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Abstract: The problem of tracking a manoeuvring 
target with sequentially correlated measurement 
noise is considered in the paper. Using Singer’s 
method to model the manoeuvring target, the cor- 
related measurement noise can be decorrelated by 
reformulating the measurement equation such 
that the conventional Kalman filter can be 
directly applied in this tracking problem. An ana- 
lytical error analysis for this processing is derived. 
If some of the parameters are unknown, the con- 
ventional innovation correlation method can 
usually be employed to estimate these parameters 
adaptively. This method assumes that the mea- 
surement noise is white. If the measurement noise 
is sequentially correlated, this technique is not 
valid and the parameters can not be estimated 
with sufficient accuracy to obtain the desired 
tracking performance. By considering the effect of 
noise correlation, a modified computationally effi- 
cient method known as a multiple-level estimator 
is presented to improve the performance in esti- 
mating the unknown parameters in the presence 
of correlated measurement noise. 

1 Introduction 

In tracking airborne or missile targets using noisy radar 
data, the measurement noise is usually assumed to be 
white, and a conventional Kalman filter is frequently 
used for tracking the nonmanoeuvring target. If the 
target is manoeuvring, a situation when the target is 
suddenly accelerated by the pilot or missile guidance 
program, the conventional Kalman filter should be modi- 
fied to maintain the tracking performance. There have 
been several approaches to this modification so far [l-61. 
In this paper, Singer’s method [3] is employed to treat 
the manoeuvring problem. The method is simple and has 
a moderate tracking performance if the measurement 
noise is white. 

In practice, the measurement noise is sequentially cor- 
related, and this is often referred to as coloured noise, 
within a bandwidth of typically a few hertz [7, 81. When 
the measurement frequency is much lower than the error 
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bandwidth, the successive errors are essentially uncor- 
related and can be treated as white noise. This is often 
the case in the classical track-while-scan system. 
However, in many modern radar systems, the measure- 
ment frequency is usually high enough so that the corre- 
lation can not be ignored. Rogers [8] described the 
correlated noise as a first-order Markov process in the 
nonmanoeuvring case. By reformulating the measure- 
ment equation, the noise may be decorrelated so that the 
conventional Kalman filter can be directly applied. In 
this paper, this concept is extended to the manoeuvring 
target by using Singer’s model [3] in modelling the 
manoeuvring target. 

Usually, the modified Kalman filter works well if all 
the system parameters are known. However, often this is 
not the case, and some parameters may be unknown. 
Several adaptive filtering techniques [9-141 can be 
applied to estimate these parameters adaptively. Among 
them, the innovation correlation method [ll-141 that 
utilises the properties of the autocorrelations of the inno- 
vation to estimate the parameters is a very effective 
approach. However, this approach assumes that the mea- 
surement noise is white, in which case good performance 
may be achieved. If the measurement noise is correlated, 
the innovation correlation method should be. modified; 
otherwise, very poor results may be obtained. In this 
paper, a modified innovation correlation technique to 
estimate the unknown parameters for the manoeuvring 
target with correlated measurement noise is presented. 

2 Manoeuvring target model 

In this Section, Singer’s work in modelling the manoeu- 
vring target is reviewed briefly. The target state is defined 
in the measurement vector (such as range, bearing and 
elevation in radar system) direction. Then the tracking 
filter may work separately in each direction approx- 
imately. Only single direction operation is described in 
the following. 

Let X, and W, be the target state and the process 
noise, respectively, which are defined below 

xk = [::I, 
target position at time instant k 

target acceleration at time instant k 
target velocity at time instant k 
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w, = 

- - 

"1 
w" k 

process noise in position at time instant k 
process noise in velocity at time instant k 
process noise in acceleration at time instant k 1 

(2) 
By modelling the manoeuvre as a first-order autoregress- 
ive process, the manoeuvring target dynamics can be 
derived to a standard form as follows [3] : 

(3) 
where the transition matrix I$ is given by 

x k +  1 = d x k  + Wk 

(4) 

LO o e-=' _I 
the parameters T and a are the data sampling time and 
the reciprocal of manoeuvre time constant, respectively. 

The process noise W, is a vector of zero-mean white 
noise sequence. The covariance matrix of W, is given by 

[ q l l  4 1 2  4131 (5) 

where the elements 4,j (i, j = 1, 2, 3) are functions of the 
parameters a and T ,  that can be found in Reference 3. 
The parameter cr, is the manoeuvre standard deviation. 

For the target state being defined in the measurement 
vector directions, the measurement equation would be a 
linear function given by 

where H = [l 0 01, zk and U, are the measurement data 
and the measurement noise, respectively. 

If the measurement noise U, is white, the system 
including the target dynamic eqn. 3 and the measurement 
eqn. 6 can be processed by a conventional Kalman filter. 

3 Correlated noise and decorrelation 

When the measurement frequency is high, the measure- 
ment noise is sequentially correlated significantly. 
Assume that it can be modelled as a first-order Markov 
process [SI as 

ut = + v, (7) 
where the correlation coefficient 1. = e -BT,  the parameter 
p is the correlation coefficient in the continuous form. 
The noise v k  is a zero-mean white Gaussian noise. If the 
variance of U, is r ,  then the variance of v, can be obtained 
from eqn. 7 to be ( 1  - 1')r. 

To decorrelate the correlated measurement noise U,, a 
new measurement data y, ( = z k  - l z k -  I ) ,  denoted as arti- 
ficial measurement, can be obtained 1151 as 

where 

Q = EIW, WKI = 2 a d  412 4 2 2  4 2 3  

413 4 2 3  4 3 3  

Z, = H X ,  + U, (6) 

yk  = H * X k  + U: (8) 

H* = H - i H 4 - I  
B = j.H4-l = H - H* 

U: = BW,-, + vk 

r* = E{u:u:} = BQB' + ( 1  - A2)r 
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The new measurement noise U: in eqn. 8 is white, but it is 
correlated with the process noise W,- By reformulating 
the target dynamic eqn. 3, the process noise W k - l .  By 
reformulating the target dynamic eqn. 3, the process 
noise can be made to be uncorrelated with the measure- 
ment noise [IS]. In most practical cases, this process can 
be omitted with little degradation in performance since 
the variance of the zero-mean item BW,-, in eqn. 9 is 
generally very small. Thus, only a few simple substitut- 
ions in the measurement equation are required for decor- 
relating the system. 

4 Autocorrelation of innovation 

If some of the parameters, including 1 and r ,  are 
unknown, these parameters should be estimated adap- 
tively so that the decorrelation process mentioned in the 
preceding Section can work well. Since the autocorrela- 
tions of the innovation contain much information about 
the unknown parameters, they are very popular data in 
performing this estimation. Estimating the parameters in 
this way is known as the innovation correlation method 
in Reference 10. The technique is most suitable for con- 
stant coefficient systems in steady state. 

For a system operating with a non-optimal Kalman 
gain K , ,  the gain K ,  can be computed from the following 
covariance update equations of Kalman filter: 

P ; k - l  = f jP:- l ,k- lp + Q 
K ,  = P;k-l~TIAP$k-,HT + f]- '  

P; ,  = [ I  - KkH]P;k-l 

(10) 

(1 1) 

(12) 
where P $ k - l  and P:lk are the predicted and estimated 
error covariance matrices, respectively, in the Kalman fil- 
tering procedure. The variables (or vectors, matrices) with 
bars over denote the preset, or the estimated, values used 
in the filter computation. In this paper, the parameters I$ 
and H are assumed to be known, and Q, r and 1 are 
unknown parameters. The value of the nonoptimal 
Kalman gain in steady state ( K , )  will be frequently used 
in the evaluation of the autocorrelations of the innova- 
tion. For simplicity, the notation K ,  the subscript CO is 
omitted, is used instead of K ,  in the following expres- 
sions. 

Let E ,  be the innovation process of a decorrelated 
system, where the measurement noise is decorrelated but 
some of the parameters including 1 may be preset inaccu- 
rately, and p j  ( j  = 0, 1, . . .) be the jth order autocorrela- 
tion of 6 ,  in steady state. Then E,  and p j  can be expressed 
as 

Ek = y, - HZklk - 1  (13) 

p I = E { ~ k ~ k - j } k = m  j = O , 1 ,  ... (14) 
For the case of the target model shown in eqn. 3 and the 
scalar measurement in eqns. 6 and 7, from the derivation 
in Appendixes 1 1 . 1  and 11.2, the autocorrelations p j  
( j  = 0, 1, ...) can be obtained as a linear function of 
manoeuvre variance s ( = U : )  and noise variance r (=U: )  

and a nonlinear function of noise correlation 1. 
P o  =f, ,os +f, ,o(4r  (15) 

(16) 

(17) 

f,, o = HaoHT + BQIBT + AQIBT + BQIBT 

f,, o(n) = H p O H T  + io + H P ,  + P , H T  

+ H Y J Q , B ~  - H Y ~ - ~ I $ K B Q , B ~  (19) 
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where 

Q I  = Q/s 
R = H - 2 ~ 4 - 1  
B = H - A  
Y = 4(1- KA) 
La = 1 - 2IX + X' 
I ,  = (1 - 2x1 - AI) 
P,  = - Ib(l  - I Y ) - ' + K  

P ,  = - I , K T 4 T ( I  - 1YT)-' 

ao, Bo are matrices, defined by P' = aos + Bor  and can 
be solved from the following equation: 

P = YPYT + (Q1 + 4 K B Q , B T K T d T  

- Y Q , B ~ K ~ ~ ~  - ~ K B Q ~ Y ~ ) S  

+ (Aaq5KKT+T - Y P , K T d T  - 4 K P , Y T ) r  (29) 

5 Parameter estimation 

From the statistical relationship between the autocorrela- 
tions of the innovation and the unknown parameters (1, 
s, r), these parameters can be estimated adaptively during 
the Kalman filtering process if the following time-average 
autocorrelations of the innovations are employed to 
approximate the statistical autocorrelations of the inno- 
vations 

k 

P j = ( l / N )  1 E , + ~  j = O ,  1,  ... (30) 
q = k - N + l  

estimator 

I I 

Kalman 
f i l ter  ' k l k  

a 

Ka"an '' decorrelotor 1 
f i l ter1 H,,? 

parameter 
estimalor 

f i l te r2  

b 
Fig. 1 Adaptive tracking system 
a System 1 
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b System 2 

Fig. 1 shows two adaptive tracking systems. The first 
system needs only one Kalman ficer to generate the 
innovation ck as the state estimate Xklk. The innovation 
ck is applied in the parameter estimator to estimate the 
unknown parameters. Using the new parameters 
obtained from the parameter estimator, the decorrelator 
and the Kalman filter will work more accurately. Two 
Kalman filters are employed in the second system. 
Kalman filter 1 and decorrelator 1 work with fixed 
parameters to generate the innovations for the parameter 
estimator. The parameter estimator then calculates the 
estimated parameters to update the operations of decor- 
relator 2 and Kalman filter 2 to get more accurate state 
estimates. This structure has an advantage in stationary 
noise environment owing to the fact that a large number 
of innovations can be collected to generate better auto- 
correlations and obtain more accurate parameter esti- 
mates. 

To estimate the parameters, a nonlinear programming 
problem will be encountered because the autocorrela- 
tions of the innovation are nonlinear functions of 1. If the 
zeroth to Lth order autocorrelations are computed and 
the least square criterion is used in estimating the param- 
eters, the following nonlinear programming problem 
must be solved 

Many complicated computations would be involved in 
solving this problem. Sometimes a severe numerical 
problem will make it difficult to be solved. To overcome 
these difficulties, a structure called a multiple level esti- 
mator, as shown in Fig. 2, is proposed. In this structure, 
M linear least-square estimators work in parallel. The 

square estimator 

0 

h4zwl square estimator i 
1 

squore estimator 

Fig. 2 Multiple level estimator 

parameter 1 is partitioned into M values within the 
region [0, l), and every estimator corresponds to one of 
these values. For each estimator, the parameter 1 is a 
known value (1,) such that the autocorrelations of the 
innovation are only linear functions of the parameters 
(s, r). Let 

z = p 0  . . '  PL]' (32) 

(33) 

f m ,  o f , . d 'q )  

If 1, = I ,  the following equation can be obtained from 
eqns. 32,15 and 18: 

where the error term has zero-mean because p j  = E{Pj} .  
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From eqn. 34, the least square estimates of the param- 
eters (s, r)  and an objective function can be obtained as 

(35) 

It can be seen from eqns. 35 and 34 that eqn. 35 is an 
unbiased estimate 

(i.e. E [  ;I, = [SI) if I ,  = 2 

Then the most likely set of parameters ( I ,  s, r )  can be 
obtained from the objective function in eqn. 36. Compar- 
ing values of the objective functions over all M estima- 
tors, the estimator having the least objective function is 
selected. The value of I corresponding to this estimator 
and the values of the parameters (s, r)  that output from 
this estimator will be the desired estimated parameters. 
This structure needs M linear estimators to avoid the dif- 
ficult nonlinear programming problem. The value of M is 
not necessary to be large because I is confined in a small 
region CO, 1). Section 7 will show that the system with a 
moderate value of M (e.g. 20) may have a rather good 
performance in estimating the parameters. 

6 Performance analysis 

In this Section, some numerical analysis of the tracking 
performance before and after decorrelation will be given. 
Measurement noise is white (or after perfect decorrela- 
tion process) and all the preset (or estimated) parameters 
are accurate, the Kalman gain K ,  will be (approx.) 
optimal and the estimated error covariance PB, com- 
puted from I s 1 2  will (approx.) be equal to the actual 
error covariance P,~, (=  E{(x, -, X , ~ J ( X ,  2klk)T}). 
However, when the system works with some inaccurate 
parameters or the correlated measurement noise is not 
decorrelated perfectly (i.e. I # I ) ,  P,,, will differ from 
P:,,. In Appendix 11.2, the analytical solution of PklX has 
been derived in eqn. 80 and eqns. 21-29, From these 
equations, t_he performances of the (perfectly) decocrelat- 
ed system (2  = 1.) and the undecorrelated system (A = 0) 
are demonstrated and compared below. 

Three cases with noise correlation 1, = 0.6, 0.8 and 0.9, 
corresponding to data sampling time T = 0.25, 0.1092 
and 0.0516 s, respectively, are tested. Assume that the 
following parameters in the system are fixed: 

manoeuvre time constant 

noise correlation coefficient 

actual variance of 

l / a  = 20 s 

(37) 
p = 2.0433 sK1 

r = 100' ftz measurement noise 

In Figs. 3a-c, the performances of the decorrelated and 
undecorrelated systems are evaluated when the man- 
oeuvre parameter u,,, is preset (or estimated) inaccurately. 
Assume that the preset variance of measurement noise is 
accurate (i.e. F = r = 100 ft'). The actual manoeuvre 
parameter U,,, is fixed at 100 (ft/sz), while the correspond- 
ing preset value s, used in the Kalman filter may be 
larger or smaller than U,,, . 

In the overpreset case (a,,, > U,,,), part of the measure- 
ment noise will be absorbed and considered as man- 
oeuvre in the undecorrelated system because both the 
noise and manoeuvre are sequentially correlated, but the 
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effect is much milder in the decorrelated system where the 
measurement noise has been decorrelated. Thus signifi- 
cant improvement can be expected by the decorrelation 
process, as shown in Figs. 3a-c. The advantage obtained 
from the decorrelation process increases as the parameter 
s,,, increases, and is prominent in the case with highly 
correlated measurement noise. It can also be seen from 
Figs. 3a-c that, in the undecorrelated system, the per- 
formance is velocity and acceleration estimations 
degrades very fast as a,,, increases. The performance in 
position estimation is not so sensitive to a,,, since the 
position is a double (single) integral of the acceleration 
(velocity), and the variation from the acceleration and 
velocity errors will be smoothed. Similarly to the case of 
overpresetting U,,,, the undecorrelated system with under- 
presetting U, ( = J r )  will increase the Kalman gain (see 
eqn. I l ) ,  and so most noise will be absorbed and con- 
sidered as manoeuvre. 

In the underpreset case (a,,, < U,,,), the advantage due 
to the decorrelation process decreases and the per- 
formance of the decorrelated system may be worse than 
that of the undecorrelated system in severe cases (e,,, < 
U,,,). This is because the false manoeuvre from correlated 
measurement noise is reduced and the decorrelated 
system responds more sensitively to the error caused by 
underpresetting the manoeuvre. 

Next, the degradation in the performance of parameter 
estimation is investigated when the correlation of the 
measurement noise is partially or completely ignored. 
Assuming that the time-average autocorrelations of the 
innovation are noise-free, the estimates of the parameters 
s (=U:) and r (=U,'), that are estimated in an imperfectly 
decorrelated system (1 may equal to I or not) by a linear 
least square estimator, can be computed from eqns. 15, 
18, 32, 33 and 35. Using the parameters specified in eqn. 
37, Figs. 4a and b and Fig. 5, the results as shown in Figs. 
4a and b and Fig. 5 can be obtained. 

From Figs. 4a and b, it is found that the parameter s 
will be overestimated and the parameter r will be under- 
estimated if the measurement noise is not decorrelated 
enough. These effects are more significant in the case with 
highly correlated measurement noise. When the noise 
correlation is completely ignored, an overestimate in s 
and an underestimate in r are very evident. Figs. 3a-c 
show that the over- and under-estimate will cause the 
tracking system to have very poor performance in veloc- 
ity and acceleration estimations. 

Fig. 4a shows that the estimate of the parameter s is 
very sensitive to the preset parameters S and F. It is often 
highly overestimated except where a very small S (or a 
very large F) is used. Using too small an S (or too large an 
F) in the system will have a drawback in that a very long 
period is necessary to reach steady state. On the other 
hand, the estimate of the parameter r is not sensitive to 
those preset parameters, as shown in Fig. 46. The effects 
of overestimation and underestimation can be reduced if 
the order L of the autocorrelation involving the estima- 
tion increases. But, as shown in Fig. 5, this improvement 
is still limited. 

7 Simulation results 

Some Monte Carlo simulations with 50 runs in each 
simulation are performed in this Section for further 
demonstrations. The accuracy of the parameters esti- 
mated by the multiple level estimator from noisy time- 
average autocorrelations of the innovation are checked 
first. The target is generated according to the target 
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I 120 140 160 180 200 
t I S 2  

L A - -  1 .-.L-d 12-I LO ’ 
0 20 LO 60 80 100 120 140 160 180 200 

C Um , f t  I S 2  

Fig. 3 
preset manoeuvre parameter 0, 
The presel manoeuvre parameter a, = 100 itis’, the actual noise-variance r = 100’ it’ and the preset noise-variance i = 100’ It’ 

undewrrelated + I = 0.6 a Position error 
~ dmrrelated 0 I = 0.8 b Velocity error 

Steady state performances ( R M S  error) of the decorrelated and undecorrelated systems as functions of the actual noise correlation 1 and the 

_ _ - -  

x 1 = 0.9 c Acceleration error 
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model, eqns. 3-5 and the measurement eqns. 6 and 7. 
Assume that the target is manoeuvring with om = 100 
(ft/s2) in the whole tracking period. The target data is 
measured every T = 0.1092 s (corresponding to noise 
correlation I = 0.8) and the parameters specified in eqn. 
37 and Table la  and b are used. This target is tracked 
adaptively by adaptive system 2 (Fig. lb) with a multiple 
level estimator, Fig. 2. 

800 

N 
m . 

Tables l a  and b show the performance of parameter 
estimation in this system when M (the number of 
estimators) is equal to 20 and N (the number of the inno- 
vations to be used to compute the autocorrelations) is 
equal to 200 and 400, respectively. From these Tables, it 
is found that the parameters I and r can be estimated 
quite accurately in most cases. The performance of esti- 
mating s is not as good as that of estimating I and r, and 

a 

300 

b 

Fig. 4 
autocorrelation ofthe innovation: L = 2 

Estimates of square root of parameters (s, r) as functions of actual noise correlation 1 and preset parameters (1, S, F) with the order of the 

i = 0.9, T = 0.05 s 
i = 0.8, r = 0.1092 s 

x 3 = 12n2 ( f t / ~ ~ ) ~ ,  i = 80’ i t ’  
0 
+ s = 80’ (ft/s2)2. i = 1202 i t *  
s = 1 0 0 2  (ft/S2)2, I = 1 0 0 2  fP, L = 2 

-~ 
~~~~ 

A = 0.6, T = 0.25 s 

S = 100’ (ii/s’]’, i = 100’ fi2 

n Estimate of J s  
b Estimate of J r  
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it is worse when the preset parameter S (or F) is large (or 
small). Using a small S (or a large F) may result in a more 
accurate estimation for s and will degrade the per- 
formances of I and r, slightly. However, a very small S (or 
a very large ?) will make the estimation for I and R very 
difficult since it needs a long time to reach steady state. 
The estimation accuracy can be enhanced if we increase 
the values of L and N. 

It can also be seen from these Tables that in estimat- 
ing the parameters, the system performing the decorrela- 
tion process before parameter estimation (I = 0.8) does 
not offer an obvious advantage over the system without 
the decorrelation process (I = 0). Thus, decorrelator 1 in 
adaptive system 2 can be omitted. The special case with 
1 = 1 = 0.8, s = s = 1 0 0 ~  (ft/s2)2, F = r = 100’ (ft’), will 
have good estimates for I and r. The estimate for s is not 

Table 1 : Inaccuracy ( R M S  error) of the parameters estimated 
by the multiple level estimator for different preset parameters 
(1. S. i. L )  
The number of estimators is M = 20 and the number of the innovations to be 
used to compute the autocorrelations is N.  In Table la, N = 200, and in 
Table 16, N =400. 

(a) 

I 

284 

0.0 0.8 

errors 
~ ~ ~ 

L JCS) M hJW AJ(r) hJW 
3 2 0.2503 111.2668 33.3363 0.2535 166.1640 41.7025 

5 0.1225 83.4079 35.2699 0.1 765 144.3708 40.3405 
30 0.0858 37.6905 53.8022 0.1 542 78.1 198 50.6745 

100 0.0905 19.0795 83.3192 0.1429 42.1443 91.6577 
300 0.1047 37.1925 190.9192 0.1448 34.6672 219.0691 

1000 0.1 195 69.8353 466.591 1 0.1 544 68.3530 593.1 141 

6 2 0.2954 91.2484 38.1151 0.2707 165.3239 41.4192 
5 0.1 081 62.4267 33.2368 0.1 535 130.0967 39.5385 

30 0.0758 27.9381 52.7926 0.1 153 86.3603 46.0665 
100 0.0800 18.2348 84.5359 0.0966 32.4786 77.1 396 
300 0.0947 40.1 728 162.8400 0.0987 42.3866 132.8785 

1000 0.1064 63.4095 386.6643 0.1 132 77.4166 312.8109 

10 2 0.3334 79.6061 37.8439 0.2972 172.3286 41.4214 
5 0.0944 31.5446 33.5838 0.1492 106.0950 38.9790 

30 0.0817 22.6408 44.9822 0.0869 52.0274 37.5330 
100 0.0804 19.0549 80.3623 0.0773 22.9732 60.91 35 
300 0.0920 29.0784 137.4935 0.0853 29.4031 108.1 11 7 

1000 0.1 033 62.9533 278.51 01 0.1 009 72.1 496 248.4385 

A=0.8.s = loo2, r =  loo2, i= loo2, M =20, N =200;s  is in ( f t / ~ ’ ) ~  andr in 
f t 2  

0.0 0.8 

errors 

3 2 0.1869 48.3244 28.3600 0.2147 158.8280 32.3238 
5 0.0728 26.51 29 24.0972 0.1 695 143.2868 31.4085 

30 0.0595 16.4608 41.1434 0.1474 56.3109 50.6722 
100 0.0567 11.8626 73.4693 0.1297 23.0243 88.7624 
300 0.0641 12.8652 170.1 908 0.1 304 21.9253 21 3.6532 

1000 0.0735 15.6680 444.5929 0.1 374 24.241 9 581.0601 

6 2 0.2395 
5 0.0713 

30 0.0584 
100 0.0578 
300 0.0642 

1000 0.0772 

10 2 0.2674 
5 0.0756 

30 0.0539 
100 0.0531 
300 0.0587 

1000 0.0757 

50.2461 
16.9940 
13.6861 
10.7487 
11.6287 
18.6386 

56.1 126 
16.8239 
12.7899 
11.5229 
12.1 663 
24.3937 

28.1 586 
22.81 86 
39.81 19 
70.5894 

145.2246 
329.8669 

28.3105 
22.8482 
30.7396 
68.7874 

11 9.3452 
290.9872 

0.1 979 
0.0852 
0.0773 
0.0593 
0.0573 
0.0661 

0.2242 
0.1015 
0.0608 
0.0537 
0.0533 
0.0678 

11 7.2941 
54.3718 
32.1 688 
15.81 26 
13,2012 
18.5228 

11 8.1 059 
53.01 06 
18.2561 
13.4453 
12.5351 
23.1 329 

31.8559 
26.2717 
34.6705 
67.0567 

11 5.4844 
274.2830 

31.9460 
29.1 954 
29.1 954 
57.0401 
93.9162 

21 4.7093 
~ 

A =0.8, s = 1002, r =  loo2, i=  loo2, M=20.  N =400, s is In (ft/s2)’ and r 
in ft2 
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good in this case, though it is the best condition for 
adaptive system 1 in steady state. When a system is 

600 . 

- L O O -  

measurement noise can be decorrelated by reformulating 
the measurement equation so that the conventional 

O---L _--Lp-- i 

0 10 20 30 LO 50 60 
L 

Fig. 5 
The actual noise correlation i = 0.8 and the preset noise correlation 2 = 0. 

Estimates ofsquare root ojparameters (s, r )  as Junctions oJorder L ofthe autocorrelation uJthe innovation and preset parameters 6, i) 

~ \ 1  
* 
+ 
0 

s = Iw(ftisy, I = loo’ fl‘ 

V I  
T = 200’ ( f t i ~ ~ ) ~ ,  i = 100‘ ft‘ 
5 = 100’ (ft/s2j2, i = loo‘ ftz 
5 = SO2 (ft/s*)’. i = lo02 ft2 
i = 202 ( f l / s y ,  i = loo* ft2, x 

I = 0.8, i = 0 

working on these parameters, a very small value off,, 
relative to f,, is usually obtained, where f,. and f,. are 
the coefficients of s and r ,  respectively, in eqns. 15 and 18. 
Thus, the estimation for s will be very sensitive to the 
variation of the noisy autocorrelation p j .  Better per- 
formance can be obtained from adaptive system 2 with 
properly preset parameters (a small S or a large F). 

In the last simulation the performance of target state 
estimation in the adaptive systems, with the con- 
sideration of correlation in the measurement noise, is 
illustrated. The target is generated according to eqns. 3-7 
in manoeuvring state with U, = 100 (ft/s2) in the whole 
tracking period. Some of the parameters are specified in 
eqn. 37 and the target is measured every T = 0.1092 s 
(corresponding to noise correlation I = 0.8). The system 
considering the correlation works under the condition 
(2, S, F, L, M )  = (0, 30’ (ftis’)’, 100’ (ft’), 10, 20),_while the 
system ignoring the correlation works with (A, S, F, L, 
M )  = (0, 100’ (ftis’)’, 100’ (ft’). IO, I). Figs. 6a-e are the 
performances obtained in this simulation. It can be seen 
from these figures that the performances, especially in 
velocity and acceleration estimations, of the system con- 
sidering the correlation is much better than those of the 
system ignoring the correlation. In Figs. 6a-e, the 
improvements in position, velocity and acceleration esti- 
mations are about 10,40 and 47%, respectively. 

8 Conclusion 

We have considered the tracking problem of manoeuv- 
ring target with correlated measurement noise, and corre- 
lation phenomenon can not be ignored when the radar 
measurement frequency is high enough. Using Singer’s 
method to model the manoeuvring target, the correlated 
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Kalman filter can be directly applied in this tracking 
problem. An analytical error analysis for this processing 
is derived in this paper. 

If some of the parameters, including the parameters of 
noise correlation, are unknown, these parameters should 
be estimated adaptively so that the decorrelation process 
can work well. The conventional innovation correlation 
method, that utilises the statistical relationship between 
the autocorrelations of the innovation and the unknown 
parameters, can be employed to estimate these param- 
eters from the time-average autocorrelations of the inno- 
vation. This approach assumes that the measurement 
noise is white, in which case good performance may be 
achieved. However, if the measurement noise is corre- 
lated, this technique is not valid and the parameters can 
not be estimated with sufficient accuracy to obtain the 
desired tracking performance. 

By considering the effect of noise correlation, the 
relationship between the autocorrelations of the innova- 
tion and the parameters is rederived and a modified inno- 
vation correlation method known as the multiple level 
method is presented. In this method, several linear esti- 
mators are employed in parallel. It is found from the 
computer simulations that a moderate number (e.g. 20) of 
linear estimators may be enough to provide good per- 
formance in estimating the unknown parameters in the 
presence of correlated measurement noise. This technique 
and the analytical error analysis are the main contribu- 
tion of this paper. 
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11 Appendixes 

1 1.1 Derivation of eqns. 15-20 
Let I, I ,  8, and 7(?) denote the true noise correlation, the 
preset noise correlation, the residue measurement noise 
and the preset variance of the measurement noise after 
(or before) decorrelation, respectively. Then, from eqns. 
7-9 : 

y ,  = z, - IZ,-l 

= Rx,  + 8, 

R = H - XH4-l 

B = H - H  

r = B Q B ~  + (1 - XZ)? 
8, = Uk - + SW,-, 
U, = IU,-,  + v, (44) 

The preset matrices F and R will be used in eqns. 10-12 
to compute the Kalman gain K ,  while the true noises E,, 
ut and the matrix H will be used in error analysis. 

Next, let w,,, and z,,,_, denote the estimated state 
error and the predicted state error, respectively. Then, 

‘ k l k  = x k  - ‘ k l k  

= x k  - [‘klk-1 + K k ( y k  - R’kjk-l)l 

= ( x k  - ‘ k l k -  I )  

- K,[(Ax, + 8,) - R’k1,- 11 

= (I - Kk R)Wkl,- - K ,  8, (45) 
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w k l k - l  = x k  - x k I k - l  

=(4Xk-l f W k - l ) - 4 2 k - l l k - l  

= 4 8 k - l l k - l  + w-1 

= 4(1- Kk-lR)zk-ll,-Z 
-4Kk-18k-t + Wk-1 (46) 

In the steady state, K ,  = K ,  = K. Let Y = 4(I - K R ) ,  
then 

w k l k - 1  = T z , - l ) k - z  +(Wk-1-4K8,-1) 

.- 
= YJxk- j l , - j - l  + 2 Yk-q 

q = k - j + l  

x (Wq-l - 4K8q-l) j = 1,2, .  . . (47) 

From eqns. 4 3 4 7  and the facts that (i) the process {Wk} 
and {v,} are white and are uncorrelated to each other, 
and that (ii) a white and posterior noise will not affect the 
prior state error, the following results can be obtained in 
steady state (k  = CO, see the proof in Appendix 11.2). 

(48) 

(50) 

(a) E{8,irk} = I , r  + ( B Q ~ B ~ ) ~  

(b) E { 1 3 ~ 8 , - ~ } = I j - ’ & r  j =  1,2, ... (49) 

E { z k l k - l i r k }  = P a r  + (QlBTls  

(d )  E { w k l k - 1 8 k - j }  

= Y j [ P , r  + (QtBT)s] 

- (Ij-’I + Ljj3Y + . . .  + Y j - 2 ) 4 K ( I , r )  

- Yj- ’#K[I , , r  + (BQIBT)s] 

j =  1,2, ... (51) 

(e) E { h z & i }  = Pbr + (BQ1)s (52) 

(f) = I jPbr  j = 1, 2, ... (53) 

(9) E { X , ~ , - ~ Z ; ~ - ~ }  = P‘ = aos +Bar (54) 

where a, and Bo are matrices, and can be solved from 

P‘ = YP‘Y + ( ~ K B Q ~ B ~ K ~ ~ ~  

+ Q1 - YQlBTKT4T - 4KBQ1YT)s 
+ ( ~ K I , K ~ @  - Y Y P , K ~ ~ ~  - ~ K P , Y ~ ) ~  (55) 

(h)  E { z k l k z & }  

= f k l k  

= (I - KH)P‘(I - K m r  

+ K [ I , r  + (BQIBT)s]K’ 

- (I - K R ) [ P o r  + QIBrs]K’ 

- K [ P , r  + BQls](I - KR)T (56) 

where Ql, I o ,  I,, P , ,  P ,  are defined in eqn. 21 and eqns. 
25-38, respectively. 

Since 

(57) 

the autocorrelations of the innovation can be derived 
from eqns. 43, 44 and 47-55 as follows (note: the sub- 
script ‘k = CO’ is omitted in the following equations for 
convenience) : 

- *  - -  
&k = yk - HXk1,- 1 = H X k l k -  I + 8, 

P O  = E { E k  

= (al) + (a2) + (a3) + (a4) (58) 
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(al) = A E { W ~ ~ ~ - ~ W $ ~ ~ ~ } R ~  

(ct2) = E{; ,  a,} 

(a3) = R E { W ~ ~ ~ - , C ~ }  

= (Ra, RT)s + (FIBo HT)r 

= ( B Q ~ B ~ ) ~  + I , r  

= ( B Q ~ B ~ ) s  + (Hp,)r 

(a4) = E(c,Z& l}HT 
= (BQ~RT)s + (PbRT)r 

and 

p j  = E { E k E k - j }  

= (81) + (82) + (83) + (84) j = 1,2, 
(81) = RE{Wklk-  lW:-jlk-j- ,}RT 

t.. 

then, eqns. 15-17 and 18-20 can be obtained from eqns. 
58-62 and 63-67, respectively. 

11.2 Proof of eqns. 48-56 in Appendix 1 1 . I  
Eqns. 48 and 49 can be proved easily from eqns. 43, 44, 
25 and 26. To prove eqns. 50,52 and 54-56, let 

'a, k = E { W k I k -  l C k }  

and 

p#. k = x z k -  l}  

From eqns. 45,46 and 48, and the fact that the white and 
posterior noise Wk- ,  will not affect the prior state error 
W k - i l k - z ,  then 

'klk-1 = E { x k l k - l W $ k - l }  

= 4 ( I -  K,-1R)Pk-1Ik-2(1- Kk-1R)T4T 

+ 4 K k - i [ i a r  + (BQiBT)slK-i4T + Qis 
- 6(1 - Kk - 1 R ) P ,  - 1KC 1 4T 
- 4Kk-1P#,k-1(I - Kk-1RITdT (68) 
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pklk = E { W k I k W $ k )  

= ( I  - Kk H)P,lk- 1(1 - K ,  H)' 
+ Kk[& r + (BQIBr)sIKT 
- ( I  - KkH)P, , , ,K:  - KkP#,k(I  - KkA)= (69) 

Pgl,k = E { U ~ - , X $ ~ - ~ ~  Then, from eqns. 4 3 4 6  and the 
fact that the white azd posterior noise vk will not affect 
the prior state error X k l k -  

TO Solve pa,k End P k ,  k t  P a , , ,  = E { T k l k - l U k - i }  and 

pa. k = (1 - X P a l .  k + (Q1BT)' 
p#, k = ( A  - l ) P ~ l .  k + (BQl)' 

(70) 
(71) 

- (1 - AX)4Kk_ l r  (72) 

- (1 - AX)Kl-14Tr (73) 

Pal, = -(1 - AX)(I - A Y ) - ' d K r  (74) 
Ppl, = -(1 - IX)KT4'(I - AYr)-'r (75) 

p a l ,  k = - K k - l R ) P # l .  k -  1 

pg1.k = Ap#l,k-l(I - Kt-lB)Td'T 

In steady state 

P=, = - ( A  - x)(I + IX)(I - A ' Y - ' 4 K r  

= P ,  r + (QIBT)s 
= -(A - 1x1 - IX)K'I$~(I - IY' ) - l r  

+ (QiB'b 
(76) 

P#, 
+ (BQi)s 

= Pb r + (BQ1)S (77) 
Let P' = P k l k -  1, k =  m ,  then from eqns. 68,76 and 77: 

+ Qls - Y [ P , r  + (Q1BT)s]KT4T 

P' = YPYT + + K [ I , r  + (BQ1BT)s]KT4' 

- d K [ P b r  + (BQi)sl'UT (78) 
By some simple algebra manipulations eqn. 78 can be 
rewritten as the following form to obtain a, and Bo: 

and from eqns. 69,76 and 77: 
P' = a, s + Bo r (79) 

Pklk, k =  = ( I  - KH)P'(I - K H ) T  
+ K[A,r + (BQIBT)s]KT 
- ( I  - K R ) [ P , r  + QIBTs]KT 
- K [ P b r  + BQls](I - KR)= (80) 

Eqns. 53 and 51 can be proved from eqns. 43, 44, 47, 75 
and 48-50 as follows: 

' { ' k ' l -  j l k - j -  l } , k = m  

= E{(vk - Xu,-, + B W k - l ) ~ ~ - j l k - j - l } , k = m  
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