
Chapter 1  

Introduction 

1.1 Background 

The rapid development in information technology has facilitated the worldwide access to 

information. Accordingly, a well-designed architecture is required to effectively and 

efficiently coordinate the dissemination of a large amount of information over the Internet. 

Having received considerable attention, a digital library (DL) represents an Internet-based 

architecture capable of accessing information from anywhere. From the perspective of library 

users, DL is anticipated to provide a transparent access, which means DL search must be 

semantic to heterogeneous data and unaware for the distribution of DL. Hence, recent 

research of DL focuses on an integration architecture to access distributed and heterogeneous 

materials.  

The main issue of DL integration is called interoperability. Research in DL 

interoperability relies on a novel architecture to solve the technical, semantic and legal aspects 

of interoperability [43]. Paepcke et al. categorizes the research of DL interoperability into four 

issues [50]. The first refers to the management of information. Early federated systems 

created global modeling (such as Dublin Core) to simplify the integration of DL. Then the 

research focused on creating mediation when integrating content. The second refers to the 

presentation to users. Enabling technology was on distributed display, like bitmap, 

postscript…etc. Hereafter, networked documents and distributed animation drew the attention 

to present information in different environment. The third refers to communication among 

parts of the overall system. This research aimed to the component interconnects and currently 

to the naming knowledge interchange. The fourth is for the operation and control of a 
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system’s action. The present remote computation technology, like CORBA, DCOM and Java, 

are used to improve the coordination among independently executing components. 

Conclusively, as the long-term goal of interoperability, DL would operate by allowing 

independent model, formal and language to declare their function arbitrarily and engage in 

peer-to-peer interaction. 

From the perspective of autonomy, the two sides in the spectrum of DL interoperability 

are centralized and decentralized. A centralized DL architecture reconciles DL by concordant 

middleware. This architecture leaves interoperability machinery outside independent DL but 

requires large amount mediation to transform different DL information into a canonical model. 

In contrast to centralization, a decentralized architecture interacts DL with a language which 

communicates the semantics, structure and operations of all materials among different DL 

without prior arrangement and mediators. Apparently, it appears that these two kinds of 

integration architecture come into one common factor – both of them use metadata to 

interoperate heterogeneity. In a centralized architecture, metadata are used for information 

description and as a basic unit to translate different materials. In a decentralized architecture, 

metadata work as a communication basis among different DL.  

General speaking, metadata are treated as sub-ordinations of DL information and 

managed in two layers – physical object layer and metadata layer. Physical object layer 

represents real objects stored in DL and metadata layer constitutes the composition and 

semantics to represent how objects are composed in physical object layer. However, this two 

layer architecture leads DL integration into critical challenges. The first challenge is the lack 

of structure consideration in conventional representation in physical layer. The structure 

information of metadata contains implicit semantics to DL activities like data search, semantic 

inference, and is helpful to integrate data. The second challenge is distributed DL complicate 

the DL integration. This challenge occurs because the distributed metadata are inconsistent in 
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formats and semantics. To overcome these challenges, a richer data model and additional 

functions are required to represent and manage distributed metadata.  

1.2 Related work 

1.2.1 Digital library architecture 

DL integration has been investigated in much research [1, 5, 6, 9, 18, 33, 34, 36, 41, 46, 

55]. This research focuses on how varied services are integrated and how to alleviate the 

effort in DL collaboration [35]. To consider the autonomy infringement in cooperating DL, it 

falls into two types: external mediation (centralization) and specification-based interaction 

(decentralization) [50]. External mediation approach locates interoperability machinery 

outside independent DL and reconciles DL by a concordant middleware. The middleware 

(sometimes called proxy or mediator) receives native materials and translates them into 

canonical format. Research including Digital library Initiative (DLI) Phase I & II undertakes 

broad research on DL infrastructure [4, 15]. Stanford University participates in DLI I & II and 

develops a proxy-based system, called InfoBus, to extend the current internet protocols with a 

suite of higher-level information management protocols [50]. Although mediation approach is 

particularly strong and easy in supporting the criteria of autonomy, the lack of use and 

scalability makes it copious to add new components.  

Alternatively, specification-based interaction describes the language that communicates 

the semantics, structure and operations of all materials among different DL components 

without prior arrangement and mediators. For example, the Agent Communication Language 

(ACL) defined Knowledge Interchange Format (KIF), Knowledge Query and Manipulation 

Language (KQML) for interaction. Other peer-to-peer architecture also uses languages to 

communicate with each other [14, 52]. In the specification-based interaction architecture, 

much functionality required in DL is encapsulated as population of modular, goal-oriented, 
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specialized agents [13]. The Michigan University provided agent technology to construct DL 

[12, 57]. Nevertheless, specification-based solution specializes in autonomous owing to the 

separation of functionality and data, but lacking of centralized facilities complicates the 

interactive communication and thoroughly degrades the performance.  

1.2.2 Metadata model 

Metadata enhancing the power to model DL materials and provides additional semantic 

and structural annotations for original data [38]. Neuroth et al. categorizes metadata into eight 

types according to the nature of described digital objects [47]. Many researches have 

addressed the using of metadata to describe resources in DL, include Warwick Framework 

[37], Dublin Core (http://purl.oclc.org/dc/), Resource Description Framework (RDF, 

http://www.w3.org/TR/PR-rdf-schema/), and several others [5, 8, 31, 40]. The Warwick 

Framework is a conceptual model of metadata that aggregates metadata packages into 

containers and then relates these packages to each other. This framework separates the 

management and responsibility of specific metadata and allows access to various different 

sets of metadata. The container technology has influenced subsequent developments, 

including Dublin Core and RDF. Dublin Core, which defines 15 basic metadata elements, 

focuses mainly on resources for Internet-based applications. RDF provides a standard means 

of representing metadata by XML, employing statements to describe properties of and 

relationships among items on the Web. Many studies applied RDF to resource discovery [30]. 

Multimedia Description Framework (MDF) uses RDF to describe multimedia contents [21].  

The structure information of metadata is emphasized in the research of automatic 

metadata extraction. To extract metadata automatically from structured data or documents, it 

requires a complete model to describe the structure and an algorithm to extract information as 

metadata. The tag tree patterns are used to represent structure of metadata in Miyahara’s 
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approach and a data mining approach is used to extract frequent structure in web documents 

[44]. Hirokawa et al. adopts a tag sequence to describe structure of web document and 

extracts metadata by template approach [20]. Han et al. analyzes the structure of document by 

classifying the header of research papers into 15 classes [19]. Arasu et al. proposes a formal 

model to represent structure data and builds template to extract metadata [2].  

1.2.3 Metadata architecture 

Sharing metadata architecture in distributed DL drives the use of metadata to expand 

semantic relationships [7]. Open Digital Library [16], INRIA [3] and 5S Model [17] apply 

metadata to describe, derive and federate services in distributed DL. To efficiently manage 

metadata in distribution environment, considerable attention paid towards metadata 

architecture has enabled metadata management across distributed DL services [48, 49]. 

Well-designed metadata architecture should support not only the effective manipulation of 

native metadata but also the autonomous management of distributed metadata [1, 11, 42]. In 

mediation schemes, metadata describe and translate information. The metadata architecture 

proposed by Stanford University, called InfoBus, is one realization of mediation architectures. 

Infobus uses five service layers to enable uniform access to distributed heterogeneous 

information resources and services [4, 53]. In InfoBus, Attribute Model Proxies model 

metadata as first class objects, and Metadata Repository deposits and indexes metadata that 

describe which metadata can be provided. These two kinds of metadata help Stanford DL to 

seamlessly communicate their metadata. Metadata in DL interactive architecture also attempts 

to facilitate metadata communication. The agent-based architecture helps DL agents to locate 

desired metadata. The University of Michigan proposed an agent-based architecture, called 

University Michigan Digital Libraries (UMDL). UMDL refines the basic agent architecture to 

satisfy the needs for an open information economy. UMDL expresses agents using ontological 

semantics and employs metadata to represent information. UMDL communicates agents with 
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each other by Knowledge Query and Manipulation Language. 

1.3 Goal 

The previous section has mentioned the interoperability is treated in four aspects: the 

management, presentation, communication and operation. However, rare of them discusses 

the interoperability from the standpoint of metadata. There are four factors to consider 

metadata as a critical element in coordinating DL: 

 The rich expression power solves the semantic inconsistency. 

 The easy transformation interacts metadata in diverse formats. 

 The structure information derives semantic relationships. 

 The economic aspect in structure facilitates integration. 

The four trusts motivate this dissertation to consider metadata as the critical element to 

integrate DL. Model-Extraction-Query (abbreviate to MEQ) model conceptualizes the access 

of DL from data, service and semantics view respectively in this dissertation. Therefore, a 

novel metadata architecture called M-Architecture@DL is proposed to integrate DL seamless 

by managing metadata. M-Architecture@DL extends conventional two-layer metadata into 

three-layer metadata architecture. In metadata modeling layer, a language is required to 

represent metadata and solve the metadata inconsistency in distributed DL. In the following 

section, Metadata Model Language (MML) is introduced with rich modeling power and 

translation mechanism. MML describes the data format, service capabilities, structure 

presentation and translation rules among different metadata. The language syntax of MML is 

XML (eXtensible Markup Language), and the data model of MML is a simplified data model 

revised from RDF with further extending its functions. Based on MML, the second layer data 

extraction layer is responsible for collecting data from distributed DL and encapsulated result 

into MML. In this layer, data are automatically extracted according to the common structure of 
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individual DL service. An automatic application called Metadata Extractor is presented. The 

third layer, called semantic query layer, exploits structure information to derive relationships 

among metadata, which can solve the semantic ambiguity in DL search. In this layer a 

Content and Service Inference Model is proposed. Summarily, the separation of 

M-Architecture@DL into three-layer architecture helps the DL integration independently and 

obtains more permanent and explicit knowledge in DL access. Independent DL is easy to 

declare its capabilities and communicate with each other. 

The aim of this dissertation is to establish novel metadata architecture to integrate DL. 

This work focuses on two research topics: 

 Research on metadata representation: Propose novel data model to represent 

metadata semantically. This model elaborates the transformation of metadata. 

 Research on metadata integration architecture: Propose DL architecture to manage 

metadata in distributed DL. This architecture facilitates the management of 

metadata from model, semantics, query and integration to seamless access DL.  

The rest of this dissertation is organized as follows. Chapter 2 describes three-layer 

metadata architecture to manage metadata in distribution environment. Chapter 3 presents 

metadata model to represent the content, the semantics and the structure. Chapter 4 proposes a 

data extraction algorithm to collect DL metadata from semi-documents with common 

structure. Chapter 5 presents Content and Service Inference Model to semantically search by 

inferring structural relationships among metadata. Chapter 6 conducts experiments in virtual 

union catalog system. Chapter 7 draws conclusion and future direction.  
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Chapter 2  

Digital Library Integration Architecture 

2.1 Conceptualization 
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Figure 1. Application model of DL 

Conventional access to collaborative services is Model-View-Controller (MVC) model 

(see Figure 1). In MVC model, a user contacts Controller directly to obtain Model and return 

as View. In this model, no information keeps after the access finished. To obtain more useful 

information in the process of data access, Data-Knowledge-Context (DKC) model creates 

knowledge layer between context and data to extract more knowledge [28, 51]. Explicit 

knowledge extracted from each access maintains permanently and can be reused even the 

access finished. However, in DL distributed environment, knowledge level can be further 

extended from the perspective of metadata. Sharable metadata architecture allows to proceed 
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metadata directly in place of the original content. The later binding of content enhances the 

efficiency when access large amount of digital content. Moreover, semantic query across 

heterogeneous DL provides transparent access to automatically extract content from 

unspecified services. The Model-Extraction-Query (MEQ) model can forward persistence line 

and backward semantics line to obtain more permanent and explicit knowledge than DKC 

model. The separation from services creates a new line to distinguish the service transparency 

and native service extraction. Therefore, based on MEQ, DL integration architecture called 

M-Architecutre@DL is proposed to help distributed DL access. 

2.2 Scenario 

Retrieve content with keyword 
“Information Retrieval” in title 
and have “Dublin Core” format

Semantic 
Query

Select A.* from content A, service B 
where A. Title=“Information Retrieval”

and A.Format = Translatable(DC) 
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and B.output=A.Format
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Figure 2. The scenario to query across distributed DL 

The main activity of DL is to search information from services (like Webpac) and 

combines the result to user. Therefore, the purpose of DL integration is to provide a semantics 

query to retrieve information transparently. Figure 2 displays a scenario to query across 

distributed and heterogeneous DL. A user wants to retrieve content with specified format and 
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keyword. Intuitively, the user is now required to know where the desired content and services 

are. The user is only required to describe what the nature of the content (such as the format, 

semantics, etc.), what the functionality of the services (such as the integration service, output 

with Dublin Core format, etc.) and what are the specified criteria (such as the “Information 

Retrieval” in title field). The semantic query takes the responsibility to find out where the 

services are automatically and then dispatches the content query to individual service. Next, 

information for each local service are extracted automatically and encapsulated into metadata. 

Moreover, the extracted metadata have heterogeneous formats and are required to translate 

into the same format. Metadata with different semantics are needed to clarify in this step. 

Finally, metadata are integrated as a single view and return to the user. The scenario reveals 

the rationales and research topics to design well metadata architecture in the DL integration. 

Three-layer architecture is proposed in the following sections. 

2.3 M-Architecture@DL 

By following the MEQ model, a novel metadata architecture for DL integration, called 

M-Architecture@DL, is proposed herein (M stands for Metadata). M-Architecture@DL 

integrates DL by facilitating semantics search from the perspective of metadata [26, 27]. This 

architecture contains three layers, metadata modeling layer, data extraction layer, and 

semantic query layer (see Figure 3). Metadata modeling layer provides rich expression power 

to represent metadata and their structure. A translation mechanism is presented to solve format 

heterogeneity. In this layer, Metadata Modeling Language (MML) is implemented. Data 

extraction layer extracts data from DL services according to the common structure. An 

extraction algorithm is proposed to automatically retrieve data without prearrange with 

librarians and structuralize the result into MML format. In this layer, Metadata Extractor is 

implemented. Semantic query layer derives fifteen relationships between DL services and 

content to enhance the query semantics. Manipulation operations are introduced in the query 
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statement to solve semantic heterogeneity. In this layer, Content and Service Inference Model 

(CSIM) are proposed.  
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Figure 3. M-Architecture@DL 

M-Architecture@DL exchanges information easily and transparently in distributed DL. 

Each layer thoroughly separates responsibility to manage DL metadata and accomplish the 

task as follows: 

 Metadata Modeling Layer. This layer contains rich modeling power to describe metadata 

semantically. Metadata structure are constructed by two constructors – tuple and set 

constructors. Based on the structure expression, translation is easy to elaborate by adding 

operations among metadata in the translation template. In this layer, a metadata language 

called Metadata Modeling Language (MML) is implemented. Toolkits for MML edition 

and translation are provided to help MML metadata manipulation. Format 

interoperability is obtained in this layer. 

 Data Extraction Layer. This layer collects data from distributed DL and encapsulated 
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result into MML metadata. In this layer, data are extracted automatically according to the 

common structure for individual DL service. A transparent metadata extractor called 

Metadata Extractor is provided to extract metadata from semi-structure documents (like 

HTML documents). This extractor extracts data transparently and enhances protocol 

interoperability in DL integration.  

 Semantic Query Layer. This layer provides semantics query to obtain metadata with as 

mush semantics. In this layer, additional data structures (ontology tables) are created to 

maintain semantics from DL and support semantic manipulation. The semantics query 

across distributed DL is called Content and Services Inference Model (CSIM). CSIM 

derives 15 relationships between two DL factors, content and services, and defines 

functions to manipulate these relationships. Applying CSIM in DL significantly 

improves semantic queries and alleviates the administrative load when query from DL. 

Semantic and service interoperability are achieved in this layer. 

The separation of M-Architecture@DL into three-layer architecture contains several 

advantages in DL integration. Metadata modeling layer provides rich modeling power and 

translation mechanism which enhance the format interoperability. Data extractor layer that 

extracts metadata transparently can interoperate DL without the pre-arrangement to access 

each DL affiliation. Therefore, access protocol interoperability is achieved. Semantic query 

layer constructs additional ontology structures to clarity semantics from DL and derive 

relationships from different services. The semantics query across distributed DL is called 

Content and Services Inference Model (CSIM) to derive 15 relationships between two DL 

factors, content and services, and defines functions to manipulate these relationships. 

Applying CSIM in DL significantly improves semantic and alleviates the administrative load 

when query from DL. In this layer, semantic and service interoperability are achieved.  
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Chapter 3 
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Figure 4. Construction of metadata 

The construction of metadata contains four steps (see Figure 4). To begin with metadata 

modeling, the original content is initially described by a schema ( Metadata Schema), 

which shows how the metadata is composed (Metadata Structure). Hereafter, the content are 

represented as metadata according to the metadata schema. Furthermore, different metadata 

can be translated according to translation rules (Translation Metadata). In this model, 

metadata is categorized into two types: data metadata and administrative metadata. The 

metadata encapsulated content information is called data metadata. Administrative metadata is 

an intermediation for system and only available by system. For example, translation metadata 

is one kind of administrative metadata to guide how one metadata can be translated into 

another. Finally, both data and administrative metadata are used by metadata management to 
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improve interoperability. In chapter 2, an integration architecture is introduced to interoperate 

DL seamlessly. 

This chapter aims to construct a well-defined metadata model to describe metadata 

semantically and elaborates metadata when they are translated with each other. In this chapter, 

a metadata model is formally defined. This metadata model contains three major 

specifications:  

 A data model with formal description to model real-world entities. 

 A structure expression to derive semantics 

 A translation mechanism to conquer interoperability gap 

3.1 Data model 

Attribute
(Resource)

Value
(Resource)

Entity
(Resource)

Person JohnName

Example 1: Basic Data Model

Book PL

Author

Title

Author

Sethi

First_Name

Last_Name
Ravi

Example 2: Hierarchical Data Model

Data Model

 

Figure 5. Data model (Extend from Warwick Framework) 

The data model of metadata is constructed by three types of Resources - Entity, Attribute 

and Value, which is extended from Warwick Framework [37] (see Figure 5) and referred to 
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the definition of RDF. For example 1 in Figure 5, a Person (Entity) has a Name (Attribute) 

called John (Value).  

The basic unit in data model is Resource. Each resource is annotated by ten optional 

properties. This definition standardizes the metadata communication and management. The 

formal definition of data model is as follows: 

Definition 3.1 (Resource): A Resource R={Id, Name, Type, Doc, Ver, MO, Obl, Def, Lang, 

RA } is the fundamental unit of metadata with ten basic properties for the description of 

metadata where, 

 Id is the unique identifier of a Resource. Id is generated from a handle server and can be 

determined as a combination of primary key referred in relational database, a URI or a 

naming service which can identify a resource.  

 Name is the name of a Resource. Name is an alternative way to reference Resource when 

Id reference is non-meaningful for metadata reader. The reference for Name can be 

hierarchical. Name1.Name2…..Namen represents the hierarchical reference for a resource 

Namen insides the scope of Namen-1 to Name1.    

 Type is the schema type of a Resource. Type means how to refer each component of the 

source described in Metadata Schema.  

 Doc is the description of a Resource. Doc contains the comment of the resource for 

readability. 

 Ver is the version of a Resource. Ver indicates the version of the resource. 

 MO is the maximal occurrence of a Resource. MO represents the repeatability of the 

resource. MO is an important property to construct Metadata Structure. 

 Obl is the obligation of a Resource. Obl indicates if the resource is required to be 

presented. 
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 Def is the definition of a Resource. Def contains a list of ontology terms that clearly 

represent concepts and the essential nature of the resource. Moreover, the domain range 

of this is also described here.  

 Lang is the language of a Resource.  

 RA is the registry authority of a Resource. RA describes where the resource registers. RA 

can be the repository of the resource or somewhere the resource is in residence.   

The Name and Identifier properties are treated as the identification of resources. The 

both ways of hierarchical reference to resource, Name and Identifier, are allowed to increase 

the flexibility for metadata access. Type property associates metadata to their schema. The 

repeatability of metadata is subsumed in MO property.  

The second example in Figure 5 illustrates how a hierarchical resource “Book” refers to 

another resource “Author” with two attributes “First_Name” and “Last_Name”. Notably, 

these ten properties are optional. For example, non properties except Id are necessary to 

represent value of metadata (see definition 3.3). 

Definition 3.2 (Schema): A Resource of Schema S is a triple {Ent, Incs, Atts } to represent 

how metadata is constructed: 

 Ent ⊆ Resource, Ent depicts information of Schema. In Ent, the Type attribute contains 

the type name to be referred in Metadata   

 Incs ⊆ (Attsa, Attsc), Incs represents the relationships between Ent and Atts. Each pair 

(Attsa, Attsc) indicates that Attsc is the subtype of Attsa. Incs is assumed to be acyclic. 

 Atts ⊆ Resources is the set of Attribute. In Atts resource, the Type property represents the 

name of Atts. The Type property of Atts can be another Schema. A precedent symbol “@” 

concatenating with a value indicates that the schema exists in another schema with the 

value behind @. 
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A Schema represents how a metadata is encrypted. In Schema, each Atts can refer to 

another Resource, which means this data model is hierarchical. However, acyclic reference is 

forbidden. In addition, because this data model is referred from RDF, this implies that 

instances of Schema can be expressed by the Entity-Relationship model as well.  

Definition 3.3 (Metadata): A Metadata is a triple {Ent, Sche, Values} to represent how to 

encapsulate data by Schema: 

 Ent ⊆ Resource, Ent describes information of Metadata. The value of Type attribute in 

Ent is the name of Metadata. 

 Sche ⊆ Schema, Sche represents the Schema associate with the Ent. 

 Values ⊆ (Attribute, Resource), each pair (A1, V1) represents that V1 is the value of  

Attribute A1. V1 is allowed to contain composite Values corresponding to Sche. 

3.2 Structure expression 

To denote the structure of a metadata schema, two kinds of constructions are defined [2]: 

Definition 3.4 (Structure): Given a Schema S, the structure of S can be represented by the 

following two constructors:  

 Tuple constructor (TC). A tuple constructor TC of a Schema S is an ordered list 

constructed by the union of S.Incs with the same precedent value in S.Incs.Attsa. For 

example, the set of S.Incs (τ,c1), (τ,c2), …(τ,cn) are represented as TCτ = {c1,c2…cn}τ. 

The subscript τ is the name of TC. 

 Set constructor (SC). A set constructor SC of a Schema S is an occurrence type with the 

same S.Atts.MO larger than one. For example, the set of S.Atts, c1.MO=i, c2.MO=i … 

cn.MO=i, are represented as <c1, c2…, cn>n
τ   The subscript τ represents the name of 

SC and i represents the maximum occurrence.  
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On the other hand, the tuple constructor can be obtained from the union of Incs with 

attribute MO = 1 in the same attribute level. The set constructor can be obtained from the 

attributes when their MO larger than 1. The τ is given as the name in tuple and set 

constructors.  

The representation of Structure is to facilitate the reference to some part of Schema. 

Referring to Schema easily is an important basis for schema translation. The Structure of 

Schemas in two example of Figure 5 are {Name}Person and {Title, <First_Name, 

Last_Name>n
Author}Book respectively.  

3.3 Translation service 

Definition 3.5 (Translation Service): Given two Schema SSource=(∪TCi,∪SCi) and 

SDest=(∪TCj,∪SCj): 

 Translation Service (TS): A translation service contain a set of translation rules such 

that SDest. TCi = op (SSource). op represents a set of metadata operations that can 

manipulate the source metadata into the destination.  

The op is supported depending on different schema types. For example, the numeric type 

attributes can support math operations, like add, subtract, multiple, divide… etc.; the string 

type attributes can support concatenate and subtract operations to translate source schema into 

destination. As in Figure 5, the translation of book authors into person type with comma 

between different authors can be expressed as: 

TCPerson.Name = SCAuthor((SCAuthor.First_Name+” “+SCAuthor.Last_Name)+”, “). 
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3.4 Implementation (Metadata Modeling Language – MML) 

MML ::= [‘<‘mmlPrefix’>’ resources* ’</’mmlPrefix’>’]
mmlPrefix ::= ‘Model’ | ‘Model_Instance’
resources ::= properties* | attributeItems* | stringvalue
properties ::= ‘<‘propertyTag’>’ propertyValue ‘</’propertyTag’>’
propertyTag ::= ‘MML_Name’ | ‘MML_Type’ | ‘MML_Doc’ | ‘Identifier’ | 

‘MML_Version’ | ‘MML_RA’ | ‘MML_Language’ | 
‘MML_Definition’ | ‘MML_Obligation’ | ‘MML_MO’

propertyVaule ::= ‘string’ | ‘integer’ | ‘float’ | ‘boolean’ | stringvalue
attributeItems ::= ‘<attributeTag>’ resource ‘</attributeTag>’
attributeTag ::= ‘Attribute’ | attributename

 

Figure 6. The syntax of MML  

The aim of this section is to propose a metadata language to model real-world entities 

and to improve interoperability. Metadata Modeling Language (MML), which owns rich 

modeling power and translation mechanism, is implemented to improve interoperability 

among DL. The data model of MML metadata is hierarchical and applies the container 

technology. The fine-grained data model elaborates information with semantics and 

translation mechanism to exchange DL content. MML is designed as an interoperability basis 

to integrate DL and contains sufficient information for metadata management. The language 

syntax of MML is XML (eXtensible Markup Language), and revised from RDF with further 

extending its functions. A MML metadata contains a ten properties meta-information adopted 

from ISO 11179 specification and standardization of data elements (in section 3.1). Figure 6 

shows the syntax of MML metadata.  
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Book Schema

<Model>
<MML_Name>Book</MML_Name>
<MML_Type>Book</MML_Type>
<MML_Doc>This is a model of a 
book</MML_Doc>
<Identifier>Book_ID1</Identifier>
<MML_Version>Version_1</MML_
Version>
<MML_RA>NCTU_DB</MML_RA>
<MML_Language>English</MML_L
anguage>
<MML_Definition>Unlimited</MML
_Definition>
<MML_Obligation>Unlimited</MM
L_Obligation>
<MML_MO>Unlimited</MML_MO>
<Attribute>
<MML_Name>Title</MML_Name>
<MML_Type>String</MML_Type>
<MML_Doc>The title of a 
book</MML_Doc>
</Attribute>
<Attribute>
<MML_Name>Author</MML_Nam
e>
<MML_Type>@Author</MML_Typ
e>
<MML_Doc>Describe the writer of 
a book</MML_Doc>
</Attribute>
</Model> 

Book Metadata

<Model_Instance>
<MML_Type>Book</MML_Type>
<Identifier>Book_ID2</Identifier>
<Book>
<Title>PL</Title>
<Author>Author_ID2</Author>
</Book>
</Model_Instance>

Author Metadata

<Model_Instance>
<MML_Type>Author</MML_Type>
<Identifier>Author_ID2</Identifier
>
<Author>
<First_Name>Ravi</First_Name>
<Last_Name>Sethi</Last_Name>
</Author>
</Model_Instance>

Author Schema

<Model>
<MML_Name>Author</MML_Nam
e>
<MML_Type>Author</MML_Type
>
<MML_Doc>This is a model of an 
author</MML_Doc>
<Identifier>Author_ID</Identifier
>
<MML_Version>Version_1</MML
_Version>
<MML_RA>NCTU_DB</MML_RA>
<MML_Language>English</MML_
Language>
<MML_Definition>Unlimited</MM
L_Definition>
<MML_Obligation>Unlimited</MM
L_Obligation>
<MML_MO>Unlimited</MML_MO
>
<Attribute>
<MML_Name>First_Name</MML_
Name>
<MML_Type>String</MML_Type>
<MML_Doc>The first name of an 
author</MML_Doc>
</Attribute>
<MML_Name>Last_Name</MML_
Name>
<MML_Type>String</MML_Type>
<MML_Doc>The last name of an 
author</MML_Doc>
</Attribute>
</Model>

 

Figure 7. Example of MML schema and metadata 

According to the data model in previous section, MML can represent into MML Schema 

and MML Metadata. MML Schema represents the metadata attribute model as a first-class 

object. MML metadata is the actual data object encapsulated by MML Schema format. 

Referring to the example 2 of Figure 5, the MML metadata are illustrated in Figure 7. In 

Figure 7, attribute “Title” was embedded into the “book” resource to be a basic type of string. 

All the properties are optional to simple attribute. The second attribute ‘Author” is a 

hierarchical reference to other resource by “Type” property. The precedent character ‘@’ 

refers to a schema which name is ‘Author’.  

In MML, interoperability is achieved by iterative translation. Figure 8 shows how 

substantial data can be iteratively translated into the target format via translation service. This 

characteristic implies that the source metadata are not required to translate into target ones 

directly if there is sufficient translation rules. MML translation service receives the source 

metadata, refers to the translation rule metadata, and finally translates into target format.  
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Figure 8. Iterative translation for MML interoperability 

Definition 3.6 (MML Translation Service): A MML Translation Service TS is the task of 

translating a set of metadata with the same schema Source into another metadata with the 

schema Dest. This translation is carried out pertaining a set of translation rules TRs to depicts 

how to operate the Source schema into Dest. TS contains three parameters (Source, TRs, Dest) 

to describe how to translate Source Metadata into Dest Metadata via TRs Metadata where, 

 Source ⊆ Resource, Source contains the target MML Metadata 

 TRs ⊆ Resource, TRs are abbreviated as the translation rules which show how to translate 

one MML Metadata into another. Each translation rule element in TRs is a quadruple 

(Ent, From_Attrs, Op, To_Attrs) where, 

 Ent ⊆ Resources, Ent indicates the translation rule metadata that the following 

attributes originated.  

 From_Attrs ⊆ Resources, From_Attrs represent the attribute names to be translated. 

 Op represents the operating function supported between attributes.  
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 To_Attrs ⊆ Resources, To_Attrs represent the attribute names to be translated into. 

 Dest ⊆ Resources, Des represents the destination when the source metadata is translated. 

 

Figure 9. MML translation service 

The MML translation service is accomplished by translation rule metadata (TRs). 

Translation rule metadata describe how two heterogeneous metadata are transformed into the 

same data model. TS only supports one-way translation. On the other hand, the inverse 

translation is not allowed in the same TRs. The translation rule contains three attributes in 

their schema, From_Metadata, To_Attribute_Model and Translation_Rules. In the 

Translation_Rules template, MML supports basic arithmetic operations, such as add, sub, 

muliplex and divide… etc., and basic string operation, such as concatenate… etc. Figure 9 is 

an example to translate NCTU catalog metadata into a canonical model. The left screen shows 

the original data and the translation rule. After the translation, the target metadata is displayed 

in the right screen.  
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MML translation service can express by MML structure in both tuple and set 

constructors. The expression Constructori.Attrubutej indicates the attribute j in constructor i. 

As the example in Figure 5, the expression of name in author by name in person is 

Person.Name=Author.First_Name+” “+Author.Last_Name. Notably, the Author constructor is 

set constructor which can contain multiple authors in the same book. Hence the expression 

can be updated into Person.Name= Person.Name +”, “+Author.First_Name+” 

“+Author.Last_Name to add comma in additional authors. 

Data Model

Describe 
Schema 
By MML

Encapsulate Data

Hierarchical
Data Model?

Yes

No

Translation 
Rule

Metadata 
Translation 

Service

Target
Metadata

 

Figure 10. The workflow for metadata interoperability 

MML containing translation services conquers information gap and provides more 

flexible model than others. Figure 10 illustrates the workflow to create MML source metadata 

and translate into target metadata. User describes the schema first by MML schema and 

iteratively defines the hierarchical schema until all attributes are defined. Next, the data are 

encapsulated into MML metadata and apply the translation rule to translate into target schema. 

By following this process, metadata heterogeneity is easy to solve. 
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3.5 Comparison 

 MML RDF Infobus 

Data Model Extend RDF with ID 
and name reference 

Hierarchical data 
model 

Hierarchical data 
model 

Translation Translation template 
with operations Non-supported Leave the translation 

responsibility to user
Syntax XML XML Proprietary 

Object Reference Identifier with name 
hierarchy URI Non-supported 

Table 1. Comparison of MML and current research 

Table 1 shows the comparison of MML, RDF and Stanford Infobus. MML has richer 

data model than Infobus and extends RDF function by adding identity and name reference for 

distributed metadata. Additionally, MML provides translation mechanism by translation 

template with basic operations, which is different from RDF and Infobus who leave 

translation responsibility to users. Third, MML and RDF adopt XML as syntax when the 

syntax of Infobus is proprietary. This strategy keeps MML and RDF with standardization. In 

the object reference, MML use both name and id reference to metadata which is more flexible 

than RDF and Infobus.  
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Chapter 4  

Data Extraction 

The main activity of DL integration is to search information from distributed DL. 

Understandably, the easiest way to obtain information is from a library service through HTTP 

protocol. It is worth noting that the output for a single search service contains similar structure 

in every query. This output is called documents with common structure. Common structure 

documents are defined as the documents whose embedded structure and the semantics are 

identical. Structure documents with common structure are always generated in library 

Web-based applications, like a Web-based OPAC system. Once the common structure is 

analyzed in advance, semantic information contained in these documents can be extracted 

based on the previous analysis. It’s said that the significant pre- and post-processing overhead 

can be eliminated in dealing with DL integration.  

The purpose of data extraction is to extract data automatically from output of each DL 

search services (for example, the Webpac systems) and then package the result into MML 

format. In this chapter, an extraction algorithm called Metadata Extractor is proposed [24]. A 

(semi-) structure document is first analyzed to obtain the structure hierarchy and assigned 

level ID for each critical element of the structure. After labeling the semantics, the iteration 

process extracts the common structure from the incoming documents automatically. By means 

of this method, DL access is transparent and automatic through HTML protocol. 

4.1 Structure hierarchy 

Each (semi-) structure document (like HTML, XML… etc.) can be analyzed into a 

Structure Hierarchy. A structure hierarchy is a tree where each node represents a critical 

 25



element (a node with hierarchy information). In structure hierarchy, a critical element 

connects with its child critical element nodes with level property (if two critical elements are 

hierarchical) and connects with sibling with parallel property (if two critical elements are in 

the same level). As shown in Figure 11, a structure hierarchy is illustrated according to an 

Auxiliary table (define critical tags and level/parallel properties of the tags). In this figure, 

Level 1 (Root) contains several Level 2 children, and each Level 2 node contains Level 3 

children, which are also encompassed in the Root node. To clarify the features in a structure 

hierarchy, two properties are defined. 
<HTML>
<TABLE>
<TR><TD>Title</TD><TD> First_Name
</TD><TD>Last_Name</TD></TR>
<TR><TD>...</TD><TD>...</TD><TD>...</TD></TR>
<TR><TD>...</TD><TD>...</TD><TD>...</TD></TR>
<TR><TD>...</TD><TD>...</TD><TD>...</TD></TR>
</TABLE>
</HTML>

Level 1 (<HTML>, Parent Level)

Level 2 Level 2Level 2 (<TABLE>, Child Level)

Parallel Property

Level 3 (<TR>)

Level Property 

Level 4 (<TD>Last_Name)Level 4 (<TD>First_Name)Level 4 (<TD>Title)

<Li><OL><UL><DIR>
<Table><Ol><Ul><Dir><Br><P><Li>
<Table><Ol><Ul><Dir><Br><P><hr>

<Frame> <Frameset>

<Ol><Ul><Dir><Br><P><Td>
<Td><Tr>
<Tr><Table>

<Table><Ol><Ul><Dir><Br><P> <Body>
<Head><Body><Html>

Down-Level TagUp-Level Tag
Auxiliary Table

 

Figure 11. Parallel and level properties 

Definition 4.1. (Level Property - LP) A and B are two nodes of structure hierarchy. LP holds 

when A is an ancestor (upper-level) of B. (i.e. B is decedent (sub-level) of A and A’s content 

contains B’s in the document.) 

Lemma 4.1. (Transitive rule of LP) If A have LP with B and B have LP with C in the same 

structure hierarchy, then LP holds for A and C.  
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According to Definition 4.1, A’s content contains B’s and B’s content contains C’s in the 

document. It is straightforward that A’s content contains C’s in the hierarchy tree. In other 

words, A is a upper-level of C in the structure hierarchy. As a result, LP holds for A and C.  

Definition 4.2. (Parallel Property - PP) A and B are two nodes of a structure hierarchy. PP 

holds when A and B are at the same level in the structure hierarchy. (i.e. A’s content parallels 

with B’s.) 

Lemma 4.2. (Transitive rule of PP) If A and B have PP and B and C also have PP in the 

same structure hierarchy, then PP holds for A and C.  

Because A is at the same level as B and B is at the same level as C in the structure 

hierarchy, it is clear that A is at the same level as C in the structure hierarchy. As a result, PP 

holds for A and C. 

4.1.1 Level-ID assignment 

Each critical element is assigned a Level-ID in the hierarchy tree. Level ID is a cascaded 

positive nature number separated by ‘.’ with the following format: 

Level1-ID.Level2-ID.Level3-ID. … 

Each Leveli-ID is a positive nature number. For any two Level-ID in the same Level-ID 

sequence, we call Leveli-ID is ancestor of Levelj-ID if i<j. Several important characteristics in 

Level-ID are: 

 According to Lemma 4.1, LP holds in the same Level-ID sequence. (For example, Level 

ID 1.1.2 holds LP in both 1.1.2.1 and 1.1.2.1.1.) 

 According to Lemma 4.2, PP holds if two Level-ID are in the same level and contain the 

same parent Level-ID (For example, Level-ID 1.1.2 holds PP with 1.1.3 and 1.1.4 
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because they have the same parent 1.1.)  

4.1.2 Auxiliary table 

For assigning Level-ID to structure documents, an Auxiliary Table (AT) is required to 

identify critical elements and hierarchical property between elements (in Table 2). To take an 

example of HTML documents, Table 2 depicts a sample AT for HTML. (it is easy to extend 

the approach to other kinds of structure documents, like XML/SGML.) In Table 2, HTML 

elements (tags) are categorized into Up-Level Tags and Down-Level Tags. LP holds for an 

Up-Level Tag A and a Down-Level Tag B if A and B are at the same row of AT (For example, 

by referring to the Row ID 4 of Table 1, we know that LP holds for <Table> and <Tr>). 

Furthermore, PP holds for two Down-Level Tags A and B if A and B are at the same row of 

AT. 

Actually, the critical elements of AT are not restricted to HTML tags and can be adjusted. 

For example, only two types of tags, <Table> and <List>, are used in AT if only two critical 

elements have to be analyzed in the structure documents. In addition, for XML or SGML 

documents, users can create their own structure tag sets and put these tags into AT.  

Auxiliary Table (AT) 
Up-Level Tag Down-Level Tag 

<Html> <Head><Body> 
<Body> <Table><Ol><Ul><Dir><Br><P>  
<Frameset> <Frame>  
<Table> <Tr> 
<Tr> <Td> 
<Td> <Ol><Ul><Dir><Br><P> 
<OL><UL><DIR> <Li> 
<Li> <Table><Ol><Ul><Dir><Br><P> 
<hr> <Table><Ol><Ul><Dir><Br><P> 

Table 2. Auxiliary table 
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0 Level-ID_Assignment_Algorithm (in HTML D, out Level_ID ){
1 Var Structure_Hierarchy C;
2 For each tag in D{
3 C=Check_Structure_Hierarchy_(tag);
4 IF (C = “Positive-LP”)
5 Down_Level (tag);     //Level Property holds
6 Else If (C = “Negative-LP”)
7 Up_Level(tag) until accurate level;
8 Increment(tag); //Level Property holds
9 Else IF (C = “PP”)
10 Increment(tag);        //Parallel Property holds
11 Else
12 Do nothing;
13 }
14          End 
15 } 

 

Figure 12. Level-ID assignment algorithm 

The AT is manipulated by the Level-ID assignment algorithm to label critical elements in 

structure documents. The Level-ID assignment algorithm only assigns each critical element a 

Level-ID. There are four basic operations in the Level-ID assignment algorithm: 

 Down_Level(tag): Extend Level-ID to a level down and assign the extended 

Level-ID item as 1 if no this level exists before. 

 Up_Level(tag): Shrink Level-ID to a level up. 

 Increment(tag):Add one in the last Level-ID item of the current Level-ID. 

 Check_Structure_Hierarchy(tag): Check the current and previous tags if they are 

at the same row in AT (Check if LP holds). 

If yes and current tag is Up-Level tag and previous is Down-Level tag,  

return negative-LP. 

If yes and current tag is Down-Level tag and previous is Up-Level tag,  

return positive-LP. 
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If yes and the two tags are both Down-Level tags,  

return PP. 

Otherwise return false. 

The Level-ID assignment algorithm is illustrated in Figure 12. 

4.2 Common structure 

A common structure is a structure expression (defined in section 3.2) to extract structure 

document with semantics. For example, the structure expression in Figure 5 can be expressed 

as: 

  {Titlei.1, <First_Namei.j.2, Last_Namei.j.3>j=2-m
Author}i=1-n

Book

The number in the upright position represents the Level ID which indicates the position 

of critical element in the document. Each name of set or tuple constructor is given as the 

metadata semantics. By following the expression, the incoming documents can obtain “Title” 

of Book from Level ID 1.1 to n.1, and the “Author” for Book i can be obtained from Level ID 

i.2.2 and i.2.3 to Level ID i.m.2 and i.m.3. 

4.3 Implementation 

According to Lemma 4.1 and Lemma 4.2, two major conclusions for Level-ID approach 

are: 

 All structure documents with common structure have the same Level-ID if they have 

the same structure root and Auxiliary Table. 

 Critical elements have the same level among structure documents with common 

structure are parallel. 
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Figure 13. Data extraction for common structure 

Based on these two conclusions, an extractor called Metadata Extractor for structure 

documents is implemented. Figure 13 illustrates metadata extraction for structure documents 

with common structure. In this figure, metadata extraction is divided into two parts: training 

process and extracting process. The training process uses a sample document to label 

common structure and saves the result in a common structure file with MML format. The 

extracting process extracts information from documents with the same structure by using of 

the common structure file. The extracted metadata is also saved in MML format. There are 

three major phases in this architecture: pre-processing phase, structure labeling phase and 

extraction phase. The following sections describe the detail. 

4.3.1 Pre-processing phase 

The pre-processing phase reformulates structure documents into a formalized and labeled 

format. It is composed of two important modules, the formalization tool and Level-ID 

assignment.  
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Formalization Tool (TIDY): Mark-up errors such as unbalanced opening and closing 

tags often appear in structure documents. Especially in HTML documents, the format is not 

strictly well-formed (compared with other markup languages, like XML). A formalization tool 

fixes up documents into a scrupulous form. TIDY, developed by Dave Raggett in W3C 

(http://www.w3c.org/), is a free utility to tidy up sloppy editing into nicely layout markup. In 

the pre-processing process, TIDY is employed as formalization tool to correct human editing 

errors.  

Level-ID Assignment: Structure documents cleaned up by Tidy are sent to Level-ID 

assignment, and each critical element is labeled with a Level-ID. When structure documents 

with common structure are parsed, the same Auxiliary Table will give the same Level-ID in 

these documents (Lemma 4.1 and Lemma 4.2). The Level-ID assignment is referred to Figure 

12. 

4.3.2 Structure labeling phase 

After Level-ID is given for each critical element in the sample document, the structure 

labeling phase records the Level-ID and the associated semantic of marked elements into a 

common structure file with MML format. The marked elements represent the portions of the 

common structure that will be extracted in the later extracting process. Figure 14 is our 

labeling tool for structure labeling. In Figure 14, tags with Level-ID from 2.1.2 to 2.1.6 are 

marked and semantics are given for each marked tag. Then the marked tags and their 

semantics are encapsulated into MML format and save as a common structure file. 
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Figure 14. Semantics label 

4.3.3 Data extraction phase 

After structure documents with common structure are processed by the pre-processing 

phase, the extraction algorithm extracts data by referring to the common structure file 

produced in the structure labeling phase. The final results are encapsulated into MML format. 

Figure 15 demonstrates a Virtual Union Catalog System (VUCS) which the catalog 

information came from different DL automatically by using Metadata Extractor. The later 

binding of structure according to the auxiliary table compromises the versatile structure of 

Webpac systems, which is different from several related virtual union catalog systems [22, 

28].  

The VUCS by using Metadata Extractor is a more flexible way to integrate Webpac 

systems than Open Archives Initiative (OAI) approach (http://www.openarchives.org/). OAI 

provides a standard way to harvest information from OAI compatible services. However, not 

all data providers have the OAI interface. Metadata Extractor integrates data without 
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prearrangement with data providers and enables an alternative way to integrate heterogeneous 

data. 

 

 

Figure 15. Virtual union catalog system 
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Chapter 5 

Semantic Query 

Considerable attention has been paid to DL architecture’s enabling: DL queries across 

distributed DL services and interaction between the two most important elements of DL, 

content and services [39, 45]. Content represents the materials stored in a DL, including texts, 

images and videos. A service is an application that performs specific functions and interacts 

with users via specific interface. However, conventional keyword-based queries cannot clarify 

two factors in distributed DL – content heterogeneity and service capabilities. Content 

heterogeneity requires determining the format and semantics of two pieces of content. Service 

capabilities require locating the suitable services to accomplish the task. Fortunately, it is 

important to note metadata support semantic queries in many ways. First, the modeling of 

metadata has comprehensive semantics regarding content and services. These semantics 

benefit the provision of accurate information in response to semantic query. Second, 

relationships between metadata of content and services can be derived from metadata; 

manipulating these relationships yields further semantics. Third, metadata can be easily stored 

and indexed to support retrieval, since they have a formal structure. Conclusively, metadata 

that describe semantic information about DL content and services motivates the derivation of 

semantic relationships among metadata.  

Given content and services, several questions may be raised. Does one type of content 

have the same format as another? Can two services perform the same task? Is one type of 

content produced (or manipulated) by a service? A model that formalizes the relationships 

between content and services is required to answer these questions. Semantic query layer in 

M-Architecture@DL seeks to formulate the structural relationships among metadata 
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concerning DL content and services, to assist the extension of semantic DL queries. This 

chapter proposes a Content and Service Inference Model (CSIM) to elucidate the interaction 

of metadata, in terms of the structural relationship. CSIM defines 15 relationships between 

DL content and services. Using CSIM, the result of a DL query is extended by embedding 

relationships into the query predicates. For example, for a user who wants to retrieve content 

with the format “Dublin Core”, CSIM returns content with the format “Dublin Core” and 

derives the content with other relationships, such as that which can be translated into “Dublin 

Core” (the “Translatable” relationship), and that which contains the same semantics but with 

different formats (the “Homonymous” relationship). 

5.1 Content and service inference model (CSIM) 

5.1.1 Relationships between content and services 

Content and services are two integral aspects of DL. Content is the materials stored in 

DL, which can be produced and processed by services. The types of content include web 

pages, library holding records, and multimedia data (like texts, images, and videos). A service 

is a software application that: 1. receives one type of content 2. accomplishes specific works 3. 

outputs one type of content. In other words, a service performs specific functions and interacts 

with users via input and output interfaces. In this study, both services and content are 

represented via metadata to facilitate the interaction between them. A novel framework called 

Content and Service Inference Model (CSIM) is proposed to derive relationships between 

content and services from their metadata [25]. CSIM raises DL queries to a semantic level by 

using content semantics, service capabilities, and the relationships between content and 

services.  

Basically, the metadata of content contains schema, and a set of semantic description.  

The metadata of a service includes the input, output and the statement for its capabilities. 
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According, a total of 15 relationships between content and services are defined in Figure 16. 

These relationships are directional and categorized into four types: 

Service 1 

Content 1 

Service 2 

Content 2 

1. Identical 
2. Inclusive 
3. H
4. Synonymous 

omonymous

omonymous
 

anipulatedBy 
roduce 

5. Replaceable 

1. P
1. M

4. InheritFrom 
 5. 
Translatable

1. Identical 
2. H
3. Synonymous

6. Translatable 
7. Combinable 
8. Combine 
 

 

 

 

 

Figure 16. Relationships between content and services 

 

Service to Service. Two services interact with each other according to their capabilities 

and input/output interfaces. Eight relationships of this type are defined - Identical, Inclusive, 

Homonymous, Synonymous, Replaceable, Translatable, Combinable, and Combine. For 

example, two services are "Synonymous" if they have the same capabilities but different 

input/output interfaces. Moreover, one service is "Inclusive" of another if the first service 

contains more capabilities than the other.  

Content to Content. Two pieces of content relate with each other based on their 

semantics and schemas. Five relationships of this type are defined - Identical, Homonymous, 

Synonymous, InheritFrom, and Translatable. For example, two pieces of content are 

"Identical" if they have identical semantics and format.  

Service to Content. A service can produce content. One relationship of this type is 

defined - Produce. For example, a WebPAC system may produce a data set in the Dublin Core 

format.  

Content to Service. Content can be produced by a service. One relationship of this type 
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is defined - ManipulatedBy. For example, various data sets can be manipulated by a virtual 

union catalog system to create an integrated view.  

The total 15 relationships in CSIM are proposed after thoroughly examining all possible 

relationships between content and services under the CSIM data model and hypothesis. In the 

following sections, formal definitions are provided. 

5.1.2 Basic definitions 

In the following, the metadata of content and services is formally defined.  

Definition 5.1 (Content). A piece of Content, C, is a quadruple {Id, Schema, Presentations, 

Semantics} [40] where, 

1. Id is the identifier of C. 

2. Schema is the schema of C. Schema is a quadruple {Ent, Incs, Attributes, Associations}, 

where 

2.1 Ent ⊆ Names is the name of a content schema. 

2.2 Incs ⊆ (Names, Names). Each pair (e1, e2) ∈ Incs indicates that e1 is a subtype of e2. 

Incs is stored in CIT (defined below) and assumed to be acyclic. 

2.3 Attributes ⊆ Names is the set of attribute names. 

2.4 Associations ⊆ (Association_name, Entity_name1, Entity_name2, Cardinality1, 

Cardinality2) is the association set, which indicates the cardinality between two 

entities.  

3. Presentations ⊆ Names is the set of the presentation interfaces of content C. 

4. Semantics ⊆ CST is the set of semantics of content C. CST is defined below. 
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Definition 5.2 (Service). A Service, S, is a quadruple {Id, Capabilities, Outputs, Inputs}, 

where 

1. Id is the identifier of S. 

2. Capabilities ⊆ SCT is the set of service capabilities. SCT is defined below. 

3. Outputs ⊆ Names are the output schemas of service S. 

4. Inputs ⊆ Names are the input schemas accepted by S.  

Additional data structures are required for the formal definition of CSIM [56]. 

1. Content Semantics Table (CST). CST contains ontological terms to identify the 

semantics of content. Dublin Core and MARC are two examples of ontological terms in 

CST. The ontology in CST is hierarchical; an ascendant term covers the semantics of a 

descendent term. 

2. Content Inheritance Table (CIT). CIT maintains the schema hierarchy of content (Incs 

attribute of Schema in Definition 3.1). For example, the fact that schema A is a subtype 

of schema B can be represented as (A, B) in CIT.  

3. Service Capability Table (SCT). SCT contains ontological terms to define possible 

service functionalities. The ontology in SCT is hierarchical; an ascendant term has more 

general capability than a descendent term. For example, a service that uses CORBA to 

implement a virtual union catalog system will have two capabilities - 

CORBA_Distributed_System and Virtual_Union_Catalog_System, where 

CORBA_Distributed_System and Virtual_Union_Catalog_System are the descendent 

terms of Distributed_System and Catalog_System respectively.  

4.  Translation Rule Table (TRT). TRT stores the rules for translating between two pieces 

of content. A rule R for translating between two pieces of content is expressed as a 

quadruple: {Id, FromSchema, ToSchema, Rules}, where 
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1. Id is the identifier of R. 

2. FromSchema ⊆ Names is the name of the source schema.  

3. ToSchema ⊆ Names is the name of the target schema. 

4. Rules ⊆ (FromAttributeName, ToAttributeName, TranslationRule) are the rules for 

translating between specific attributes. 

CSIM exploits the translation mechanism proposed in [23] for content translation. If a 

translation rule T exists in TRT where T.FromSchema=C1 and T.ToSchema=C2, then 

C2=Translate(C1, T). 

5. Content and Service Repository (CSR): CSR is a repository that stores the metadata of 

content and services, including the access methods for the CSIM metadata framework 

to retrieve content and services. 

5.1.3 Definitions of content and service relationships 

As mentioned above, four types of 15 directional relationships between content and 

services exist - content to content, service to service, content to service, and service to content. 

This section formally explicates each relationship. 

Definition 5.3 (Content to Content). Given two pieces of content C1={Id1, Schema1, 

Presentations1, Semantics1} and C2={Id2, Schema2, Presentations2, Semantics2}, the possible 

relationships between C1 and C2 are as follows.  

1. Identical(C1, C2) iff Schema1 = Schema2 and Semantics1=Semantics2. 

2. Homonymous(C1, C2) iff Schema1 = Schema2 but Semantics1 ≠ Semantics2 

3. Synonymous(C1, C2) iff Schema1 ≠ Schema2 but Semantics1 = Semantics2 

4. InheritFrom(C1, C2) iff (Schema1, Schema2) ∈ Incs2 
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C1 and C2 have the InheritFrom relationship if and only if the schema pair (Schema1, 

Schema2) exists in CIT. Namely, the schema of C1 inherits from C2. Given a sequence of 

content C1 to Cn, such that any two consecutive pieces of content have the InheritFrom 

relationship, these pieces of content exhibit the transitive property. 

5. Translatable(C1, C2). C1 and C2 have the Translatable relationship if C1 can be translated 

into C2 by means of specific translation rules. In other words, C1 and C2 are translatable if 

and only if there exists a translation rule T ∈ TRT such that T.FromSchema = Sch1 and 

T.ToSchema = Sch22. Moreover, given a sequence of content C1 to Cn, such that any two 

consecutive pieces of content have the Translatable relationship, these pieces of content 

exhibit the transitive property. 

Definition 5.4 (Service to Service). Given two services S1={Id1, Capabilities1, Outputs1, 

Inputs1} and S2={Id2, Capabilities2, Outputs2, Inputs2}, the possible relationships between S1 

and S2 include the following.  

1. Identical(S1, S2) iff Capabilities1 = Capabilities2 

2. Inclusive(S1, S2) iff Capabilities1 ⊆ Capabilities2 

3. Homonymous(S1, S2) iff Outputs1=Outputs2, Inputs1 =Inputs2, but Capabilities1 ⊄ 

Capabilities2. 

4. Synonymous(S1, S2) iff Outputs1 ≠ Outputs2 or Inputs1 ≠ Inputs2, but Identical(S1, S2) 

5. Replaceable(S1, S2) iff Inclusive(S1, S2), Outputs1 = Outputs2 and Inputs1 = Inputs2. 

6. Translatable(S1, S2) iff Inclusive(S1, S2), ∃ T1, T2, T3, T4 in TRT such that 

Translate(Outputs1, {T1}) = Translate(Outputs2, {T2}) and Translate(Inputs1, {T3}) = 

Translate(Inputs2, {T4}). 

7. Combinable(S1, S2) iff Inputs1 = Outputs2 

 41



8. Combine(Sc, {Si}) combines a set of services {Si} (1≤ i ≤n), ∀i Combinable(Si, Si-1) (that 

is, Outputs1 = Inputs2, Outputs2 = Inputs3, …, Outputsn-1 = Inputsn ), into a new service 

Sc={Idc, Capabilitiesc, Outputsc, Inputsc}, where 

1. Idc is the identifier of Sc  

2. Capabilitiesc = Capabilities1 ∪ Capabilities2 ∪ … ∪ Capabilitiesn 

3. Outputsc = Outputsn 

4. Inputsc = Inputs1 

Given a sequence of services S1 to Sn, a new service Sc can be generated when any two 

successive services Si and Si-1 have the Combinable relationship. The new service has a new 

Id, and the capabilities include all the capabilities of S1 to Sn. The new service has the same 

input interface as the first service (S1), and the same output interface as the final service (Sn).  

Definition 5.5 (Service to Content). Given a service S={Ids, Capabilitiess, Outputss, Inputss} 

and content C={Idc, Schemac, Presentationsc, Semanticsc}, S and C have the Produce(C, S) 

relationship iff Schemac = Outputss or Translatable(Outputss, Schemac). In other words, this 

definition determines if S can produce C. 

Definition 5.6 (Content to Service). Given a content C={Idc, Schemac, Presentationsc, 

Semanticsc} and a service S={Ids, Capabilitiess, Outputss, Inputss}, C and S have the 

ManipulatedBy(C, S) relationship iff Schemac = Inputss or Translatable(Schemac, Inputs). In 

other words, this relationship determines whether C can be manipulated by S. 

5.1.4 Manipulating operations 

CSIM applies manipulating operations to the above four types of 15 relationships. 

Manipulating operations are of two types - π operations and Π operations. π operations 

assess whether the relationship between the given content and service is. If a specific 
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relationship exists, the operation returns TRUE, otherwise it returns FALSE. Π operations 

return the corresponding content or services satisfying the specified relationship.  

π operations check if the given content and service have the relationship specified in the 

π operations. A total of five π operations are defined: 

 πSchemas: Given two pieces of content, A and B, A πSchemas B refers to CIT and 

returns TRUE if A and B have the InheritFrom(A, B) relationship . 

 πσSchemas: Given two pieces of content, A and B, A πσSchemas B refers to TRT and 

returns TRUE if A and B have the Translatable(A, B) relationship . 

 πSemantics: Given two pieces of content, A and B, A πSemantics B refers to CST and 

returns TRUE if A and B have the Identical(A, B) relationship . 

 πCapabilities: Given two services A and B, A πCapabilities B refers to SCT and returns 

TRUE if A and B have the Inclusive(A, B) relationship . 

 πσCapabilities: Given a service A and a set of services Bs, A πσCapabilities Bs refers to 

SCT and returns TRUE if the Inclusive(A, Bs) relationship holds, or one of the 

relationships holds: the Combinable(A, Bs), Replaceable(A, Bs) or Translatable(A, 

Bs). In other words, A πσCapabilities Bs determines whether service A can be replaced 

by a series of services Bs according to one of the following four conditions. 

 Bs contain all the capabilities of A; 

 A can be combined by a set of services into Bs;  

 A can be replaced by a set of services into Bs;  

 Bs contain all the capabilities of A, but Bs also can be translated into the same 

input and output schemas as A. 

The algorithms corresponding to the five π operations can be referenced in Appendix.  
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Π operations return the content or services conforming to the specified relationship. Four 

categories of Π operations exist: Πc, Πs, Πsc and Πcs, with respect to the four types of 

relationships defined in Section 5.1.3.  

Πc operations return the content that conforms to the specified relationship.  

 Πc
 Translatable: Given content A, Πc 

Translatable determines the content that can be 

translated into A by direct or transitive translations.  

 Πc
 InheritFrom: Given content A, Πc 

InheritFrom determines the content that is inherited 

from A by direct or transitive inheritance.  

 Πc
 Identical: Given content A,  Πc Identical determines the content that satisfies the 

Identical relationship with A.  

 Πc
Homonymous: Given content A, Πc

Homonymous determines the content that satisfies the 

Homonymous relationship with A.  

 Πc
Synonymous: Given content A, Πc 

Synonymous determines the content that satisfies the 

Synonymous relationship with A. 

Πs operations return the services that exhibit the specified relationship. 

 Πs
Identical: Given a service A, Πs

Identical determines the services that exhibit the 

Identical relationship with A.  

 Πs
Inclusive: Given a service A, Πs 

Inclusive determines the services that exhibit the 

Inclusive relationship with A. 

 Πs
Homonymous: Given a service A, Πs 

Homonymous determines the services that exhibit the 

Homonymous relationship with A.  

 Πs
Synonymous: Given a service A, Πs 

Synonymous determines the services that exhibit the 

Synonymous relationship with A. 
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 Πs
Replaceable: Given a service A, Πs 

Replaceable determines the services that exhibit the 

Replaceable relationship with A. 

 Πs
Translatable: Given a service A, Πs 

Translatable determines the services that exhibit the 

Translatable relationship with A. 

 Πs
Combinable: Given a service A, Πs 

Combinable determines the services that exhibit the 

Combinable relationship with A. 

One Πsc operation, Πsc
Produce, is defined. Given a service S, Πsc

Produce returns the content 

that satisfies the Produce relationship with S.  

One Πcs operation, Πcs
 ManipulatedBy, is defined. Given content C, Πcs

 ManipulatedBy returns 

all the services that satisfy the ManipulatedBy relationship with C.  
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ontological hierarchies that define content semantics and service capabilities. Index structures 

for CST, CIT, SCT and TRT are stored in the Content & Service Repository (CSR), to 

accelerate metadata retrieval. The ontology proposed herein consists of vocabulary with 

hierarchical structure, and an ascendant ontological concept implies all descendant concepts.  

5.2. Semantic digital library query 

Applying CSIM to DL supports powerful semantic queries in content and service 

retrieval. In CSIM, content and service semantics can be elaborated more finely than 

conventional keyword-based approaches because relationships defined in the previous section 

can be added in query statement. Using this abundant semantic information, CSIM accurately 

retrieves results and derives alternative answers that conventional approaches cannot do. For 

example, in response to a query for content with particular semantics, CSIM can retrieve the 

content not only in the same schema hierarchy and with identical semantics, but also in a 

different format, such as synonymous content. Content with various schemas, which are 

translatable into a single schema, can also be retrieved. Furthermore, in a semantic service 

query, CSIM can infer a list of recommendations to suggest that a user concatenates available 

services to create the desired service, using the combinable and translatable relationships. 

5.2.1 Query language 

The query language for CSIM is SQL-like. It consists of three main clauses. 

1. Select Clause: The select clause contains the attributes of the content or service to be 

retrieved. The mode of attributes in a query can be set to EXACT or AMBIGUOUS. An 

EXACT query returns the attributes that exactly satisfy the given predicate without being 

translated or combined. For example, if one user wants to exactly retrieve the content with the 

data format, “Dublin Core”, the query statement can be set to “Select EXACT C.Id From 
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Content C where C.Schema = “Dublin Core””. An AMBIGUOUS query recommends answers 

that have the same semantics as those specified attributes. As in the preceding example, the 

query can be set to “Select AMBIGUOUS C.Id From Content C where C.Schema = “Dublin 

Core””. The query will return three types of answer: 1. the content with the data format 

“Dublin Core”. 2. the content which is not in data format “Dublin Core” but can be translated 

into “Dublin Core” format. 3. The content which is not in data format “Dublin Core” but in 

the same hierarchy of “Dublin Core” in CIT. The absence of the attribute mode indicates the 

default query mode “EXACT”. 

2. From Clause: This clause specifies the content or service from which a user seeks. For 

example, a user wants to retrieve information from one piece of content C and two services S1 

and S2. 

3. Where Clause: This clause states conditional expressions that consist of the content or 

services given in the From Clause. In this clause, a set of Boolean operators (NOT, AND, OR), 

and a set of relationships defined in Section 5.1.3 are applied. For example, if a user wants to 

retrieve a service S1 whose input is produced by another service S2 and whose output data 

schema is Dublin Core, then the Where Clause is “ S1.Input = ManipulatedBy(S2) AND 

S1.Output = “Dublin Core””. Basically, the syntax of a conditional expression in this clause is 

like that of traditional SQL-like language. 

5.2.2 EXACT and AMBIGUOUS query 

Semantic queries are based on the relationships between content and services in CSIM. 

Semantic queries encompass two types - EXACT query and AMBIGUOUS query (in Figure 

18). An EXACT query inquires the services or content that precisely satisfies the given 

predicates, without inferring other relationships. An AMBIGUOUS query returns the service 

or content that can be inferred from the translatable or combinable relationships, as well as the 
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service or content with the same semantics as those specified attributes. Notably, an 

AMBIGUOUS query yields more results but takes more time to respond. Both content and 

service queries are illustrated by “Basic” and “Advanced” query. “Basic” query are in 

standard SQL statement and can be used in conventional query interface. “Advanced” query 

contain CSIM manipulation functions in their query predicate, which are able to derive more 

sophisticated semantic relationships.  

Content Query Service Query  

Exact or Ambiguous Query? Exact or Ambiguous Query?  
Exact Query Ambiguous Query Ambiguous Query Exact Query 

 
InheritFrom? Combinable? 

Translatable? Translatable?  

 
Result Result

 Figure 18. CSIM semantic query

1. Content query 

A content query inquires about the content meeting the requirement specified in the 

query. A user can specify an EXACT or AMBIGIOUS query. An EXACT query returns the 

content that entirely satisfies the query, which means no inference is employed to obtain the 

result. An AMBIGIOUS query returns all the content that can have the same semantics 

specified in the query. Here, the term "can" means that the content may be translated into, or 

inherited from the target content.  
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1.1 Basic content query 

Example: Determine the content with the schema of “Dublin Core”. 

Query Statement: Select C.Id From Content C where C.Schema = “Dublin Core”  

Algorithm: ContentQuery(Attributes A, Content C){ 

1. Locate content c. Let c ∈ CSR, and c.Id = C.Id, c.Schema πSchema C.Schema, 

c.Presentations = C.Presentations, and c.Semantics πSemantics C.Semantics; 

2. If A ∈ AMBIGUOUS, for each r ∈ ΠTranslatable(r, C), c ← c ∪ r; (The symble “←” indicates 

“assign the value”.) 

3. For each k ∈ c, return k.A; 

1.2 Advanced content query 

Example: Determine the content inherited from the “Dublin Core” schema.  

Query Statement: Select C1.Id From Content C1, C2 where C2.Schema = “Dublin Core” and 

InheritFrom(C1, C2) 

Algorithm: AdvancedContentQuery(Attributes A, Contents C, Relationship R){ 

1. Locate content c. Let c ∈ CSR, and c.Id = C.Id, c.Schema πSchema C.Schema, 

c.Presentations = C.Presentations and c.Semantics πSemantics C.Semantics; 

2. If A ∈ AMBIGIOUS, for each r ∈ Πc Translatable(r, C), c ← c ∪ r; 

3. For each i ∈ Π(R) 

c ← c ∪ ContentQuery(Id, i) 

4. For each k ∈ c, return k.A; 
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2. Service query 

A service query inquires about the services meeting the requirement specified in the 

query. A user can specify the query to be EXACT or AMBIGIOUS. An EXACT query returns 

the services that entirely satisfy the query. An AMBIGIOUS query determines all the services 

that can have the same capabilities specified in the query. Here the term “can have” implies 

that the services can be concatenated or translated into the target service.  

2.1 Basic service query 

Example: Determine the services with the service capability “Catalog_System”. 

Query Statement: Select S.Id From Service S where S.Capabilities = “Catalog_System”  

Algorithm: ServiceQuery(Attributes A, Services S){ 

1. Locate service s. Let s ∈ CSR, s.Id=S.Id, and s.Capabilities πCapabilities S.Capabilities; 

2. If A ∈ AMBIGIOUS, for each r ∈ Πs
 Translatable(r, C.Schema), c ← c ∪ r; 

3. For each k ∈ c, return k.A; 

2.2 Advanced service query 

Example: Determine the services that have the same capabilities with “Catalog_System”. 

Query Statement: Select S1.Id From Service S1, S2 where S2.Capabilities = 

“Catalog_System” and Inclusive(S1, S2). 

Algorithm: AdvancedServiceQuery(Attributes A, Services S, Relationship R){ 

1. Locate service s. Let s ∈ CSR, s.Id=S.Id, and s.Capabilities πCapabilities S.Capabilities; 

2. If A ∈ AMBIGIOUS,  
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Locate service rs ∈ CSR where S.Capabilities πσCapabilities rs.Capabilities 

c ← c ∪ rs; 

3. For each i ∈ R 

c ← c ∪ ServiceQuery(id, i) 

4. For each k ∈ c, return k.A; 

5.2.3 Ranking function  

A result of a CSIM semantic query can be classified into one of the following types: 

1. Exact match. The result conforms to the query predicate without additional 

translation, inheritance, or combination.  

2. Ambiguous match. The result is a recommendation that may not completely satisfy 

all query predicates, but can satisfy the predicates by translating, inheriting, or 

combining available services or content. 

Because the results of a query may not totally fulfill the user’s requirements, a ranking 

function is proposed to evaluate the fitness of the results of a query. The ranking function W is 

separated into WContent and WService, and defines as follows; 

Ranking function WContent(Content A, Content Results)        (Equation 1) 

=1      if A πSchemas Results and Num(Results)=1 

=Π(1-Ti) if A πσSchemas Results and Num(Results)>1 

Ranking function WService(Service A, Service Results)          (Equation 2) 
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=1      if A πCapabilities Results and Num(Results)=1 

=(ΣWResults
i * Π(1-Ti))/ (Num(Results)-Num(Ti))  

if A πσCapabilities Results and Num(Results)>1 

where  

WResults
i        : Num(Resultsi.Capabilities)/Num(A.Capabilities) * WS

Result
i

WS
Result

i        : Service weight of Resulti. The larger weight represents the service is 

easier to compose in the result. 

Ti                              : Overhead of the translation rules to produce Results 

Num(Results) : The number of services and translation rules. The less number of results 

is, the larger rank of the result is. 

Ranking functions WContent and WService are proposed to rank content and services, 

respectively. The ranking follows the number of semantic concepts or capabilities that meet 

the query predicates, and the amount of content and services that are combined to yield the 

result.  

Example: Assume a service A with five capabilities; we apply CSIM in the semantic query 

and obtain that A can be concatenated by three services S1, S2, and S3 with two translations T1 

and T2. Each of the three services owns three service capabilities of A, and the union of their 

capabilities includes all the service capabilities of A. If all of these services have WS=1 and 

the two translation rules have a 10% and 20% overhead respectively, what is the rank of this 

concatenation? 
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Result: In this example, WResults
1, WResults

2 and WResults
3 are 3/5=0.6. T1 and T2 are 0.1 and 

0.2, respectively. Applying Eq. 2 yields the rank of this concatenation as (0.6*1+0.6*1+0.6*1) 

* ((1-0.1) * (1-0.2)) / (5-2)=0.432 

5.3 Implementation  

A prototype system is implemented (in Figure 19). This system supports advanced 

semantic DL queries for users to retrieve content and services. Librarians can consult this 

system to determine reusable components in DL before they start establishing new services. 

This system includes four main areas. 

Selection Area Ontology AreaEdit Area

Result AreaRanking Field Recommendation List
 

 Figure 19. CSIM prototype system

1. Selection area: The selection area allows the user to specify which one of the three 

query types is to be issued - service query, content query, and compound query. 

Compound query performs complex service and content queries to retrieve content 

or services. 
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2. Edit area: The edit area allows the user to specify the query predicates, including 

input/output schemas and semantics of content, and service capabilities. They are 

selected from the ontology area. 

3. Ontology area: The ontology area contains all ontological hierarchies defined in 

Section 5.1.2 The ontology is developed by domain experts.  

4. Result area: The result area includes the results that satisfy the predicates in the edit 

area. Each result is expressed as a recommendation list with one or more items. A 

list with one item indicates that the item exactly matches the specified predicates; on 

the other hand, a list with more than one item indicates that the users can combine 

these items together to obtain new content/service that satisfies the specified 

predicates. The ranking of each result is also given. A numeral in front of each 

service of the recommendation list denotes the percentage to fit the specified search 

capabilities. The result area presents a set of recommendation lists to advise the user; 

nevertheless, the system leaves the task of confirming the feasibility of the 

recommendation list to the user.  

The example illustrates in Figure 19 conducts a query to retrieve virtual union catalog 

system. The input and output interfaces are specified as “holding” format. The “holding” 

format, which is the most superior item in one content schema ontology means the service to 

be returned should contain any kinds of library holdings. The capabilities are specified as 

“Integration” and “Query”, each of which is the most superior item in one capability ontology. 

Consequently, the answer area shows not only the VUCS@NCTU service (Index 1 of the 

result area in Figure 19), but also a recommended list to suggest another virtual union catalog 

system (Index 3 of the result area in Figure 19) by combing three services: an extractor from 

structure documents, a translation service to translate native data schemas into a canonical 

schema, and an integration service to combine distributed extractors. 
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Chapter 6 

Experiments 

6.1 Experimental set-up and approach 

The idea of M-Architecture@DL is verified in this chapter. A series of experiments were 

conducted to examine the performance of semantic query. The experiments contained service 

and content queries, which explored the structural relationship of the metadata of services and 

content.  

The subjects of service queries were the 81 services in Digital Library of National Chiao 

Tung University. The services were divided into six categories – Tutorial (TU), Query (QU), 

Service (SE), Database (DB), Journal (JO), and Holding (HO). The metadata of each service 

was given by experts and contained keywords that delineated the service capabilities.  

Experiments on service queries were conducted to compare the conventional keyword-based 

approach, the CSIM approach, and the CSIM approach with service inference. The 

keyword-based approach returned the services the description of whose capabilities exactly 

matched the specified keywords. The CSIM approach involved the AMBIGUOUS semantic 

query without enabling the Πs
Combinable manipulation function; this approach conducted a 

query to refer to related ontological terms for service capabilities and returned answers that 

would be inherited or translated into the desired services. CSIM with service inference 

involved the AMBIGUOUS semantic query with enabling the Πs
Combinable manipulation 

function. This approach returned the answer of the CSIM approach; in addition, a recommend 

list that could compose the required service from existing services was returned as well. For a 

digital library that decomposed services into reusable components, CSIM with inference 

advised the system developer to construct new services by combining the existing 
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components. In this manner, a lot of development effort could be saved.  

To evaluate content queries, a virtual union catalog system (VUCS) [10], which harvested 

over 20 WebPAC systems of Libraries in Taiwan, was adopted. The issue of various data 

schemas in the WebPAC systems complicated the mapping of schema attributes in response to 

a content query. To handle this issue, conventional VUCS systems involved user intervention 

in the design phase. This design strategy led to a much less flexible system and required user 

intervention in the system design. CSIM referred to the ontology stored in the CIT (Content 

Inheritance Table) to extend the hierarchical relationships between attributes of schemas. 

Furthermore, CSIM used the ontology of semantics stored in the CST (Content Semantics 

Table) to solve the problems of attribute semantics (such as those involving Synonymous and 

Homonymous relationships). The experiments retrieved four attributes (tile, subject, author, 

and publisher) of the content satisfying the query. The keyword-based approach returned the 

content contained the specified keywords within these fields (not all WebPAC systems 

contains all of these fields). The CSIM approach employed the ontological tables (both CST 

and CIT) to map various attributes of schemas into the same attribute if they were at the same 

level of the ontological hierarchy. Additionally, the CSIM approach also exploited the 

ontological tables and TRT to convert heterogeneous attributes into the content suitable for the 

requested attributes. The keywords used in content queries were randomly selected. The top k 

answers were calculated to average the performance in the four attributes. 

6.2 Experimental metrics 

Two metrics, Accuracy and Coverage, were used to evaluate both the service and content 

query and thereby elucidated the effectiveness of CSIM. Accuracy represents the effectiveness 

of the returned answers to be correct. Coverage represents the effectiveness of the returned 

correct answers to be included in the entire correct answers. For the service query, the 
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Accuracy (Am(s)) and Coverage (Cm(s)) are defined as 

Am (s) = (|total services in Fs| ∩ | total services in Fs
ideal|) /  

|total services in Fs| 

Cm(s) = (|total services in Fs| ∩ | total services in Fs
ideal|) /  

|total services in Fs
ideal| 

where m indicates the method to be examined, which can be keyword-based, CSIM and CSIM 

with inference. s represents the examined service category. In these formulas, Fs represents the 

services in each service category returned by the query; Fs
ideal represents all the services in 

category s, the services in concept s, and the services returned by CSIM with inference whose 

ranks exceed the threshold Tservice:  

Fs
ideal = the services of category s ∪ the services of concept s ∪ the services returned by 

CSIM with inference whose ranks exceed Tservice  

The threshold Tservice discards the results that are cascadedly translated by too more 

translation rules between the input and output interfaces. The aim of Tservice is to control the 

efficiency of the service query. For the content query, the Accuracy (Am(c)) and Coverage 

(Cm(c)) are defined as 

Ak (c) = (|total content in Fc| ∩ | total content in Fc
ideal|) /  

| total content in Fc| 

Ck (c) = (|total content in Fc| ∩ | total content in Fc
ideal|) / 

|total content in Fc
ideal| 

where m indicates the method to be examined, which can be keyword-based, CSIM or CSIM 

with inference. c represents the top k content returned by VUCS@NCTUDL. In these 
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formulas, Fc represents the response to a content query. Fc
ideal represents all the content 

returned by the keyword-based approach, and the content returned by CSIM whose ranks 

exceed the threshold Tcontent:  

Fc
ideal = the content returned by keyword-based approach ∪ the content returned by CSIM 

whose ranks exceed Tcontent  

The threshold Tcontent discards the results that are cascadedly translated by too more 

translation rule between two content. The aim of Tcontent is to control the efficiency of the 

content query.  

The percentage of the improvement of CSIM over the keyword-based approach was used 

to demonstrate the performance of CSIM in content query. The Improvement is defined as: 

Improvement Accuracy = (Am CSIM(c) – Am Keyword-based(c) ) / Am Keyword-based(c) 

Improvement Coverage = (Cm CSIM(c) – Cm Keyword-based(c) ) / Cm Keyword-based(c) 

6.3 Experiment results 

Figure 20 and 21 present the Accuracy and Coverage of the service query. Only one 

translation is allowed in their input/output schemas between two services. Both figures 

indicate that the CSIM approach outperforms the keyword-based approach. In all service 

categories, the keyword-based approach has poor Accuracy and Coverage because these 

services do not explicitly contain the searched keywords in their capabilities. The CSIM 

approach dramatically improves the performance with regard to both Accuracy and Coverage. 

This finding shows that exploiting concept approaches (like CSIM) is useful for semantic DL 

queries. Notably, the CSIM approach with inference outperforms pure CSIM in the “HO” 

category because the former approach can recommend users to combine existing services to 
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generate additional ones such as the union of WebPAC system and the electronic journal 

databases. This result may encourage libraries to spend less effort by integrating available 

ones on developing add-on services. 

 

Figure 20. Accuracy of service query  

 

 

For content query
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Figure 21. Coverage of service query
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conceptually related attributes of schemas. For example, the “author” field in NCTUDL may 

appear in other Webpac systems with different name such as creator; in this case, 

keyword-based approach cannot retrieve the correct results. In Figure 23, the improvement of 

Coverage indicates that CSIM outperforms 8%~10% to the keyword-based approach. The 

curve of Coverage improvement increases when the returned answers increase because CSIM 

refers to CST to return those attributes with the same semantics but different format (like 

Synonyms).  

In summary, the performance of semantic DL queries with CSIM is highly promising. 

The CSIM model represents a significant improvement in both service and content queries. 

The CSIM model not only enhances the Accuracy and Coverage of a DL query but also 

suggests how librarians can integrate available components into a desired service.  

 

 

  

 

Figure 22. Accuracy improvement of content query
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Figure 23. Coverage Improvement of Content Query 
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Chapter 7 

Concluding Remarks 

This dissertation addresses the problem of conventional architecture for DL integration, 

and proposes a novel architecture from the perspective of metadata to integrate DL seamlessly. 

The metadata integration of DL contains several advantages: metadata model is powerful, 

metadata transformation is easy, metadata structure is derivable and metadata integration is 

economic. Based on these reasons, a metadata architecture called M-Architecture@DL is 

proposed to facilitate DL integration. 

M-Architecture@DL separates DL query according to MEQ model (metadata modeling, 

data extraction and semantic query), which can extract additional knowledge in persistency. 

M-Architecture@DL contains three layers:  

 Metadata Modeling - This layer provides rich modeling power and translation 

mechanism to conquer heterogeneity. A Metadata Modeling Language (MML) is 

proposed in this layer. MML adopts XML as its syntax and extends RDF by adding 

name hierarchy reference. The format interoperability is achieved by iterative 

translations. The other profit is that MML provides formal expression of metadata 

structure. This expression is useful for metadata manipulation and integration when 

metadata structure can be expressed by both tuple and set constructors. Toolkits 

including a metadata edit tool and a translation tool are provided for the creation of 

metadata and metadata translations rules.  

 Data extraction - This layer collects data from distributed DL and encapsulates 

result into MML metadata. Data from DL services with similar structure can be 

extracted into metadata automatically by means of the common structure. This layer 
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provides a transparent way without prearrange with library affiliations and saves a 

lot of effort to collect information. Metadata Extractor is implemented to extract 

MML metadata from (semi-) structure documents with common structure. The 

Metadata Extractor that extracts metadata transparently can enhance protocol 

interoperability in DL integration. 

 Semantic query - This layer provides query to obtain metadata semantics as mush as 

possible. The semantics query across distributed DL is called Content and Services 

Inference Model (CSIM). CSIM derives 15 relationships between two DL factors, 

content and services, and defines functions to manipulate these relationships. CSIM 

can add manipulation functions in the query statement to obtain more semantic 

answer. Applying CSIM in DL significantly improves semantic query and alleviates 

the administrative load when query from DL. Semantic interoperability is achieved 

in this layer.  

To examine the performance of M-Architecture@DL, both content and service queries 

are conducted. Experiments results show that semantic queries in M-Architecture@DL are 

highly promising. In service query, significant improvement is achieved because not only the 

keywords for service capability but also other relationships, like translatable and combinable, 

are conformed. The content query with CSIM from Virtual Union Catalog System has 

superior performance because semantic heterogeneity is solved by ontology tables. 

Summarily, adopting M-Architecture@DL to integrate DL can save a lot of 

administrative effort. When collecting data from DL affiliations, Metadata Extractor extracts 

data from public services, like webpac system, which can save a lot of effort to communicate 

individual service protocol. The CSIM adopts ontology table for semantics to save a lot of 

effort for user-intervene in semantics heterogeneity. If librarian tries to construct new services, 

CSIM can also advise a recommended list from existent services to avoid a whole new 
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construction.  

In the future, M-Architecture@DL has several works on which to pay attention. In 

metadata modeling layer, the data model can be integrated to more popular models, such as 

the E-R model in the field of Database. The combination of MML with Database can facilitate 

the transformation from databases to metadata, which is practical in many DL applications. 

Moreover, in data extraction layer, the detection of consistency in common structure is an 

important issue to prevent the mistaken extraction when the outputs of DL search services are 

changed. This work is critical when constructing virtual union catalog systems because it is a 

high risk for the DL to change their Webpac systems in a period of time. The third work will 

be focused on the efficiency of the semantic query layer. The derivation among content and 

services may spend a lot of time when the specified content semantics or service capabilities 

are unclear. A moderate terminate mechanism should be taken to avoid cyclic or endless 

derivation. Another issue for the semantic query layer is the relationships of CSIM. A more 

delicate definition of content or a service is anticipated to imply more than 15 relationships 

among content and services.  

The future direction for this study can be focused on the reuse of metadata. The next 

generation of metadata model requires an information model to deal with the reuse of 

different metadata. Literature has shown that Cornell University is developing a metadata 

reusable interface called information network overlay (INO) to provide an extensible 

knowledge base for an expanding suite of digital library services [54]. INO adopts 

aggregation model to manipulate metadata and create metadata operations for metadata. “The 

metadata operation for metadata” facilitates the use of versatile metadata and save a lot of 

effort when constructing unified search. This research involves several issues, like 

information model for metadata aggregation, resource description, semantics induction …etc. 
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Another observation for metadata in DL integration is that the increasing standards 

require many mappings to exchange information. For example, giving 10 standards, the total 

exchange of all standards requires 90 mappings to translate with each other. Therefore, an 

idea called switching-across is introduced to act as an intermediate among various standards. 

With an intermediate presented, the optimal solution only requires 10 mappings. To improve 

the sharing of metadata, the automatic generation of common switching-across is useful in 

metadata exchange. Administrative effort will be reduced in collaborative search. As a result, 

using a switching across to channel crosswalks seems to be a well-accepted solution in 

metadata exchange. This research involves several issues, like schema integration, schema 

mapping with minimum information loss, schema translation … etc. 

The two directions for future research can be easy added into M-Architecture@DL. The 

aggregation of metadata can be treated as the fourth layer after the returned result of semantic 

query. The result can be easily integrated by creating metadata to operate data metadata. The 

switching-across can be treated as additional functions in metadata modeling layer. The 

performance of M-Architecture@DL can be enhanced when the metadata come from many 

DL and require large amount of translations. 
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Appendix 

Table 3. π operations of CSIM 

π operations 
πSches Algorithm: πSches(Content A, Content B){ 

1. Locate A.Sches from CIT 
2. For each r ∈ A.Sches.Incs 
 If r = <A, B>, Return TRUE 
3. Return FALSE 

πσSches Algorithm: πσSches(Content A, Content B){ 
1. Locate A.Sches from CIT 
2. For each r ∈ A.Sches.Incs 
 If Πc 

Translatable(A,B) != NULL, Return TRUE   
3. Return FALSE  

πSems Algorithm: πSems(Content A, Content B){ 
1. Locate A.Sems and B.Sems from CST 
2. For each r ∈ A.Sems 

If r ∉ B.Sems, Return FALSE 
3. Return TRUE 

πCaps Algorithm: πCaps(Service A, Service B){ 
1. Locate A.Caps and B.Caps from SCT 
2. For each r ∈ A.Caps 

If r ∉ B.Caps Return FALSE 
3. Return TRUE 

πσCaps Algorithm: πσCaps(Service A, Service Bs){ 
1. Locate A.Caps and Bs.Caps from SCT 
2. For each r ∈ A.Caps 

If r ∉ Bs.Caps or Πc 
Translatable(A,B) = NULL Return FALSE 

3. If Πs 
Combinable(A) != Bs Return FALSE 

4. Return TRUE 

Table 4. Π c operations of CSIM 

Π c operations 
Π c

 Translatable Algorithm: Set SRC={B} to the result, Πc 
Translatable(Content A, Content B, SRC){ 

1. For each r ∈ TRT{ 
Locate r.FromSche from CIT 
if r.FromSche ∈ SRC{ 

SRC = SRC ∪ r 
if r.ToSche != A, Πc

Translatable(Content A, r.ToSche, SRC) 
} 

} 
2. return SRC} 

Π c
 InheritFrom Algorithm: Πc 

Translatable(Content A){ 
1. Set SRC = {A} to the result 
2. Locate A.Sches.Incs from CIT 
3. For each s ∈ SRC{ 

For all r ∈ CIT, if r ∈ A.Sches.Incs, SRC = SRC ∪ r 
 } 
4. Return SRC } 

Π c
 Identical Algorithm: Πc 

Identical(Content A){ 
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 1. Set SRC the the empty result 
2. Locate A.Sches from CIT, A.Sems from CST 
3. For each r ∈ CSR 

If r πSems A and r πSches A, SRC = SRC ∪ r 
4. Return SRC} 

Π c
 

Homonymous  
 

Algorithm: Πc 
Homonymous(Content A){ 

1. Set SRC to the empty result 
2. Locate A.Sches from CIT, A.Sems from CST 
3. For each r ∈ CSR 

If r πSems A and not (r πSches A), SRC = SRC ∪ r 
4. Return SRC} 

Π c
 Synonymous Algorithm: Πc 

Synonymous(Content A){ 
1. Set SRC to the empty result 
2. Locate A.Sches from CIT, A.Sems from CST 
3. For each r ∈ CSR 
 If not (r πSems A) and r πSches A, SRC = SRC ∪ r 
4. Return SRC 

Table 5. Π s operations of CSIM 

Π s operations 
Π s

 Identical Algorithm: Πs 
Identical(Service A){ 

1. Set SRC to the empty result 
2. Locate A.Caps from SCT 
3. For each r ∈ CSR 
 If r πCaps A and A πCaps r, SRC = SRC ∪ r 
4. Return SRC  

Π s
 Inclusive Algorithm: Πs

Inclusive(Service A){ 
1. Set SRC to the empty result 
2. Locate A.Caps from SCT 
3. For each r ∈ CSR 
 if r πCaps A, SRC = SRC ∪ r 
4. Return SRC 

Π s
 Homonymous Algorithm: Πs 

Homonymous(Service A){ 
1. Set SRC to the empty result 
2. Locate A.Caps from SCT 
3. For each r ∈ CSR 
 If (r.Input πSches A.Input) and (r.Output πSches A.Output) and not (r πCaps A ), 
SRC = SRC ∪ r 
4. Return SRC 

Π s
 Synonymous Algorithm: Πc 

Synonymous(Service A){ 
1. Set SRC to the empty result 
2. Locate A.Caps from SCT 
3. For each r ∈ CSR 
 If not (r.Input πSches A.Input) or not (r.Output πSches A.Output) and (r πCaps A ), 
SRC = SRC ∪ r 
4. Return SRC 

Π s
 Replaceable Algorithm: Πs 

Replaceable(Service A){ 
1. Set SRC to the empty set 
2. Locate A.Caps from SCT 
3. For each r ∈ CSR 
 If (r.Input πSches A.Input) and (r.Output πSches A.Output) and (r πCaps A ), SRC = 
SRC ∪ r 
4. Return SRC 

Π s
 Translatable Algorithm: Πs 

Translatable (Service A){ 
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1. Set SRC to be an empty set to hold result 
2. Locate A.Caps from SCT 
3. For each r ∈ CSR { 
 If (r πCaps A ) {  
Locate rInput and rOutput from TRT 
if (rInput.FromSche=r.Input and rOutput.FromSche=r.Output) { 
SRC = SRC ∪ r 
 if not (rInput.ToSche = B.Input and rOutput.ToSche = B.Output),  
Πs 

Translatable(r.ToSche, Content B, SRC) 
 } 
SRC = SRC ∪ r 
} 
4. Return SRC 

Π s
 Combinable Algorithm: Πs 

Combinable(Service A){ 
1. Set SRC to be an empty set to hold result 
2. For each r ∈ CSR 
 If (r.Input πSches A.Output), SRC = SRC ∪ r 
3. Return SRC 

Table 6. Π sc operation of CSIM 

Π sc operations 
Π sc

 Produce Algorithm: Πsc 
Produce (Content A){ 

1. Set SRC to be an empty set to hold result  
2. For each r ∈ CSR 
 If (r.Output = A), SRC = SRC ∪ r 
3. Return SRC  

Table 7. Π cs operation of CSIM 

Π cs operations 
Π cs

 

ManipulateBy

Algorithm: Πcs 
ManipulatedBy (Content A){ 

1. Set SRC to be an empty set to hold result  
2. For each r ∈ CSR 
 If (r.Input = A), SRC = SRC ∪ r 
3. Return SRC  
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