )  represents the small deviation due to the 
forgotten A portion of r and input of x. If 6 is very small 
such that it is negligible when k is large, we say that the 
sequence { c ( .  I} has reached the quasi-steady-state. 

Generally, it is difficult to quantitatively characterize 
S(A, x). Simulations will be used to demonstrate the 
smallness of 6. Here we model the input signal sequence 
{XI to the systolic array as a second-order AR process 
described by 

x( . )  + a , x ( n  -1) + a 2 x ( n  -2) = U(.)  (10) 

where u(n)  is a white Gaussian noise process of zero-mean 
and unit variance. Choice of different AR parameters a, 
and a2 will give us different stationary and nonstationary 
realizations of the AR process [8, chap. 21. In our simula- 
tions, three different categories of signal are encountered. 
The first category consists of three stationary AR pro- 
cesses given by AR1 (a ,  = -0.1, a2 = -0.81, AR2 (a ,  = 

0.1, a2 = -0.8) with real roots, and AR3 (a ,  = -0.975, 
a2 = 0.95) with complex-conjugate roots. The second cat- 
egory yields a nonstationary AR process, AR4 ( a ,  = - 0.6, 
a2 = -0.3, and the third category is a white Gaussian 
noise process, WN, with zero mean and unit variance. All 
of the AR processes are normalized to unit variance. 
Table I shows the mean of the cosine parameters for 
different input data with different A values. This table 
justifies the result in (8). Table I1 shows the variance of 6 
for different input data with different A values. The 
values of those variances are on the order of to 
lo-', which implies that 6 is indeed very small. They can 
be closely approximated by using quadratic polynomials 
as follows: 

AR1: u,Z(A) =1.5938-3.182A +1.5882A2 

AR2: U;( A )  = 1.5991 -3.1919A + 1.5928A2 

AR3: v:(A) =1.5812-3.1595A +1.5784A2 

AR4: U;( A )  = 1.4492 - 2.8936A + 1 .4444A2 

AR5: U:( A )  = 1.6437 - 3.2904A + 1 .6431A2 (11) 

where 0.98 < A < 1. 
While the statistics of the input data are different, the 

variances can be described by A in similar manners (see 
Fig. 3). This means that when A is close to one and the 
quasi-steady-state is reached, the size of the variation 6 is 
mainly governed by A instead of the statistics of the input 

TABLE I 
MEAN VALUES OF THE COSINE PARAMETERS 

FOR DIFFERENT INPUT SIGNALS 

AR1 AR2 AR3 AR4 WN 

A =.980 ,9800 .9800 .9802 .9799 .9801 
A=.985 ,9849 .9849 ,9851 ,9848 ,9850 
A=.990 .9897 .9897 ,9900 .9897 .9899 
A=.991 ,9907 ,9907 ,9910 .9907 ,9909 
A=.993 .9927 .9927 ,9930 ,9927 .9929 
A=.995 ,9947 .9947 .9950 .9947 .9949 
A=.997 .9967 ,9967 .9970 ,9967 .9969 
A =.999 .9985 .9985 .9987 .9985 .9986 

TABLE I1 
VARIANCES OF THE 6 FOR DIFFERENT INPUT SIGNALS 

AR1 AR2 AR3 AR4 WN 

A = .980 
A = .985 
A = .990 
A = .991 
A = .993 
A = ,995 
A = ,997 
A = ,999 

7.3885e-4 
4.3970e-4 
2.0903e-4 
1.7154e-4 
1.0991e-4 
5.9724e-5 
2.3007e-5 
4.1127e-6 

7.5465e-4 
4.5144e-4 
2.1463e-4 
1.7875e-4 
1.1390e-4 
6.0796e-5 
2.4735e-5 
3.1590 e-6 

6.8163e-4 
3.9577e-4 
1.8376e-4 
1.4883e-4 
9.1016e-4 
4.6789e-5 
1.6808e-5 
3.5167e-6 

6.6721e-4 7.3367e-4 
3.9517e-4 4.3308e-4 
1.8918e-4 2.0080e-4 
1.5562e-4 1.6659e-4 
9.6440e-5 1.0323e-4 
5.1 856 e-5 5.3525e-5 
1.9908e-5 2.0504e-5 
4.3511e-6 4.6490e-6 

-40 

- 5 0 ~  -- 
0.98 0.99 

lambd. 

Fig. 3. Plots of variances in decibel scale. 

1 .oo 

data. Fig. 3 shows the plots of the variances on a decibel 
scale. 

From these results, we conclude that the sequence 
IC( * )} reaches the quasi-steady-state regardless of the 
input statistics if A is close to one. Thus we can write 

lim c ( k + l ) =  lim E c ( k + l ) - A ,  
k +m k -+m 
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The quasi-steady-state and ensemble values of sine and 
cosine parameters are the same for all boundary cells. It 

and the position of the boundary cell which generates the 
sine and cosine parameters. These results yield the tools 
needed to investigate further many properties of the 
QRD RLS systolic algorithm. 

is independent of the statistics of the input data sequence 

IV. DYNAMIC RANGE AND LOWER BOUND 
ON WORDLENGTH 

Denote PEjj as the (i,;) processing cell of the array. 
From Fig. 1, the dynamic range of the content of the 
boundary cell PE,, can be upper bounded by 

k 

lim r:,( k + 1) = lim A2'x2( k - i )  
k - m .  1 = 0  k + m  

k .. 2 

Therefore, 

From the definition of the cosine parameter as given in 
Fig. 1, we can see that it is always non-negative. For 
internal cell PE,, (of the first row), we have 

Iq,(k +1)1= Is (k)x(k)+c(k)hr , , (k) l  
I S (  k ) x (  k )  + c ( k ) A [ s ( k  - l )x (  k - 1) 

+ C( k - l)Arl,( k - l ) ]  I 
k 1 - 1  

< A'(x ( k - i) S( k - i )  1 n C (  k - I )  
1 = O  1 = 0  

k 1 - 1  

< IxmaxI C XIS( k - i ) I  n C (  k - I). 
r = O  1=0 

(15) 

From the basic relationship between the geometric mean 
and the arithmetic mean, we know 

( U ,  + a2 +n.. . + a ,  1 >, a 1 - a 2 .  . . a,. (16) 

If n is large enough, then from the law of large numbers, 
we know 

a , + a 2 +  * . .  + a n  
lim + E ( a ) .  

n + m  n 
Therefore, 

n 

E(  a)" > n a, 
1 = 1  

when n is large. We can further simplify the bound for 
k + m  by using this inequality as follows: 

lim Irl,( k + 1)1 

< lxmdx~ lim 

k + m  

k 

XIS( k - i) lE( c( k - i ) ) '  

%. (17) ~ 2 1 . J 1 - h Z  = ~ = 

k + a  1 - 0  

k 
lxmaxl 

k + m  1 - 0  m = lxmaXl lim 

From (14) and (171, we can see the steady-state dynamic 
range of the first row is upper bounded by 8 for both 
boundary and internal cells. The dynamic range of the 
second row depends on the output of internal cells of the 
first row. Denote the output of the first row as xOut. From 
Fig. 1, we have 

xou,(k +1) = c ( k ) x ( k ) - s ( k ) A r ( k ) .  (18) 

The first term on the right-hand side of (18) can be 
bounded by 

lim IC( k ) x (  k)l < Alx,,,I ( 19) 
k + m  

and from (17) the second term is bounded by 

h n a x l  

k + m  m Iim I s ( k ) A r ( k ) (  <-.A----- = A/x,,(. (20) 

There are two possible cases. 
Case I )  HighZy fluctuated input: The value of x ( k )  may 

vary differently from time to time such that for most of 
the time, s ( k ) r ( k )  may have the opposite sign of x(k). 
For this case 

lim lxout( k) l  G 2AIxmaxI. (21) 
k + m  

Case 2) Smooth input: For this case, the input data 
sequence does not change its value rapidly, and therefore, 
s ( k ) r ( k )  may have the same sign as x(k) for most of the 
time. The bound is 

lim IxOut( k)l G Alx,,l. (22) 
k + m  

From (14) and (171, it is obvious the steady-state dynamic 
range of the second row is bounded by 

for the highly fluctuating input, and 

lim l r2 j (k ) l  < A %  (24) 
k + m  

for the smooth input. From the above results, the steady- 
state dynamic range of the mth row is bounded by 

for the highly fluctuating input and 

lim Irmj(k)l < (26) 
k + m  

for the smooth input. For Case 1, the dynamic range is 
increasing exponentially with a factor of 2A, and for Case 
2, decreasing exponentially with a factor of A. 

From (25) and (261, we can see that the dynamic range 
may increase or decrease with each row. Its behavior 
depends on the characteristics of the input signal. For a 
given row, its dynamic range may follow (25) for some 
periods (increasing) and then switch to (26) for some 
periods (decreasing). Either way, (25) represents the worst 
case scenario. 
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Fig. 4. Plots of the contents of processing cells with AR3 signal for 
A = 0.911 and order p = 3. (a) First row. (b) Second row. (c) Third row. 

Denote B, as the wordlength of the mth row, to 
prevent outflow and to ensure the correct operation of 
the QRD RLS algorithm. Thus we require 2'm 2 
(2A)"- '8 for fixed-point operation, and therefore, 

B ,  >, I (  m - 1) (1  + log, A )  + log, 8 1 . (27) 
For the fluctuating input, when (2A)"-' = 2, one more bit 
is needed for the wordlength of the following rows. The 
number of rows n for each bit increase is 

n = [ 1 +  1 1 
1 +log, A 

which is a monotonically decreasing function of A .  If 
A < 0.5, then no such n exists. That is, the wordlength of 
the array can be fixed at 8 without the overflow problem. 
For smooth input, when A"-' = (1/2), one bit can be 

TABLE Ill 
COMPARISONS OF THE UPPER BOUND 8 AND THE MAXIMUM VALUES 

OF THE CONTENTS OF THE BOUNDARY AND INTERNAL CELLS 
AR1 AR2 AR3 AR4 

8 47.5737 16.6493 6.8209 17.1317 
Max Ti, 12.1135 5.6755 2.5770 6.3590 
Max r I j  5.4948 3.3982 0.9036 4.2805 

0 

'2 
a 2  
a 

0 

0 200 400 600 800 1000 
Time 

-2 

Fig. 5. Plots of the contents of the first row processing cells with finite 
wordlengths: 3 bits (row l), 4 bits (row 21, 5 bits (row 3), and 4 bits for 
others. 

8 and the maximum value of contents of boundary and 
internal cells for different input signals. From these, we 
can see that 8 is a good upper bound for both boundary 
and internal cells. From (27), we can choose the minimum 
wordlengths for the AR3 input signal. We found that it 
needs three bits for the wordlength of the first row, four 
bits for the second row, and five bits for the third row. As 
shown in Fig. 5 ,  the resultant contents are almost identi- 
cal to those of Fig. 4, which is the result of a double-pre- 
cision implementation. 

V. STABILITY AND QUANTIZATION EFFECT 
In this section, we consider stability under the quanti- 

zation effect. Here, the stability is defined in the sense of 
bounded input/bounded output (BIBO) as in [131. From 
(21) and (22), the output of the mth row is bounded by 

for the highly fluctuating input and 

lim IxOut,l < Am-'Ix,,I (31) discarded from the wordlength of the following rows. The 
number of rows n for each bit decrease is k + m  

n =  1 1-- . l  1 f 29) 
, I  I log2A I 

which is a monotonically increasing function of A. For 
A G 0.5, n = 2. That is, for every two rows we can discard 
one bit for the wordlength. 

Our simulations verified the above results. Here we 
provide some examples. Fig. 4 shows a simulation of the 
contents of internal and boundary cells of different rows 
as well as the upper bound 8 under AR3 input signal for 
A = 0.991 and p = 3. Table 111 compares the upper bound 

for the smooth input. 
The order of least-squares estimation p is always finite. 

The output of the last row of the QR triarray is bounded, 
in the worst case, by lim, ~~ IxoUtpl G (2A)P-'lx,,l. The 
residual is then asymptotically bounded by 

where y(k)= n ; = , c i ( k )  and cis are the related cosine 
parameters [21]. Thus for A < 1, if the input data are 
bounded, that is, (xmax) <M,  the output is always bounded. 
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The QRD RLS systolic array constitutes a BIBO stable 
system under unlimited precision implementation. Practi- 
cally, the wordlength of each processing cell is finite-pre- 
cision. Leung and Haykin [13] first considered the stability 
under this effect and showed the QRD RLS algorithm is 
stable under finite-precision implementation. Here we 
reconsider this problem and give a more general analysis 
and a tighter bound. 

as the quantization operator and i as the 
quantized value of x .  Since the quantization error for the 
additions of quantized parameters is much smaller than 
that of multiplications, to make the analysis simpler, we 
express the quantization error for additions as 

Denote 

(33) 

From (l), the square of the quantized content of the 
boundary cell is 

i 2 ( k  + I )  = e ( e ( i 2 i 2 ( k ) ) +  e p 2 ( k ) ) )  

Analogous to Section 111, we can further obtain 

lim,,,Ec'(k)=hY and l i m , , , E s ' ( k ) = Q ( m ) .  

from (15): 
Now consider the quantized content of the internal cell 

I;,,( k + 1)l 

= lQ(Q(S(k)f(k))+ Q ( E ( k ) i i ( k ) ) l  

= i = O  Q ( P l X ( k - i ) i ( k - i ) l n c ' ( k - j )  j = O  + a k + l  

< K;mlXm,xl 

1 k i - 1  

k i - 1  

>IS( k - i)l n .'( k - j )  (40) 

where KgaX results from quantization error that includes 
Sk+l. From Section IV, (39), and (401, the quantized 
steady-state dynamic range of the internal cell is bounded 

i = O  j = O  

by 

k 
= Q ( h Y 2 ' i 2 ( k - i ) ) + S k + , .  (34) The output of the mth row is bounded, under the quanti- 

i = O  zation effect, by 

The quantization operator Q is a bounded operator such lim ~ ; ~ ~ ( k ) l <  ~ 4 ~ ~ ( 2 i ) ~ - ' &  ( 42) 

lim l i i j ( k ) l  < ~ ; , , ( h Y ) ~ - l &  (43) 

that lQ(x>l< K lx l  for all x and some K [131, (34) can be k -10 

bounded by for the highly fluctuating input and 

l P ( k  +1)1< K"lPX2(0) I+ Kll"k-"X*(l) l+ . . * 
k + a  

+ Kk\X'(k)l+ 6kfI for smooth input. 

the residual can be obtained as 
From these results, the quantized asymptotic value of 

(35) 
where X,,, is the maximum quantized value of sequence 

limit on both sides, and it becomes 

< K,,; i i a x (  1 + Ay2 + * . . + i2k) 

lim I C ( ~ ) I  G ~ ; ~ ~ ( 2 i ) ' - ' % .  (44) X. The asymptotic behavior can be obtained by taking the k - . m  

Thus, if A < 1 and the input data are bounded, the QRD 
RLS systolic array constitutes a BIBO stable system un- 1 

lim If2( k ) l  < (36) der the quantization effect. 
k +cc 1-A2'  

Therefore, the quantized content is given by VI. FINITE WORDLENGTH EFFECTS OF 

FAULT-TOLERANT CAPABILITY 
In this section, we discuss the finite-length effects of 

the fault-tolerant capability. The first problem is that of 
missing error detection that results from the cumulative 
multiplications of the cosine value with a small error. 
Since each Ic(k)l< 1, the error will then be decreasing 
with time. With a finite-precision implementation, this 
may result in a failure of error detection. The minimum 
wordlength to circumvent this problem is then derived. 

lim l i ( k ) l =  lim ~(4%) 
k + m  k + m  

l'maxl 
< KhaX- 4~ A - K h a X a .  (37) 

With the same arguments as in Section 111, we then have 

(38) -1  lim -- 
k + m  i ( k  + I )  

1 - A  

r ' ( k )  

The second problem is called the false alarm. With the 
if i is close to 1.  he quantized steady-state value of quantization effects, the system without fault may pro- 

duce quantization errors to cause a false alarm. A thresh- 
cosine is 

i i ( k )  " 
lim . ' (k+1)= lim -- - A  

and the quantized steady-state value of sine is 

old device is then introduced to circumvent this problem. 

6.1. Missing Error Detection 

It is shown in Fig. 2 that the input to each column of 
the triangular QRD array is denoted as g( j>,  where j is 
the corresponding column, and - y is the input to the RA 

(39) k - m  k + c =  ? ( k + 1 )  

lim ~ ( k  + I >  = ~ ( v 5 - Z ) .  
k -+x 

~ r -  1- - - 
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and yo  is the artificial desired response to the EDA. By 
missiGg error detection, we mean that a small error gener- 
ated by a faulty processing cell is not detected due to the 
finite-precision computation. Assume a fault occurs in an 
internal cell PE,,, i # j ,  at a faulty moment. The output of 
this faulty cell is thus erroneous and can be described by 
x : , ~  = x , , ~  + 6, where xDut is the fault-free output and 6 
is the error generated by the fault. The error propagation 
path can be described by 

PE,, + + . . ' + PE,, 

and then PE,,, k > j ,  1 > j are all contaminated [15]. 
From the operations executed by the internal cell, the 
error is modified to c i + 1 6  by PE(,+l ) j  and the cumulative 
modifications of the error before reaching the boundary 
cell, PEjj, is 

j - 1  

(45) 

where ci is the cosine parameter generated by the bound- 
ary cell PE,,. Let c; and s; denote the erroneous c, and 
si, respectively. The c,! and s,! are then given by 

Ar Xin + c !  = s! = 

\/A2r2 + (xi" + v), ' \/A2rZ +(x i"  + v )2  
(46) 

In this case, s,! is no longer proportional to xi", g(j)  
will not be zeroed by the j th cell of the EDA [151. From 
the principle of cancellation that will be considered later, 
we know that for the artificial desired response, the data 
coming from the ith column were canceled by the ith cell 
of the EDA. Therefore, we can only focus on the gener- 
ated error that will not be cancelled and eventually be 
propagated to other part of the array. The size of the 
error generated by the j th  cell of the EDA can then be 
derived as 

A r m  

where r '= 4- is the new updated and uncon- 
taminated value of the content of PE,,. When 77, propa- 
gates down to the output of the EDA, vi is influenced by 
the contaminated cosines c' of each following row. The 
error output at e, due to an error 6 generated at PEij is 
then given by 

P P 

e : ( i , j ) = - y  n c ~ v , = - y  nc~v 
m = j + l  m = j  

j - 1  P 

k = i + l  m = j  
= - y  n Ck'  n , c h 6  (48) 

where y = I~~I:c,I~,P=~cL [211. It becomes 
i i-1 P 

e: ( i , j )  = - nc, n c: n c t6 .  (49) 

Next, assume a fault occurs in a boundary cell, PEjj, 
I = 1  k = i + l  m = j  

1 < j < p ,  at the faulty moment. Both erroneous c,! and s; 
produced by PEjj can be written by 

where 6, and 6, represent errors in the numerators while 
r: represents the erroneous content of the denominators 
of cj and s,. The error produced by the j th cell of the 
EDA is then given by 

and the output error at e, due to a faulty boundary cell is 
given by 

I P 

= nc,. n c:.ql. ( 52) 
I = 1  m = j + l  

From (49) and (52), we can see that e: # 0, under infinite 
precision condition, if a fault occurs in the system, except 
when u,,6, = ArS, in (51). However, this is unlikely to 
happen. From [15] and [21], we have 0 < c, G 1. The error 
may not be detected after multiple multiplications of c, in 
(49) and (52) under finite-precision implementation. It is 
obvious there is no such problem when 6 is large. Since r 
in (46) tends to be a large number asymptotically, it is 
reasonable to assume the error size 6 generated by a fault 
is much smaller than r when 6 is small. Under this 
circumstance, from (461, we have c,! = cl. In the quasi- 
steady-state, the asymptotic behavior of erroneous cosine 
is c,' = c, = A .  From (49) and (52), the error output e: due 
to an error size 6 is then approximated by 

e:( i ,  j )  E - A 2 p - ' S  ( 5 3 )  

e,"( j ,  j )  A2P-J  77/ (54) 

for a faulty internal cell and 

for a faulty boundary cell. Let B, be the wordlength of 
each memory and register of fixed point arithmetics. That 
is, each wordlength is of BA bits and let A = min(6,v1). 
To ensure the detection of error size A ,  we need 

A ~ P  -'A A,PA a 2 - B ~ .  ( 5 5 )  

( 5 6 )  

Therefore, the wordlength should be at least 

BA > / - 2 p  log, A - log, A 1 
such that the small error size A can be detected. The 
second term of the right-hand size is obvious since the 
error size A must be detected; the first term is to account 
for the effects that the error propagates through the array 
of LS order p with forgetting factor A .  

We can verify the above result by the following exam- 
ple. A systolic array with order p = 3, A = 0.999 has an 
error 6 = 3.10-4 occurring at the internal cell PE,, at 
time 25. Due to the asymptotic behavior of the cosine 
parameters, 77, can be approximated as v1 = A-S = 2.997. 
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Fig. 7. The error size 6 = 3.10-4  occurring at PE,* cannot be de- 
tected for BA = 5.  

lop4 and A = q j .  From (561, we have BA>12.  Fig. 6 
shows that the small error size can be detected for BA = 12 
at time 30. However, as shown in Fig. 7 for a smaller 
wordlength of BA = 5 ,  the error size that can be seen at 
the output becomes very small and is buried in the noise 
resulting from the quantization effects of small word- 
length. The detector not only misses the error, but also 
causes the false alarm phenomenon that will be consid- 
ered in the next subsection. 

6.2. False Alarm 

Due to the finite-precision implementation, the resid- 
ual output of the EDA will not actual be zero even if 
there is no fault in the system. We call this effect a false 
alarm. Fig. 8 shows the false alarm problem for the above 
example with wordlength of 9 bits. Here, we are going to 
model and quantitatively describe the false alarm effect 
and introduce a threshold device to overcome this prob- 
lem. 

6.2.1. Cancellation Principle: Suppose now we have a 
fault-tolerant QRD RLS array of order p = 3. Denote the 
first and second rows of data input as (x l ,  x2,  x 3 ,  x1  + x 2  
+ x , )  and ( x i ,  x ; ,  x ; ,  x ;  + x ;  + x;), respectively, where 
the checksums x1 + x 2  + x 3  and x ;  + x ;  + x ;  are inputs 
to the EDA. After both data pass through the array, 

according to the operations of the processing cells, the 
contents of the cells of the first row are 

r l l  = Jm 
r12 = sx; + cx2 
r13 = sx; + cx3 

r14 = s( x i  + x i  + x ; )  + c( x1 + x 2  + x 3 )  (57) 

where c = x1 / r l l  and s = x ; / r l l  are the rotation pa- 
rameters generated by the boundary cell and rij is the 
content of PEij. The output of the internal cells are 

Z12 = cx; - sx2 
Z13 = cx; - sx3 

z14 = C (  xi + x i  + xi) - S( x1 + x2 + ~ 3 ) .  ( 5 8 )  

Since sx;+cx,  = J.:..;' and cx;-sx,=O, we have 
r14 = rl l  + rI2 + r13 and z14 = zI2 + z13. That is, both the 
contents and the outputs of the first row still meet the 
checksum. The outputs of the first cell of EDA, z14, can 
be rewritten as 

Z14 = c( x ;  + x i )  - s( x2 + x 3 ) .  (59) 
We can see that the data from the first column got 
cancelled out by the first cell of the EDA. Since the 
outputs meet the checksum, with, the same principle, the 
data from the second column will get cancelled out by the 
second cell of the EDA. Thus this observation can be 
generalized and stated as below: 

Cancellation Principle: With the checksum encoding 
data inputted to EDA, the data from the ith column was 

U 
For a finite-precision implementation, due to the 

roundoff error, the data from the ith column will not be 
completely cancelled by the ith cell of the EDA. This 
effect results in the false alarm problem. 

6.2.2. Finite-Precision Floating Point Error Model: A 
floating point number f can be represented by [7] 

cancelled by the ith cell of the EDA. 

f =  f .did, . .  . d ,  X p", 
O < d i < p ,  dl#O, L < e < U  (60) 

where p is the base, t is the precision, and [ L ,  U ]  is the 
exponent range. The floating point operator fl can be 
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TABLE IV 
COMPARISONS OF THE THRESHOLDS AND THE MAXIMUM VALUES OF e,, 

Wordlength 6 7 9 12 16 20 24 

Max eo 2.114e-3 2.12e-4 3.41e-5 2.011~-9 6.74~-13 5.696e-13 4.5856e-13 
Threshold 9.375e-1 4 .69~-1  1.172e-1 1.465-2 9.le-4 5.722e-5 3.58e-6 

shown to satisfy [71 

2 = P ( x )  = x ( l +  E )  

f l ( a  op b ) = ( a  op b ) ( l + ~ ) ,  I E I G U  (61) 

where U is the unit roundoff defined by 

U = (1/2)/3'-' for rounded arithmetics 

and op denotes any of the four arithmetic operations +, 
-, X,and  e. 

6.2.3. RoundoffAnaZysis: For a QRD RLS systolic array 
of order p with finite-precision floating point arithmetics, 
denote the first row of input vector as (2,, 2,; * ., P,, 
Cf=lPi + E ~ ) ,  where Pi = f l ( x i > ,  ep  = E ( E F = ~ ? ~ ) ,  and I E I  < U 
is a constant,2 and the second row of input vector as 
(?;, 2;; . -, P;,Cf=,?; + cp). The content of the first 
boundary cell is given by 

i l l  = f l ( d m )  = d m ( 1 +  E )  (62) 

and the rotation parameters are c  ̂ = j7(2, /ill) and s  ̂ = 

j7(2; /F l l ) .  The contents of the internal cells can then be 
obtained as 

Fl, = j7( fl(i2;) + JZ(22,)) 

= [ s^?j(l+ €)  + 2P;(l+ €)  

= ( 1  + 2E) (3; + 8;), 

and the content of the first cell of the 

+ 6 ~ , .  (64) 
i = l  i = l  

From (62), (63), and (64), the mismatched T~ resulting 
from the finite precision computation of the first row is 
given by 

and it can be bounded by 

1 ~ ~ 1  < ~PIEX,,,I+ I ~ E ~ , , , J + ~ ( P  - 1 ) l ~ ~ ~ ~ ~ l  

= ( l o p  -2)l€xm,xl < 10PlExm,,l. (66) 
For the second row, with the same principle, the mis- 
match is bounded by 1O(p - l)lexmaxl. The total mismatch 

2To simplify the notation, we do not give indexes to different e's. 

from the whole array is given by 
P - 1  

171 < lo( p - i ) l E X m a u l  = 5P( P + 1)IExmaxl. (67) 
i = O  

The possible mismatch is thus bounded by 

171 < 5p(  p + l)l€xmaxl = 17lmax. (68) 

This bound can be interpreted as: for each row of input, 
each processing cell contributes about I E X , , , ~  amount of 
roundoff error. Since there are about p ( p  + 1) processing 
cells, the total possible roundoff error is then p ( p  + 

In order to prevent a false alarm, a threshold device is 
needed at the output of e, and the threshold, th, has to 
be greater or equal to l7Imax. Suppose p = 2, t = 16, then 
U = 2-16. Given scaled input data such that lxmax1 = 1, the 
threshold of a QRD RLS array of order p = 20 must 
satisfy 

01 EX,,,  I. 

th G 5.20.21.2-16 = 0.032. (69) 

Table IV shows the comparisons of the maximum values 
of the output residuals e, obtained over a period of 
n = lo4 and 1 ~ 1 , ~ ~  derived from (68) for different 
wordlength. We can see that the estimated 1 ~ 1 , ~  bound 
can prevent the false alarm problem. Since the threshold 
bound is obtained from conservative derivations, it can 
indeed provide a false alarm free output. However, as 
shown in Table IV, the estimated threshold bound may be 
much greater than that of the actual maximum of the 
residuals. In practice, we may relax the estimated thresh- 
old bound from information obtained in previous data to 
ensure the threshold will not be too high. A higher than 
necessary threshold may result in a small error size that's 
not detectable. 

6.3, Overall Wordlength Consideration 

In order to prevent missing error detection, we want 
the error size A = min(6,q;) to be as small as possible. 
While we want to prevent a false alarm, we also want to 
choose a threshold high enough for a false-alarm-free 
condition. Both situations cannot be satisfied simultane- 
ously since they are in conflict and some trade-off must 
be made. 

To determine the error size A,  from (531, (54), and (55) ,  
we need the threshold th<h2,A.  Otherwise, the propa- 
gated error will be eventually truncated to zero by the 
threshold device. Accordingly, 

BA< [-lOg,th] ( 70) 

since a smaller error size is undetectable. From (561, a 
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criterion to choose BA is then given by [4] J. M. Cioffi, “The fast adaptive ROTOR’S RLS algorithm,” IEEE 
Trans. Acoust., Speech, Signal Processing, pp. 631-653, Apr. 1990. 

[5] G. D. de Villiers, “A Gentleman-Kung architecture for finding the 
singular value of a matrix,” in Proc. Znt. Conf. Systolic Array, pp. 

1 - 2 p  log, A - log, A 1 < BA Q [ - log, th 1. (71) 
If the small error size A is chosen in a way such that 
[ - 2 p  log, A -log, A1 < [ - log, th], then we can choose 
BA = 1-2p log, A -log, A1 and the error size A is de- 
tectable. However, on the other hand, if [ - 2 p  log, A - 
log, A1 2 [-log, th1, then there is no choice but to choose 
BA = 1 - log, th1 and the minimal detectable error size 
becomes A = A-2p-th. For a threshold set at th = as 
given in (69) and an LS order p = 50 and A = 0.98, we 
have A = 7.54- lop4. However, for a smaller LS order p ,  a 
smaller error size can be detected. For example, with 
p = 20, we have A = 1.5. lop4. To prevent overflow, from 
(27), the minimum wordlength of the mth row is 

B, I (  m - 1)(  1 +log, A )  +log2 81. (72 )  
For a QRD RLS systolic array to detect small error size A 
without false alarm and overflow problems, the minimum 
wordlength of the mth row should be 

&in( m) = m a (  B,, BA). (73) 

VII. CONCLUSIONS 
We presented detailed analysis to show that the rota- 

tion parameters of the RLS algorithm based on the Givens 

545-554, Ireland, 1989. 
[6] W. M. Gentleman and H. T. Kung, ‘‘Matrix triangularization by 

systolic arrays,” in Proc. P I E ,  vol. 298, Real Time Signal Process- 
ing IV, p. 298, 1981. 

[71 G. H. Goloub and C. F. Van Loan, Matrix Computation, 2nd ed. 
Baltimore, MD: Johns Hopkins, 1989. 

[8] S. Haykin, Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice 
Hall, 1986. 

[9] S. F. Hsieh and K. Yao, “Hyperbolic Gram-Schmidt pseudo-ortho- 
gonalization with applications to sliding window RLS filtering,” 
presented at the 24th Ann. Conf. Information Science and System, 
Princeton University, Mar. 1990. 

[IO] -, “Systolic implementation of windowed recursive LS estima- 
tion,” in Proc. IEEE ISCAS, pp. 1931-1934, New Orleans, May 
1990. 

[ l l ]  J.-Y. Jou and J. A. Abraham, “Fault-tolerant matrix arithmetic and 
signal processing on highly concurrent computing structures,” Proc. 
IEEE, vol. 74, pp. 732-741, May 1986. 

[I21 S. Kalson and K. Yao, “Systolic array processing for order and time 
recursive generalized least-squares estimation,” in Proc. SHE, vol. 
564, Real Time Signal Processing VIII, pp. 28-38, 1985. 

[I31 H. h u n g  and S. Haykin, “Stability of recursive QRD LS algorithms 
using finite-precision systolic array implementation,” IEEE Trans. 
Acoust., Speech, Signal Processing, vol. 37, pp. 760-763, May 1989. 

[14] F. Ling, D. Manolakis, and J. G. Proakis, “A recursive modified 
Gram-Schmidt algorithm for least-squares estimation,” IEEE 
Trans. Acoust ., Speech, Signal Processing, vol. ASP-34, pp. 

[15] K. J. R. Liu and K. Yao, “Gracefully degradable real-time algo- 
rithm-based fault-tolerant method for QR recursive least-squares 

829-836, Aug. 1986. 

rotation method will eventually reach the quasi-steady- 
‘late if the forgetting factor is very ‘lose to ’’ With this 

the dynamic range of each processing cell can be 

systolic array,” in Systolic Array Processors, McCanny, McWhirter, 
and Swartzlander, Eds. 

[I61 C. J. Anfinson, F. T. Luk, and E. K. Torng, “A novel fault tolerant 
techniaue for recursive least squares minimization,” in Proc. SPIE, 

UK: Prentice Hall, 1989. 

derived and from this, a proper wordlength can be chosen 
to ensure correct operations of the algorithm. Our pro- 
posed solutions are simple and effective. Simulations have 
demonstrated that the wordlengths chosen by the pro- 
posed dynamic range work very well. Furthermore, we 
can demonstrate the stability of the QRD RLS algorithm 
under a finite-precision implementation with this observa- 
tion. Finally, the missing error detection and false alarm 
problems are considered based on the results obtained 
from the model. We presented a design of the wordlength 
which is overflow-free without missing error detection 
and false alarm problems. 

The results in this paper are of practical importance. 
Not only can we design a finite-precision QRD RLS 
systolic array with a minimum wordlength that ensures 
correct operations, but also provide a fault-tolerant sys- 
tem that can detect a given error size and is false-alarm- 
free under the quantization effect. 
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